首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
2-((4-(1-[(11)C]Methyl-4-(pyridin-4-yl)-1H-pyrazol-3-yl)phenoxy)methyl)-quinoline (MP-10), a specific PDE10A inhibitor (IC(50)=0.18 nM with 100-fold selectivity over other PDEs), was radiosynthesized by alkylation of the desmethyl precursor with [(11)C]CH(3)I, ~45% yield, >92% radiochemical purity, >370 GBq/μmol specific activity at end of bombardment (EOB). Evaluation in Sprague-Dawley rats revealed that [(11)C]MP-10 had highest brain accumulation in the PDE10A enriched-striatum, the 30 min striatum: cerebellum ratio reached 6.55. MicroPET studies of [(11)C]MP-10 in monkeys displayed selective uptake in striatum. However, a radiolabeled metabolite capable of penetrating the blood-brain-barrier may limit the clinical utility of [(11)C]MP-10 as a PDE10A PET tracer.  相似文献   

2.
The novel pyrazolopyrimidine ligand, N,N-diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-3-yl]-acetamide 1 (DPA-713), has been reported as a potent ligand for the peripheral benzodiazepine receptor (PBR) displaying an affinity of K(i)=4.7 nM. In this study, 1 was successfully synthesised and demethylated to form the phenolic derivative 6 as precursor for labelling with carbon-11 (t(1/2) = 20.4 min). [11C]1 was prepared by O-alkylation of 6 with [11C]methyl iodide. The radiochemical yield of [(11)C]1 was 9% (non-decay corrected) with a specific activity of 36 GBq/micromol at the end of synthesis. The average time of synthesis including formulation was 13.2 min with a radiochemical purity >98%. In vivo assessment of [11C]1 was performed in a healthy Papio hamadryas baboon using positron emission tomography (PET). Following iv administration of [11C]1, significant accumulation was observed in the baboon brain and peripheral organs. In the brain, the radioactivity peaked at 20 min and remained constant for the duration of the imaging experiment. Pre-treatment with the PBR-specific ligand, PK 11195 (5 mg/kg), effectively reduced the binding of [11C]1 at 60 min by 70% in the whole brain, whereas pre-treatment with the central benzodiazepine receptor ligand, flumazenil (1mg/kg), had no inhibitory effect on [11C]1 uptake. These results indicate that accumulation of [11C]1 in the baboon represents selective binding to the PBR. These exceptional in vivo binding properties suggest that [11C]1 may be useful for imaging the PBR in disease states. Furthermore, [11C]1 represents the first ligand of its pharmacological class to be labelled for PET studies and therefore has the potential to generate new information on the pathological role of the PBR in vivo.  相似文献   

3.
The radiosynthesis and radiopharmacological evaluation of 1-[(11)C]methoxy-4-(2-(4-(methanesulfonyl)phenyl)cyclopent-1-enyl)-benzene [(11)C]5 as novel PET radiotracer for imaging of COX-2 expression is described. The radiotracer was prepared via O-methylation reaction with [(11)C]methyl iodide in 19% decay-corrected radiochemical yield at a specific activity of 20-25GBq/mumol at the end-of-synthesis within 35 min. The radiotracer [(11)C]5 was evaluated in vitro using various pro-inflammatory and tumor cell lines showing high functional expression of COX-2 at baseline or after induction. In vivo biodistribution of compound [(11)C]5 was characterized in male Wistar rats. Compound [(11)C]5 was rapidly metabolized in rat plasma, and more pronounced, in mouse plasma. In vivo kinetics and tumor uptake were demonstrated by dynamic small animal PET studies in a mouse tumor xenograft model. Tumor uptake of radioactivity was clearly visible overtime. However, radioactivity uptake in the tumor could not be blocked by the pre-injection of nonradioactive compound 5. Therefore, it can be concluded that radioactivity uptake in the tumor was not COX-2 mediated.  相似文献   

