共查询到20条相似文献,搜索用时 9 毫秒
1.
M. Norhayati S. Mohd Noor K. Chong A. W. Faizah D. F. Herridge M. B. Peoples F. J. Bergersen 《Plant and Soil》1988,108(1):143-150
Methods for partitioning the nitrogen assimilated by nodulated legumes, between nitrogen derived from soil sources and from
N2 fixation, are described as applied in peninsular Malaysia.
The analysis of nitrogenous components translocated from the roots to the shoots of nodulated plants in the xylem sap is outlined,
with some precautions to be observed for applications in the tropics. Some examples of the use of the technique in surverying
apparent N2 fixation by tropical legumes, in studying interrow cropping in plantation systems and in assessing effects of experimental
treatments on N2 fixation by food legumes, are described.
Techniques for assesing N2 fixation by means of15N abundance have been used to show that applications of nitrogenous fertilizers commonly used in Malaysia for soybeans depress
N2 fixation, that similar results are obtained with natural abundance and15N-enrichment methods and that, in at least two locations in Malaysia, differences between the natural abundance of15N in plant-available soil nitrogen and in atmospheric N2 are great enough to permit application to measurement of N2 fixation by leguminous crops. 相似文献
2.
Summary Accurate estimates of N2 fixation by legumes are requisite to determine their net contribution of fixed N2 to the soil N pool. However, estimates of N2 fixation derived with the traditional15N methods of isotope dilution and AN value are costly.Field experiments utilizing15N-enriched (NH4)2SO4 were conducted to evaluate a modified difference method for determining N2 fixation by fababean, lentil, Alaska pea, Austrian winter pea, blue lupin and chickpea, and to quantify their net contribution of fixed N2 to the soil N pool. Spring wheat and non-nodulated chickpea, each fertilized with two N rates, were utilized as non-fixing controls.Estimates of N2 fixation based on the two control crops were similar. Increasing the N rate to the controls reduced AN values 32, 18 and 43% respectively in 1981, 1982 and 1983 resulting in greater N2 fixation estimates. Mean seasonal N2 fixation by fababean, lentil and Austrian winter pea was near 80 kg N ha–1, pea and blue lupin near 60 kg N ha–1, and chickpea less than 10 kg N ha–1. The net effects of the legume crops on the soil N pool ranged from a 70 kg N ha–1 input by lentil in 1982, to a removal of 48 kg N ha–1 by chickpea in 1983.Estimates of N2 fixation obtained by the proposed modified difference method approximate those derived by the isotope dilution technique, are determined with less cost, and are more reliable than the total plant N procedure.Scientific paper No. 6605. College of Agriculture and Home Economics Research Center, Washington State University, Pullman, WA 99164, U.S.A. 相似文献
3.
《Plant Ecology & Diversity》2013,6(2-3):131-140
Background: Nitrogen fixation has been quantified for a range of crop legumes and actinorhizal plants under different agricultural/agroforestry conditions, but much less is known of legume and actinorhizal plant N2 fixation in natural ecosystems. Aims: To assess the proportion of total plant N derived from the atmosphere via the process of N2 fixation (%Ndfa) by actinorhizal and legume plants in natural ecosystems and their N input into these ecosystems as indicated by their 15N natural abundance. Methods: A comprehensive collation of published values of %Ndfa for legumes and actinorhizal plants in natural ecosystems and their N input into these ecosystems as estimated by their 15N natural abundance was carried out by searching the ISI Web of Science database using relevant key words. Results: The %Ndfa was consistently large for actinorhizal plants but very variable for legumes in natural ecosystems, and the average value for %Ndfa was substantially greater for actinorhizal plants. High soil N, in particular, but also low soil P and water content were correlated with low legume N2 fixation. N input into ecosystems from N2 fixation was very variable for actinorhizal and legume plants and greatly dependent on their biomass within the system. Conclusions: Measurement of 15N natural abundance has given greater understanding of where legume and actinorhizal plant N2 fixation is important in natural ecosystems. Across studies, the average value for %Ndfa was substantially greater for actinorhizal plants than for legumes, and the relative abilities of the two groups of plants to utilise mineral N requires further study. 相似文献
4.
Nitrogen (N) is often the most limiting nutrient in organic cropping systems. N2 fixing crops present an important option to improve N supply and to maintain soil fertility. In a field experiment, we investigated
whether the lower N fertilization level and higher soil microbial activity in organic than conventional systems affected symbiotic
N2 fixation by soybean (Glycine max, var. Maple Arrow) growing in 2004 in plots that were since 1978 under the following systems: bio-dynamic (DYN); bio-organic
(ORG); conventional with organic and mineral fertilizers (CON); CON with exclusively mineral fertilizers (MIN); non-fertilized
control (NON). We estimated the percentage of legume N derived from the atmosphere (%Ndfa) by the natural abundance (NA) method.
