首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 792 毫秒
1.
Complex multicellularity represents the most advanced level of biological organization and it has evolved only a few times: in metazoans, green plants, brown and red algae and fungi. Compared to other lineages, the evolution of multicellularity in fungi follows different principles; both simple and complex multicellularity evolved via unique mechanisms not found in other lineages. Herein we review ecological, palaeontological, developmental and genomic aspects of complex multicellularity in fungi and discuss general principles of the evolution of complex multicellularity in light of its fungal manifestations. Fungi represent the only lineage in which complex multicellularity shows signatures of convergent evolution: it appears 8–11 times in distinct fungal lineages, which show a patchy phylogenetic distribution yet share some of the genetic mechanisms underlying complex multicellular development. To explain the patchy distribution of complex multicellularity across the fungal phylogeny we identify four key observations: the large number of apparently independent complex multicellular clades; the lack of documented phenotypic homology between these clades; the conservation of gene circuits regulating the onset of complex multicellular development; and the existence of clades in which the evolution of complex multicellularity is coupled with limited gene family diversification. We discuss how these patterns and known genetic aspects of fungal development can be reconciled with the genetic theory of convergent evolution to explain the pervasive occurrence of complex multicellularity across the fungal tree of life.  相似文献   

2.
3.
Although evolutionary theory predicts an association between the evolution of elaborate ornamentation and speciation, empirical evidence for links between speciation and ornament evolution has been mixed. In birds, the evolution of increasingly complex and colorful plumage may promote speciation by introducing prezygotic mating barriers. However, overall changes in color complexity, including both increases and decreases, may also promote speciation by altering the sexual signals that mediate reproductive choices. Here, we examine the relationship between complex plumage and speciation rates in the largest family of songbirds, the tanagers (Thraupidae). First, we test whether species with more complex plumage coloration are associated with higher speciation rates and find no correlation. We then test whether rates of male or female plumage color complexity evolution are correlated with speciation rates. We find that elevated rates of plumage complexity evolution are associated with higher speciation rates, regardless of sex and whether species are evolving more complex or less complex ornamentation. These results extend to whole-plumage color complexity and regions important in signaling (crown and throat) but not nonsignaling regions (back and wingtip). Our results suggest that the extent of change in plumage traits, rather than overall values of plumage complexity, may play a role in speciation.  相似文献   

4.
This review is concerned with the structure and function of the protein products and homeobox genes of the HOX complex. We also trace a relationship between morphological evolution and the evolution of the homoeotic complex.  相似文献   

5.
On Theocracies     
Although many archaeologists and anthropologists have used the concept of theocracy in discussing the structure and evolution of early complex societies there has been little systematic thought or consensus about its implication. The concept of theocracy is evaluated in the context of present thought on the evolution of complex societes. It is suggested that theocratic organization was well-suited and even necessary for the emergence of state-type institutions, and that there is no evolutionary dichotomy between "theocratic" states and, later, more "secular" ones . [theocracy, structure and evolution of complex societies, state formation]  相似文献   