4.
(S)-5-bromo-N-[(1-cyclopropylmethyl-2-pyrrolidinyl)methyl]-2,3-dimethoxybenzamide (4) has pico-molar in vitro binding affinity to D(2) receptor (K(i) (D(2))=0.003 nM) with lower affinity to D(3) receptor (K(i) (D(3))=0.22 nM). In this study, we describe radiosynthesis of [(11)C]4 and evaluation of its binding characteristics in post-mortem human brain autoradiography and with PET in cynomolgus monkeys. The (11)C labelled 4 was synthesized by using [(11)C]methyltriflate in a methylation reaction with its phenolic precursor with good incorporation yield (64+/-11%, DCY) and high specific radioactivity >370 GBq/micromol (>10,000 Ci/mmol). In post-mortem human brain autoradiography [(11)C]4 exhibited high specific binding in brain regions enriched with dopamine D(2)/D(3) receptors and low level of non-specific binding. In cynomolgus monkeys [(11)C]4 exhibited high brain uptake reaching 4.4% ID at 7.5 min. The binding in the extrastriatal low density D(2)-receptor regions; thalamus and frontal, parietal, temporal, and occipital cortex, was clearly visible. Pre-treatment with raclopride (1 mg/kg as tartrate) caused high reduction of binding in extrastriatal regions, including cerebellum. [(11)C]4 is a promising radioligand for imaging D(2) receptors in low density regions in brain.  相似文献   

5.
N1-(2,6-Dimethylphenyl)-2-(4-{(2R,4S)-2-benzyl-1-[3,5-di(trifluoromethyl)[carbonyl-(11)C]benzoyl]hexahydro-4-pyridinyl}piperazino)acetamide ([(11)C]R116301) was prepared and evaluated as a potential positron emission tomography (PET) ligand for investigation of central neurokinin(1) (NK(1)) receptors. 1-Bromo-3,5-di(trifluoromethyl)benzene was converted in three steps into 3,5-di(trifluoromethyl)[carbonyl-(11)C]benzoyl chloride, which was reacted with N1-(2,6-dimethylphenyl)-2-{4-[(2R,4S)-2-benzylhexahydro-4-pyridinyl]piperazino}acetamide providing [(11)C]R116301 in 45-57% decay-corrected radiochemical yield. The total synthesis time, from end of bombardment (EOB) to the formulated product, was 35 min. Specific activity (SA) was 82-172 GBq/micromol (n=10) at the end of synthesis. N1-([4-(3)H]-2,6-Dimethylphenyl)-2-(4-{(2R,4S)-2-benzyl-1-[3,5-di(trifluoromethyl)benzoyl]hexahydro-4-pyridinyl}piperazino)acetamide ([(3)H]R116301) was also synthesized (SA: 467 GBq/mmol). The B(max) for [(3)H]R116301 measured in vitro on Chinese hamster ovary cell membranes stably transfected with the human NK(1) receptor was 19.10+/-1.02 pmol/mg protein with an apparent dissociation constant of 0.08+/-0.01 nM. Ex vivo, in vivo and in vitro autoradiography studies with [(3)H]R116301 in gerbils demonstrated a preferential accumulation of the radioactivity in the striatum, olfactory tubercule, olfactory bulb and locus coeruleus. In vivo, the biodistribution of [(11)C]R116301 in gerbils revealed that the highest initial uptake is in the lung, followed by the liver and kidney. In the brain, maximum accumulation was found in the olfactory tubercules (1.10+/-0.08 injected dose (ID)/g 20 min post injection (p.i.)) and the nucleus accumbens (1.00+/-0.12ID/g 10 min p.i.). Tissue/cerebellum concentration ratios for striatum and nucleus accumbens increased with time due to rapid uptake followed by a slow wash out (1.29 and 1.64, respectively, 30 min p.i.). A tissue to cerebellum ratio of 1.33 and 1.62 was also observed for olfactory bulb and olfactory tubercules, respectively (20 min p.i.). In summary, [(11)C]R116301 appears to be a promising radioligand suitable for the visualization of NK(1) receptors in vivo using PET.  相似文献   