For ORG and MIN we additionally applied the enriched 15N isotope dilution method (ID) based on residual mineral and organic 15N labeled fertilizers that were applied in 2003 in microplots installed in ORG and MIN plots. These different enrichment treatments
resulted in equal %Ndfa values. The %Ndfa obtained by NA for ORG and MIN was confirmed by the ID method, with similar variation.
However, as plant growth was restricted by the microplot frames the NA technique provided more accurate estimates of the quantities
of symbiotically fixed N2 (Nfix). At maturity of soybean the %Ndfa ranged from 24 to 54%. It decreased in the order ORG > CON > DYN > NON > MIN, with
significantly lowest value for MIN. Corresponding Nfix in above ground plant material ranged from 15 to 26 g N m-2, with a decreasing trend in the order DYN = ORG > CON > MIN > NON. For all treatments, the N withdrawal by harvested grains
was greater than Nfix. This shows that at the low to medium %Ndfa, soybeans did not improve the N supply to any system but
removed significant amounts of soil N. High-soil N mineralization and/or low-soil P availability may have limited symbiotic
N2 fixation. 相似文献
5.
Summary The kinetic of15N2 diffusion has been measured in a system similar to that for the estimation of N2 fixation in plant microorganism associations cultivated in soil. The15N2 enrichment of the soil atmosphere reached an homogenous value one hour after injection of15N2 and is identical to that obtained by calculation, indicating that no adsorption occurs in the soil particles.
Diffusion du15N2 dans le sol pendant la mesure de fixation biologique de l'azote
Résumé La cinétique de diffusion du15N2 est mesurée sur un système identique à ceux pouvant être utilisés pour la mesure de fixation de l'azote chez les associations plantes-microorganismes cultivées sur sol. L'enrichissement homogène de l'atmosphère du sol est obtenu une heure environ après l'injection de15N2 et correspond à l'enrichissement calculé, ce qui indique qu'aucune adsorption n'a lieu dans les particules du sol.相似文献
6.
In monocropped cereal systems, annual N inputs from non-fertilizer sources may be more than 30 kg ha-1. We examined the possibility that these inputs are due to biological N2 fixation (BNF) associated with roots or decomposing residues. Wheat was grown under greenhouse conditions in pots (34 cm
long by 10 cm diameter) containing soil from a plot cropped to spring wheat since 1911 without fertilization. The roots and
soil were sealed from the atmosphere and exposed to a15N2-enriched atmosphere for three to four weeks during vegetative, reproductive or post-reproductive stages. This technique permitted
detection of as little as 1 μg fixed N plant-1 in plant material and 40 μg fixed N plant-1 in soil. No fixation of15N2 occurred during either of the first two labelling periods. In the final labelling period, straw returned to the soil was
significantly enriched in15N, especially in a pot with a higher soil moisture content. Total BNF in this pot was 13 μg N plant-1, or about 30 g N ha-1. In a separate experiment with soil from the same plot, we detected BNF only when soil was amended with glucose at a high
soil moisture content. Measured associative BNF was insufficient to account for observed N gains under field conditions.
Lethbridge Research Centre contribution no. 3879488.
Lethbridge Research Centre contribution no. 3879488. 相似文献
7.
Whether grown as pulses for grain, as green manure, as pastures or as the tree components of agro-forestry systems, the value of leguminous crops lies in their ability to fix atmospheric N2, so reducing the use of expensive fertiliser-N and enhancing soil fertility. N2 fixing legumes provide the basis for developing sustainable farming systems that incorporate integrated nutrient management. By exploiting the stable nitrogen isotope 15N, it has been possible to reliably measure rates of N2 fixation in a wide range of agro-ecological field situations involving many leguminous species. The accumulated data demonstrate that there is a wealth of genetic diversity among legumes and their Rhizobium symbionts which can be used to enhance N2 fixation. Practical agronomic and microbiological means to maximise N inputs by legumes have also been identified. 相似文献
8.