6.
Extensive bioinformatics analysis suggests that the stability and function of protein complexes are maintained throughout evolution by coordinated changes (co‐evolution) of complex subunits. Yet, relatively little is known regarding the actual dynamics of such processes and the functional implications of co‐evolution within protein complexes, since most of the bioinformatics predictions were not analyzed experimentally. Here, we describe a systematic experimental approach that allows a step‐by‐step observation of the co‐evolution process in protein complexes. The exosome complex, an essential complex exhibiting a 3′→5′ RNA degradation activity, served as a model system. In this study, we show that exosome subunits diverged very early during fungal evolution. Interestingly, we found that despite significant differences in conservation between Rrp41 and Mtr3 both subunits exhibit similar divergence pattern and co‐evolutionary behavior through fungi evolution. Activity analysis of mutated exosomes exposes another layer of co‐evolution between the core subunits and RNA substrates. Overall, our approach allows the experimental analysis of co‐evolution within protein complexes and together with bioinformatics analysis can significantly deepen our understanding of the evolution of these complexes. Proteins 2013; 81:1997–2006. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Cai X  Clapham DE 《PloS one》2008,3(10):e3569
The mammalian CatSper ion channel family consists of four sperm-specific voltage-gated Ca2+ channels that are crucial for sperm hyperactivation and male fertility. All four CatSper subunits are believed to assemble into a heteromultimeric channel complex, together with an auxiliary subunit, CatSperbeta. Here, we report a comprehensive comparative genomics study and evolutionary analysis of CatSpers and CatSperbeta, with important correlation to physiological significance of molecular evolution of the CatSper channel complex. The development of the CatSper channel complex with four CatSpers and CatSperbeta originated as early as primitive metazoans such as the Cnidarian Nematostella vectensis. Comparative genomics revealed extensive lineage-specific gene loss of all four CatSpers and CatSperbeta through metazoan evolution, especially in vertebrates. The CatSper channel complex underwent rapid evolution and functional divergence, while distinct evolutionary constraints appear to have acted on different domains and specific sites of the four CatSper genes. These results reveal unique evolutionary characteristics of sperm-specific Ca2+ channels and their adaptation to sperm biology through metazoan evolution.  相似文献   

8.
The evolutionary origin of complex organs challenges empirical study because most organs evolved hundreds of millions of years ago. The placenta of live-bearing fish in the family Poeciliidae represents a unique opportunity to study the evolutionary origin of complex organs, because in this family a placenta evolved at least nine times independently. It is currently unknown whether this repeated evolution is accompanied by similar, repeated, genomic changes in placental species. Here, we compare whole genomes of 26 poeciliid species representing six out of nine independent origins of placentation. Evolutionary rate analysis revealed that the evolution of the placenta coincides with convergent shifts in the evolutionary rate of 78 protein-coding genes, mainly observed in transporter- and vesicle-located genes. Furthermore, differences in sequence conservation showed that placental evolution coincided with similar changes in 76 noncoding regulatory elements, occurring primarily around genes that regulate development. The unexpected high occurrence of GATA simple repeats in the regulatory elements suggests an important function for GATA repeats in developmental gene regulation. The distinction in molecular evolution observed, with protein-coding parallel changes more often found in metabolic and structural pathways, compared with regulatory change more frequently found in developmental pathways, offers a compelling model for complex trait evolution in general: changing the regulation of otherwise highly conserved developmental genes may allow for the evolution of complex traits.  相似文献   

9.
Evolution of complex fruiting-body morphologies in homobasidiomycetes   总被引:13,自引:0,他引:13  
The fruiting bodies of homobasidiomycetes include some of the most complex forms that have evolved in the fungi, such as gilled mushrooms, bracket fungi and puffballs ('pileate-erect') forms. Homobasidiomycetes also include relatively simple crust-like 'resupinate' forms, however, which account for ca. 13-15% of the described species in the group. Resupinate homobasidiomycetes have been interpreted either as a paraphyletic grade of plesiomorphic forms or a polyphyletic assemblage of reduced forms. The former view suggests that morphological evolution in homobasidiomycetes has been marked by independent elaboration in many clades, whereas the latter view suggests that parallel simplification has been a common mode of evolution. To infer patterns of morphological evolution in homobasidiomycetes, we constructed phylogenetic trees from a dataset of 481 species and performed ancestral state reconstruction (ASR) using parsimony and maximum likelihood (ML) methods. ASR with both parsimony and ML implies that the ancestor of the homobasidiomycetes was resupinate, and that there have been multiple gains and losses of complex forms in the homobasidiomycetes. We also used ML to address whether there is an asymmetry in the rate of transformations between simple and complex forms. Models of morphological evolution inferred with ML indicate that the rate of transformations from simple to complex forms is about three to six times greater than the rate of transformations in the reverse direction. A null model of morphological evolution, in which there is no asymmetry in transformation rates, was rejected. These results suggest that there is a 'driven' trend towards the evolution of complex forms in homobasidiomycetes.  相似文献   