6.
Befloxatone (1, (5R)-5-(methoxymethyl)-3-[4-[(3R)-4,4,4-trifluoro-3-hydroxybutoxy]phenyl]-2-oxazolidinone) is an oxazolidinone derivative belonging to a new generation of reversible and selective mono-amine oxidase-A (MAO-A) inhibitors. In vitro and ex vivo studies have demonstrated that befloxatone is a potent, reversible and competitive MAO-A inhibitor with potential antidepressant properties. Befloxatone (1) was labelled with carbon-11 (t(12): 20.4 min) using [(11)C]phosgene as reagent. Typically, starting from a 1.2 Ci (44.4 GBq) cyclotron-produced [(11)C]CH(4) batch, 150-300 mCi (5.55-11.10 GBq) of [(11)C]befloxatone ([(11)C]-1) with a radiochemical- and chemical purity of more than 99% were routinely obtained within 20 min of radiosynthesis (including HPLC purification) with specific radioactivities of 500-2000 mCi/micromol (18.5-74.0 GBq/micromol). The results obtained in vivo with carbon-11-labelled befloxatone not only confirm the biochemical and pharmacological profile of befloxatone found in rodent and in human tissues but also point out [(11)C]befloxatone as an excellent tool for the assessment of MAO-A binding sites using positron emission tomography, a high-resolution, sensitive, non-invasive and quantitative imaging technique.  相似文献   

7.
Synthesis of [(11)C]celecoxib, a selective COX-2 inhibitor, and [(11)C]SC-62807, a major metabolite of celecoxib, were achieved and the potential of these PET probes for assessing the function of drug transporter in biliary excretion was evaluated. The synthesis of [(11)C]celecoxib was achieved in one-pot by reacting [(11)C]methyl iodide with an excess of the corresponding pinacol borate precursor using Pd(2)(dba)(3), P(o-tolyl)(3), and K(2)CO(3) (1:4:9) in DMF. The radiochemical yield of [(11)C]celecoxib was 63±23% (decay-corrected, based on [(11)C]CH(3)I) (n=7) with a specific radioactivity of 83±23GBq/μmol (n=7). The average time of synthesis from end of bombardment including formulation was 30min with >99% radiochemical purity. [(11)C]SC-62807 was synthesized from [(11)C]celecoxib by further rapid oxidation in the presence of excess KMnO(4) with microwave irradiation. The radiochemical yield of [(11)C]SC-62807 was 55±9% (n=3) (decay-corrected, based on [(11)C]celecoxib) with a specific radioactivity of 39±4GBq/μmol (n=3). The average time of synthesis from [(11)C]celecoxib including formulation was 20min and the radiochemical purity was >99%. PET studies in rats and the metabolite analyzes of [(11)C]celecoxib and [(11)C]SC-62807 showed largely different excretion processes, and consequently, [(11)C]SC-62807 was rapidly excreted via hepatobiliary excretion without further metabolism. [(11)C]SC-62807 was shown to have a high potential as a PET probe for evaluating drug transporter function in biliary excretion.  相似文献   

8.
Six new (S,S)-enantiomers of reboxetine derivatives were synthesized and their binding affinities were determined via competition binding assays in cells expressing the human norepinephrine transporter (NET), serotonin transporter (SERT) or dopamine transporter (DAT). All six compounds prepared exhibit high affinity for the NET (K(i)相似文献   

9.
The radiosynthesis and in vivo evaluation of 5-(5-(6-[(11)C]methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)pyridin-2-yl)-1H-indole [(11)C]rac-(1), a potential PET tracer for α7 nicotinic acetylcholine receptors (α7-nAChR), are described. Syntheses of the nonradioactive standard rac-1 and corresponding desmethyl precursor 7 were achieved in several reaction steps. Radiomethylation of 7 with [(11)C]CH(3)I afforded [(11)C]rac-1 in an average radiochemical yield of 30 ± 5% (n=5) with high radiochemical purity and an average specific radioactivity of 444 ± 74 GBq/μmol (n=5). The total synthesis time was 30 min from end-of-bombardment. Biodistribution studies in mice showed that [(11)C]rac-1 penetrates the blood-brain barrier and specifically labels neuronal α7-nAChRs.  相似文献   