Natural abundance of 15N ( 15N) of leaves harvested from tropical plants in Brazil and Thailand was analyzed. The 15N values of non-N2-fixing trees in Brazil were +4.5±1.9, which is lower than those of soil nitrogen (+8.0±2.2). In contrast, mimosa and kudzu had very low 15N values (–1.4+0.5). The 15N values of Panicum maximum and leguminous trees, except Leucaena leucocephala, were similar to those of non-N2-fixing trees, suggesting that the contribution of fixed N in these plants is negligible. The 15N values of non-N2-fixing trees in Thailand were +4.9±2.0. Leucaena leucocephala, Sesbania grandiflora, Casuarina spp. and Cycas spp. had low 15N values, close to the value of atmospheric N2 (0), pointing to a major contribution of N2 fixation in these plants. Cassia spp. and Tamarindus indica had high 15N values, which confirms that these species are non-nodulating legumes. The 15N values of Acacia spp. and Gliricidia sepium and other potentially nodulating tree legumes were, on average, slightly lower than those of non-N2-fixing trees, indicating a small contribution of N2 fixation in these legumes. 相似文献
9.
To assure proper management and fully realize the benefits of the legume-Rhizobium symbiosis it is necessary to be able to quantify the amount of nitrogen fixed. Having measured the effectiveness of atmospheric N2 fixation the macro- or micro-symbionts as well as agronomic factors can be manipulated with the objective to maximize biological nitrogen fixation. A suitable method to quantify nitrogen fixation is therefore necessary in any programme aiming at increasing N2 fixation, like the one being reported in this volume. There are several methods available to quantify nitrogen fixation and most of the commonly used ones are described in the present paper listing their advantages and disadvantages. 相似文献
10.
E. Wada R. Imaizumi Y. Kabaya T. Yasuda T. Kanamori G. Saito A. Nishimune 《Plant and Soil》1986,93(2):269-286
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental
field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in
Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method.
Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics,
and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species.
The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans
growing in agricultural settings. 相似文献
11.
Gudni Hardarson 《Plant and Soil》1993,152(1):1-17
Biological nitrogen fixation of leguminous crops is becoming increasingly important in attempts to develop sustainable agricultural production. However, these crops are quite variable in their effectiveness in fixing nitrogen. By the use of the 15N isotope dilution method some species have been found to fix large proportions of their nitrogen, while others like common bean have been considered rather inefficient. Methods for increasing N2 fixation are therefore of great importance in any legume work. Attempts to enhance nitrogen fixation of grain legumes has been mainly the domain of microbiologists who have selected rhizobial strains with superior effectiveness or competitive ability. Few projects have focused on the plant symbiont with the objective of improving N2 fixation as done in the FAO/IAEA Co-ordinated Research Programme which is being reported in this volume. The objective of the present paper is to discuss some possibilities available for scientists interested in enhancing symbiotic nitrogen fixation in grain legumes. Examples will be presented on work performed using agronomic methods, as well as work on the plant and microbial symbionts. There are several methods available to scientists working on enhancement of N2 fixation. No one approach is better than the others; rather work on the legume/Rhizobium symbiosis combining experience from various disciplines in inter-disciplinary research programmes should be pursued. 相似文献
12.
Summary Heterotrophic nitrogen fixation by rhizosphere soil samples from 20 rice cultivars grown under uniform field conditions was estimated employing15N-tracer technique. Rhizosphere soil samples from different rice cultivars showed striking differences with regard to their ability to incorporate15N2. Rhizosphere samples from rice straw-amended (3 and 6 tons/ha) soil exhibited more pronounced nitrogen-fixing activity than the samples from unamended soil; while the activity of the rhizosphere samples from soils receiving combined nitrogen (40 and 80 kg N/ha) was relatively low. However, the inhibitory effect of combined nitrogen was not expressed in the presence of rice straw at 6 tons/ha. Results suggest that plant variety, application of combined nitrogen and organic matter influence the rhizosphere nitrogen fixation. 相似文献
13.
Summary A two-year field study was undertaken using15N isotope techniques to differentiate between stimulation of N uptake and N2 fixation in Western Canadian cultivars of spring wheat (Triticum aestivum L. emend Thell) and durum (T. turgidum L. emend Bowden) in response to inoculation with N2-fixing bacteria.
Bacterial inoculation either had no effect or lowered the % N derived from the fertilizer and the fertilizer use efficiency.
Despite the depression of fertilizer uptake, inoculants did not alter the relative uptake from soil and fertilizer-N pools
indicating that bacterial inoculation did not alter rooting patterns. Nitrogen-15 isotope dilution indicated that N2 fixation did occur.