10.
An analogy between the evolution of organisms and some complex computational problems (cryptosystem cracking, determination of the shortest path in a graph) is considered. It is shown that in the absence of a priori information about possible species of organisms such a problem is complex (is rated in the class NP) and cannot be solved in a polynomial number of steps. This conclusion suggests the need for re-examination of evolution mechanisms. Ideas of a deterministic approach to the evolution are discussed.  相似文献   

11.
A classification of possible routes of Darwinian evolution   总被引:1,自引:0,他引:1  
A classification of four possible routes of Darwinian evolution is presented. These are serial direct evolution, parallel direct evolution, elimination of functional redundancy, and adoption from a different function. This classification provides a conceptual framework within which to investigate the accessibility by Darwinian evolution of complex biological structures.  相似文献   

12.
Examination of historical persistence of integration patterns provides an important insight into understanding the origin and evolution of complex traits. Specifically, the distinct effects of developmental and functional integration on the evolution of complex traits are often overlooked. Because patterns of functional integration are commonly shaped by selection exerted by the external environment, whereas patterns of developmental integration can be determined by relatively environment-independent selection for developmental homeostasis, examination of historical persistence of morphological integration patterns among species should reveal the relative importance of current selection in the evolution of complex traits. We compared historical persistence of integration patterns produced by current developmental versus ecological requirements by examining the evolution of complex mandibular structures in nine species of soricid shrews. We found that, irrespective of phylogenetic relatedness of species, patterns of developmental and functional integration were highly concordant, suggesting that strong selection for developmental homeostasis favors concordant channeling of both internal and external variation. Overall, our results suggest that divergence in mandible shape among species closely follows variation in functional demands and ecological requirements regardless of phylogenetic relatedness among species.  相似文献   

13.
Most animals undergo ontogenetic niche shifts during their life. Yet, standard ecological theory builds on models that ignore this complexity. Here, we study how complex life cycles, where juvenile and adult individuals each feed on different sets of resources, affect community richness. Two different modes of community assembly are considered: gradual adaptive evolution and immigration of new species with randomly selected phenotypes. We find that under gradual evolution complex life cycles can lead to both higher and lower species richness when compared to a model of species with simple life cycles that lack an ontogenetic niche shift. Thus, complex life cycles do not per se increase the scope for gradual adaptive diversification. However, complex life cycles can lead to significantly higher species richness when communities are assembled trough immigration, as immigrants can occupy isolated peaks of the dynamic fitness landscape that are not accessible via gradual evolution.  相似文献   

14.
Sexual selection plays an important role in mating signal divergence, but geographic variation in ecological factors can also contribute to divergent signal evolution. We tested the hypothesis that geographic heterogeneity in predation causes divergent selection on advertisement call complexity within the Engystomops petersi (previously Physalaemus petersi) frog species complex. We conducted predator phonotaxis experiments at two sites where female choice is consistent with call trait divergence. Engystomops at one site produces complex calls, whereas the closely related species at the other site produces simple calls. Bats approached complex calls more than simple calls at both sites, suggesting selection against complex calls. Moreover, bat predation pressure was greater at the site with simple calls, suggesting stronger selection against complex calls and potentially precluding evolution of complex calls at this site. Our results show that geographic variation in predation may play an important role in the evolution and maintenance of mating signal divergence.  相似文献   

15.
Rauscher JT  Doyle JJ  Brown AH 《Genetics》2004,166(2):987-998
Despite the importance of polyploidy in the evolution of plants, patterns of molecular evolution and genomic interactions following polyploidy are not well understood. Nuclear ribosomal DNA is particularly complex with respect to these genomic interactions. The composition of nrDNA tandem arrays is influenced by intra- and interlocus concerted evolution and their expression is characterized by patterns such as nucleolar dominance. To understand these complex interactions it is important to study them in diverse natural polyploid systems. In this study we use direct sequencing to isolate and characterize nrDNA internal transcribed spacer (ITS) homeologues from multiple accessions of six different races in the Glycine tomentella allopolyploid complex. The results indicate that in most allopolyploid accessions both homeologous nrDNA repeats are present, but that there are significant biases in copy number toward one homeologue, possibly resulting from interlocus concerted evolution. The predominant homeologue often differs between races and between accessions within a race. A phylogenetic analysis of ITS sequences provides evidence for multiple origins in several of the polyploid races. This evidence for diverse patterns of nrDNA molecular evolution and multiple origins of polyploid races will provide a useful system for future studies of natural variation in patterns of nrDNA expression.  相似文献   