10.
The synthesis and in vivo evaluation of (11)C -labeled uric acid ([(11)C]1), a potential imaging agent for the diagnosis of urate-related life-style diseases, was performed using positron emission tomography (PET) image analysis. First, the synthesis of [(11)C]1 was achieved by reacting 5,6-diaminouracil (2) with (11)C-labeled phosgene ([(11)C]COCl(2)). The radiochemical yield of [(11)C]1 was 37±7% (decay-corrected based on [(11)C]COCl(2)) with specific radioactivities of 96-152GBq/μmol at the end of synthesis (n=6). The average time of radiosynthesis from the end of bombardment, including formulation, was about 30min with >98% radiochemical purity. Second, the synthetic approach to [(11)C]1 was optimized using 5,6-diaminouracil sulfate (3) with [(11)C]COCl(2) in the presence of 1,8-bis(dimethylamino)naphthalene. [(11)C]1 was synthesized in 36±6% radiochemical yield, 89-142GBq/μmol of specific radioactivities, and 98% radiochemical purity by this method (n=5). This allowed the synthesis of [(11)C]1 to be carried out repeatedly and the radiochemical yield, specific radioactivities, average time of synthesis, and radiochemical purity of [(11)C]1 were similar to those obtained using 2. PET studies in rats showed large differences in the accumulation of radioligand in the limbs under normal and hyperuricemic conditions. Thus, an efficient and convenient automated synthesis of [(11)C]1 has been developed, and preliminary PET evaluation of [(11)C]1 confirmed the increased accumulation of radioactivity in the limbs of a rat model of hyperuricemia.  相似文献   

11.
The fluoroalkyl-containing tropane derivative 2beta-carbo-2'-fluoroethoxy-3beta-(4-bromo-phenyl)tropane (MCL-322) is a highly potent and moderately selective ligand for the dopamine transporter (DAT). The compound was labeled with the short-lived positron emitter (18)F in a single step by nucleophilic displacement of the corresponding tosylate precursor MCL-323 with no-carrier-added [(18)F]fluoride. The positron emission tomography (PET) radiotracer 2beta-carbo-2'-[(18)F]fluoroethoxy-3beta-(4-bromo-phenyl)tropane [(18)F]MCL-322 was obtained in decay-corrected radiochemical yields of 30-40% at a specific radioactivity of 1.6-2.4Ci/mumol (60-90GBq/mumol) at the end-of-synthesis (EOS). Small animal PET, ex vivo and in vivo biodistribution experiments in rats demonstrated a high uptake in the striatum (3.2% ID/g) 5min after injection, which increased to 4.2% ID/g after 60min. The uptake in the cerebellum was 1.8% ID/g and 0.6% ID/g after 5min and 60min post-injection, respectively. Specific binding to DAT of [(18)F]MCL-322 was confirmed by blocking experiments using the high affinity DAT ligand GBR 12909. The radiopharmacological characterization was completed with metabolite and autoradiographic studies confirming the selective uptake of [(18)F]MCL-322 in the striatum. It is concluded that the simple single-step radiosynthesis of [(18)F]MCL-322 and the promising radiopharmacological data make [(18)F]MCL-322 an attractive candidate for the further development of a PET radiotracer potentially suitable for clinical DAT imaging in the human brain.  相似文献   