In 1984, % plant N derived from the atmosphere (% Ndfa) due to inoculation with Bacillus C-11-25 averaged 23.9% while that
withAzospirillum brasilense ATCC 29729 (Cd) averaged 15.5%. In 1985, higher soil N levels reduced these values by approximately one-half. Cultivar x
inoculant interactions, while significant, were not consistent across years. However, these interactions did not affect cultivars
‘Cadet’ and ‘Rescue’. In agreement with previous results, ‘Cadet’ performed well with all inoculants in both years while ‘Rescue’
performed poorly.
Among 1984 treatments, the N increament in inoculated plants was positively correlated with % Ndfa but no such correlation
existed in 1985. N2 fixation averaged over all cultivars and strains was 17.9 and 6.7 kg N fixed ha−1 in 1984 and 1985, respectively. Highest rates of N2 fixation were estimated at 52.4 kg N ha−1 for ‘Cadet’ in 1984 and 31.3 kg N ha−1 for ‘Owens’ in 1985, both inoculated with Bacillus C-11-25, an isolate from southern Alberta soils. Inoculation with either
ofAzospirillum brasilense strain Cd (ATCC29729) or 245 did not result in as consistent or as high N2 fixation, suggesting that these wheats had not evolved genetic compatability with this exogenous microorganism. These agronomically
significant amounts of N2 fixation occurred under optimally controlled experimental conditions in the field. It is yet to be determined if N2 fixation would occur in response to bacterial inoculation under dryland conditions commonly occurring in Western Canada.
Contribution from Agriculture Canada Research Station, Lethbridge, Alberta, Canada. 相似文献
14.
Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes 总被引:8,自引:0,他引:8
Sustainable agriculture relies greatly on renewable resources like biologically fixed nitrogen. Biological nitrogen fixation plays an important role in maintaining soil fertility. However, as BNF is dependent upon physical, environmental, nutritional and biological factors, mere inclusion of any N2-fixing plant system does not guarantee increased contributions to the soil N pool. In the SAT where plant stover is also removed to feed animals, most legumes might be expected to deplete soil N. Yet beneficial legume effects in terms of increased yields in succeeding cereal crops have been reported. Such benefits are partly due to N contribution from legumes through BNF and soil N saving effect. In addition, other non-N rotational benefits, for example, improved nutrient availability, improved soil structure, reduced pests and diseases, hormonal effects are also responsible. In this paper we have reviewed the research on the contribution of grain legumes in cropping systems and the factors affecting BNF. Based on the information available, we have suggested ways for exploiting BNF for developing sustainable agriculture in the semi-arid tropics (SAT). A holistic approach involving host-plant, bacteria, environment and proper management practices including need based inoculation for enhancing BNF in the cropping systems in the SAT is suggested. 相似文献
15.
Atmospheric N2 fixed symbiotically by associations between Rhizobium spp. and legumes represents a renewable source of N for agriculture. Contribution of legume N2 fixation to the N-economy of any ecosystem is mediated by: (i) legume reliance upon N2 fixation for growth, and (ii) the total amount of legume-N accumulated. Strategies that change the numbers of effective rhizobia present in soil, reduce the inhibitory effects of soil nitrate, or influence legume biomass all have potential to alter net inputs of fixed N. A range of management options can be applied to legumes growing in farming systems to manipulate N2 fixation and improve the N benefits to agriculture and agroforestry. 相似文献
16.
The 15N methods are potentially accurate for measuring N2 fixation in plants. The only problem with those methods is, how to ensure that the 15N/14N ratio in the plant accurately reflects the integrated 15N/14N ratio (R) in soil which is variable in time and with soil depth. However, the consequences of using an inappropriate reference plant vary with the level of N2 fixation and the conditions under which the study was made. For example, the errors introduced into the values of N2 fixation are higher at low levels of fixation, and decrease with increasing rates of fixation. At very high N2 fixation rates, the errors are often insignificant. Also, the magnitude of error is proportional to the rate of decline of the 15N/14N ratio with time. Since N2 fixation in most plants would be expected to below 60%, the question of how to select a good reference plant is still pertinent. In this paper, we have discussed some of the criteria to adopt in selecting reference plants, e.g. how to ensure that the reference plant is not fixing N2, is absorbing most of its N from the same zone as the fixing plant, and in the same pattern with time, etc. In addition, we have discussed 15N labelling materials and methods that are likely to minimize any errors even when the fixing and reference plants don't match well in certain important criteria. The use of slow release 15N fertilizer or 15N labelled plant materials results in slow changes in the 15N/14N ratio of soil, and is strongly recommended. Where 15N inorganic fertilizers are used, the application of the fertilizer in small splits at various intervals is recommended over a one-time application. The problem with the reference crop, which has sometimes discouraged potential users of the 15N methods, is surmountable, as discussed in this paper. 相似文献
17.