16.
We deal here with the issue of complex network evolution. The analysis of topological evolution of complex networks plays a crucial role in predicting their future. While an impressive amount of work has been done on the issue, very little attention has been so far devoted to the investigation of how information theory quantifiers can be applied to characterize networks evolution. With the objective of dynamically capture the topological changes of a network''s evolution, we propose a model able to quantify and reproduce several characteristics of a given network, by using the square root of the Jensen-Shannon divergence in combination with the mean degree and the clustering coefficient. To support our hypothesis, we test the model by copying the evolution of well-known models and real systems. The results show that the methodology was able to mimic the test-networks. By using this copycat model, the user is able to analyze the networks behavior over time, and also to conjecture about the main drivers of its evolution, also providing a framework to predict its evolution.  相似文献   

17.
In this article we explore the evolutionary history of a functional complex at the molecular level in plethodontid salamanders. The complex consists of a proteinaceous courtship pheromone, a pheromone-producing gland on the male's chin, and a set of behaviors for delivering the pheromone to the female. Long-term evolutionary stasis is the defining feature of this complex at both the morphological and behavioral levels. However, our previous assessment of the pheromone gene, plethodontid receptivity factor (PRF), revealed rapid evolution at the molecular level despite stasis at higher levels of organization. Analysis of a second pheromone gene, sodefrin precursor-like factor (SPF), now indicates that evolutionary decoupling in this complex is pervasive. The evolutionary profiles of SPF and PRF are remarkably similar in that: (a) both genes exhibit high levels of sequence diversity both within and across taxa, (b) genetic diversity has been driven by strong positive selection, and (c) the genes have evolved heterogeneously in different salamander lineages. The composition of the pheromone signal as a whole, however, has experienced an extraordinary evolutionary transition. Whereas SPF has been retained throughout the 100 MY radiation of salamanders, PRF has only recently been recruited to a pheromone function (27 million years ago). When SPF and PRF coexist in the same clade, they show contrasting patterns of evolution. When one shows rapid evolution driven by positive selection, the other shows neutral divergence restrained by purifying selection. In one clade, the origin and subsequent rapid evolution of PRF appear to have interfered with the evolution and persistence of SPF, leading to a pattern of evolutionary replacement. Overall, these two pheromone genes provide a revealing window on the dynamics that drive the evolution of multiple traits in a signaling complex.  相似文献   

18.
19.
Kern AD  Jones CD  Begun DJ 《Genetics》2004,167(2):725-735
Accessory gland proteins are a major component of Drosophila seminal fluid. These proteins have a variety of functions and may be subject to sexual selection and/or antagonistic evolution between the sexes. Most population genetic data from these proteins are from D. melanogaster and D. simulans. Here, we extend the population genetic analysis of Acp genes to the other simulans complex species, D. mauritiana and D. sechellia. We sequenced population samples of seven Acp's from D. mauritiana, D. sechellia, and D. simulans. We investigated the population genetics of these genes on individual simulans complex lineages and compared Acp polymorphism and divergence to polymorphism and divergence from a set of non-Acp loci in the same species. Polymorphism and divergence data from the simulans complex revealed little evidence for adaptive protein evolution at individual loci. However, we observed a dramatically inflated index of dispersion for amino acid substitutions in the simulans complex at Acp genes, but not at non-Acp genes. This pattern of episodic bursts of protein evolution in Acp's provides the strongest evidence to date that the population genetic mechanisms driving Acp divergence are different from the mechanisms driving evolution at most Drosophila genes.  相似文献   

20.
Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号