12.
Considerable efforts have been engaged in the design, synthesis and pharmacological characterization of radioligands for imaging the serotonin transporter, based on its implication in several neuropsychiatric diseases, such as depression, anxiety and schizophrenia. In the 5-halo-6-nitroquipazine series, the fluoro derivative has been designed for positron emission tomography (PET). The corresponding 5-iodo-, 5-bromo- and 5-chloro N-Boc-protected quipazines as labelling precursors, as well as 5-fluoro-6-nitroquipazine as a reference compound have been synthesized. 5-[(18)F]Fluoro-6-nitroquipazine has been radiolabelled with fluorine-18 (positron-emitting isotope, 109.8 min half-life) by nucleophilic aromatic substitution from the corresponding N-Boc protected 5-bromo- and 5-chloro-precursors using K[(18)F]F-K(222) complex in DMSO by conventional heating (145 degrees C, 2 min) or microwave activation (50 W, 30-45 s), followed by removal of the protective group with TFA. Typically, 15-25 mCi (5.5-9.2 GBq) of 5-[(18)F]fluoro-6-nitroquipazine (1-2 Ci/micromol or 37-72 GBq/micromol) could be obtained in 70-80 min starting from a 550-650 mCi (20.3-24.0 GBq) aliquot of a cyclotron [(18)F]F(-) production batch (2.7-3.8% non decay-corrected yield based on the starting [(18)F]fluoride). Ex vivo studies (biodistribution in rat), as well as PET imaging (in monkey) demonstrated that 5-[(18)F]fluoro-6-nitroquipazine ([(18)F]-1d) readily crossed the blood brain barrier and accumulated in the regions rich in 5-HT transporter (frontal- and posterial cortex, striata). However, the low accumulation of the tracer in the thalamus (rat and monkey) as well as the comparable displacement of the tracer observed with both citalopram, a -HT re-uptake inhibitor and maprotiline, a norepinephrine re-uptake inhibitor (rat), indicate that 5-[(18)F]fluoro-6-nitroquipazine ([(18)F]-1d) does not have the suggested potential for PET imaging of the serotin transporter (SERT).  相似文献   

13.
A practical method to prepare precursor of [N-methyl-(11)C]vorozole ([(11)C]vorozole), an efficient positron emission tomography (PET) tracer for imaging aromatase in the living body, was established. Sufficient amount of the racemate including norvorozole, a demethylated vorozole derivative used as a precursor of [(11)C]vorozole, became available by means of high-yield eight-step synthesis. The enantiomers were separated by preparative HPLC using a chiral stationary phase column to give optically pure norvorozole and its enantiomer. From the latter, ent-[(11)C]vorozole, an enantiomer of [(11)C]vorozole, was prepared and used in the PET study for the first time, which was shown to bind very weakly to aromatase in rhesus monkey brain supporting the previous pharmacological results. The stable supply of norvorozole will facilitate further researches on aromatase in the living body including brain by the PET technique.  相似文献   

14.
(4S)-1-[(S)-3-Mercapto-2-methylpropanoyl]-4-phenylthio-L-proline (Zofenoprilat, 2), the active metabolite of the potent ACE inhibitor Zofenopril Calcium (1), was labelled with carbon-11 (t1/2=20.4 min) to evaluate its pharmacokinetics behaviour in human body using Positron Emission Tomography (PET). [11C]2 labelling procedures were based on the use of immobilized Grignard reagent and the acylation of (S)-4-phenylthio-L-proline methyl ester (5) with 11C-labelled methacryloyl chloride, followed by a Michael addition with thiobenzoic acid. The radiochemical yield was 5-10% (EOB, decay corrected) and specific radioactivity ranged from 0.5 to 1.5 Ci/micromol (18.5-55.5 GBq/micromol). Preliminary in vivo human evaluation of [11C]2 showed that the drug accumulates in organs which express high levels of ACE, like lungs and kidneys, and in organs involved in drug metabolism such as the liver and gall bladder. Results of the distribution of [11C]2 showed a measurable concentration of the drug in the target tissues such as the kidney and to a minor extent, the heart, where it can afford organ protection.  相似文献   