I. Papastylianou 《Plant and Soil》1988,107(2):183-188
Cereal-legume mixtures are frequently the best management decision for forage production instead of growing crops in pure
stands. Nitrogen fertilization of cereal-legume mixtures is questionable since combined nitrogen could depress N2 fixation by legumes. The objectives of this study were (1) to examine the effect of N fertilization on N2 fixation by vetch and field peas in pure and in mixed stands with oats, and (2) to examine if there is any transfer of N
from legumes to associated cereals. The field experiment was conducted for two growing seasons. The treatments were pure stands
of vetch, pea and oats, and the mixtures of the two legumes with oats at the seeding ratios 90:10 and 75:25, fertilized with
labelled15N at the rates of 15 and 90 kg N ha−1.
Nitrogen fertilization of 90 kg N ha−1 suppressed N2 fixation in both legumes grown in pure and in mixed stands. Crops grown in mixtures in many instances had lower atom %15N excess. Whether this was due to high N2 fixation in the case of legume and transfer in the case of oat or the differences were due to practical problems of the15N technique is not clearly shown by the results, so based on the literature the aspect is discussed as well as the precautions
which should be considered in using the15N technique in such studies. 相似文献
18.
A mixed pasture comprising of buffel grass and a legume siratro was studied under field condition for a two-year period to know the fodder yield increase, nitrogen fixation and nitrogen balance with and without the inoculation of VA mycorrhiza to grass and Rhizobium to legume component.15N dilution technique was followed using labelled ammonium sulphate. The data showed that during the first year of the above study combined inoculation of VA mycorrhiza and Rhizobium to grass and legume respectively significantly increased the total dry matter (DM) (23,900 kg ha–1 yr–1) and total N content (308 kg ha–1 yr–1) of the mixed pasture over the uninoculated mixture. However, the above increase due to combined inoculation was maximum during second year with respect to DM yield (28,200 kg ha–1 yr–1), but the total N harvested through grass-legume mixture was comparatively lower than the first year (297 kg ha–1 yr–1). The amount of biologically fixed N was highest in the first year (79 kg ha–1 yr–1) and showed a very drastic reduction at the end of second year (39 kg ha–1 yr–1). A positive nitrogen balance was observed in the grass-legume mixture irrespective of inoculation of VA mycorrhiza and/or Rhizobium. 相似文献
19.
Summary This paper reports a field study for the assessment of the variation in15N natural abundance method to estimate nitrogen fixation. For two successive years (1979 and 1980) at the same site, distribution
of the variable δ15N in populations of nodulating and non-nodulating soybeans (Glycine max) has been studied. In 1980, the population structure was studied in order to detect a neighbour effect which could explain
bimodal trend observed in the distribution. There was no evidence for such an effect. A sampling procedure is proposed: with
15 to 30 nodulating plants chosen randomly, a confidence interval of ±0.5δ can be obtained, while less than 10 non-nodulating
plants are sufficient to achieve a very good precision. Some other aspects are studied: effect of pooling plants which considerably
reduce the experimental work; the use of a non leguminous reference plant is possible. All our results show that fixing capacity
introduces major variability in the δ15N measured in the plants, while the absence of fixation leads to a homogenous population, so the percentage of fixed N can
be evaluated with a rather good precision. The higher the reference value, the better the accuracy of this evaluation, for
a given precision of a δ15N measurement. 相似文献
20.
This study was conducted to examine the effects of varying N rates and cropping systems (mixedversus pure stand) on the suitability of oats (Avena sativa L.) for estimating N2 fixed in sequentially harvested vetch (Vicia sativa L.) over two growing seasons (1984–85 and 1985–86). The N rates were, 20 and 100 kg N ha–1 in 1984–85 and 15 and 60 kg N ha–1 in 1985–86. In the 1984–85 season, vetch at maturity derived 76 and 63% N from fixation at the high and low N rates respectively. The corresponding values for the second season were 66 and 42%. Except in the 1985–86 season when some significantly higher values of % N2 fixed were estimated by using the reference crop grown at the higher (A-value approach) than at the lower N rate (isotope-dilution approach), both approaches resulted in similar measurements of N2 fixed. In the 1984–85 season, similar values of N2 fixed were obtained using either the pure or mixed stand oats reference crops. Although in the 1985–86 season, the mixed reference crop occasionally estimated lower % N2 fixed than pure oats, total N2 fixed estimates were always similar (P<0.05). Thus, in general, N fertilization and cropping system of the reference crop did not significantly influence estimates of N2 fixation. 相似文献