15.
The radiosynthesis and the radiopharmacological characterization of [(11)C]AL-438 as a nonsteroidal ligand for the glucocorticoid receptor (GR) is described. Radiolabeling of the corresponding desmethyl precursor 10 with [(11)C]MeI gave [(11)C]AL-438 in decay-corrected radiochemical yields of 30+/-4% (based upon [(11)C]CO(2)) within 35 min at a specific radioactivity of 10-15 GBq/micromol at the end-of-synthesis. The radiopharmacological evaluation of [(11)C]AL-438 involved biodistribution and small animal PET imaging in rats, and autoradiography studies using rat brain sections. Biodistribution studies were performed in male Wistar rats and demonstrated high radioactivity uptake in pituitary and brain. However, the inability of high dose corticosterone to block binding would suggest that the radioactivity accumulation in the brain was not receptor-mediated.  相似文献   

16.
In recent years, there has been considerable effort to design and synthesize radiotracers suitable for use in Positron Emission Tomography (PET) imaging of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) subtype. A new fluoropyridinyl derivative of (-)-cytisine (1), namely (-)-9-(2-fluoropyridinyl)cytisine (3, K(i) values of 24 and 3462 nM for the alpha4beta2 and alpha7 nAChRs subtypes, respectively) has been synthesized in four chemical steps from (-)-cytisine and labelled with fluorine-18 (T(1/2): 119.8 min) using an efficient two-step radiochemical process [(a). nucleophilic heteroaromatic ortho-radiofluorination using the corresponding N-Boc-protected nitro-derivative, (b). TFA removal of the Boc protective group]. Typically, 20-45 mCi (0.74-1.67 GBq) of (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3, 2-3 Ci/micromol or 74-111 GBq/micromol) were easily obtained in 70-75 min starting from a 100 mCi (3.7 GBq) aliquot of a cyclotron-produced [18F]fluoride production batch (20-45% non decay-corrected yield based on the starting [18F]fluoride). The in vivo pharmacological profile of (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3) was evaluated in rats with biodistribution studies and brain radioactivity monitoring using intracerebral radiosensitive beta-microprobes. The observed in vivo distribution of the radiotracer in brain was rather uniform, and did not match with the known regional densities of nAChRs. It was also significantly different from that of the parent compound (-)-[3H]cytisine. Moreover, competition studies with (-)-nicotine (5 mg/kg, 5 min before the radiotracer injection) did not reduce brain uptake of the radiotracer. These experiments clearly indicate that (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3) does not have the required properties for imaging nAChRs using PET.  相似文献   

17.
FPhEP (1, (+/-)-2-exo-(2'-fluoro-3'-phenyl-pyridin-5'-yl)-7-azabicyclo[2.2.1]heptane) belongs to a recently described novel series of 3'-phenyl analogues of epibatidine, which not only possess subnanomolar affinity and high selectivity for brain alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChRs), but also were reported as functional antagonists of low toxicity (up to 15 mg/kg in mice). FPhEP (1, K(i) of 0.24 nM against [(3)H]epibatidine) as reference as well as the corresponding N-Boc-protected chloro- and bromo derivatives (3a,b) as precursors for labelling with fluorine-18 were synthesized in eight and nine steps, respectively, from commercially available N-Boc-pyrrole (overall yields=17% for 1, 9% for 3a and 8% for 3b). FPhEP (1) was labelled with fluorine-18 using the following two-step radiochemical process: (1) no-carrier-added nucleophilic heteroaromatic ortho-radiofluorination from the corresponding N-Boc-protected chloro- or bromo derivatives (3 a,b-1mg) and the activated K[(18)F]F-Kryptofix(222) complex in DMSO using microwave activation at 250 W for 1.5 min, followed by (2) quantitative TFA-induced removal of the N-Boc-protective group. Radiochemically pure (>99%) [(18)F]FPhEP ([(18)F]-1, 2.22-3.33 GBq, 66-137 GBq/micromol) was obtained after semi-preparative HPLC (Symmetry C18, eluent aq 0.05 M NaH(2)PO(4)/CH(3)CN, 80:20 (v:v)) in 75-80 min starting from a 18.5 GBq aliquot of a cyclotron-produced [(18)F]fluoride production batch (10-20% nondecay-corrected overall yield). In vitro binding studies on rat whole-brain membranes demonstrated a subnanomolar affinity (K(D) 660 pM) of [(18)F]FPhEP ([(18)F]-1) for nAChRs. In vitro autoradiographic studies also showed a good contrast between nAChR-rich and -poor regions with a low non-specific binding. Comparison of in vivo Positron Emission Tomography (PET) kinetics of [(18)F]FPhEP ([(18)F]-1) and [(18)F]F-A-85380 in baboons demonstrated faster brain kinetics of the former compound (with a peak uptake at 20 min post injection only). Taken together, the preliminary data obtained confirm that [(18)F]FPhEP ([(18)F]-1) has potential for in vivo imaging nAChRs in the brain with PET.  相似文献   

18.
Novel matrix metalloproteinase (MMP) inhibitor radiotracers, (S)-3-methyl-2-(2',3',4'-methoxybiphenyl-4-sulfonylamino)-butyric acid [(11)C]methyl ester (1a-c), (S)-3-methyl-2-(2',3',4'-fluorobiphenyl-4-sulfonylamino)-butyric acid [(11)C]methyl ester (1d-f), and (S)-3-methyl-2-(4'-nitrobiphenyl-4-sulfonylamino)-butyric acid [(11)C]methyl ester (1g), a series of substituted biphenylsulfonamide derivatives, have been synthesized for evaluation as new potential positron emission tomography (PET) cancer imaging agents.  相似文献   

19.
R107474, 2-methyl-3-[2-(1,2,3,4-tetrahydrobenzo[4,5]furo[3,2-c]pyridin-2-yl)ethyl]-4H-pyrido[1,2-a]pyrimidin-4-one, was investigated using in vitro and in vivo receptor assays and proved to be a potent and relatively selective alpha(2)-adrenoceptor antagonist. Performed assays in vitro were inhibition of binding to a large number of neurotransmitter receptor sites, drug receptor binding sites, ion channel binding sites, peptide receptor binding sites, and the monoamine transporters in membrane preparations of brain tissue or of cells expressing the cloned human receptors. The compound has subnanomolar affinity for halpha(2A)- and halpha(2C)-adrenoceptors (K(i) = 0.13 and 0.15 nM, respectively) and showed nanomolar affinity for the halpha(2B)-adrenoceptors and 5-hydroxytryptamine(7) (h5-HT(7)) receptors (K(i) = 1 and 5 nM, respectively). R107474 interacted weakly (K(i) values ranging between 81 and 920 nM) with dopamine-hD(2L), -hD(3) and -hD(4), h5-HT(1D)-, h5-HT(1F)-, h5-HT(2A)-, h5-HT(2C)-, and h5-HT(5A) receptors. The compound, tested up to 10 microM, interacted only at micromolar concentrations or not at all with any of the other receptor or transporter binding sites tested in this study. In vivo alpha(2A)- and alpha(2C)-adrenoceptor occupancy was measured by ex vivo autoradiography 1h after subcutaneous (sc) administration of R107474. It was found that R107474 occupies the alpha(2A)- and alpha(2C)-adrenoceptors with an ED(50) (95% confidence limits) of 0.014 mg/kg sc (0.009-0.019) and 0.026 mg/kg sc (0.022-0.030), respectively. Radiolabeled 2-methyl-3-[2-([1-(11)C]-1,2,3,4-tetrahydrobenzo[4,5]furo[3,2-c]pyridin-2-yl)ethyl]-4H-pyrido[1,2-a]pyrimidin-4-one ([(11)C]R107474) was prepared and evaluated as a potential positron emission tomography (PET) ligand for studying central alpha(2)-adrenoceptors. [(11)C]R107474 was obtained via a Pictet-Spengler reaction with [(11)C]formaldehyde in 33 +/- 4% overall decay-corrected radiochemical yield. The total synthesis time was 55 min and the specific activity was 24-28 GBq/micromol. The biodistribution of [(11)C]R107474 in rats revealed that the uptake of [(11)C]R107474 after in vivo intravenous administration is very rapid; in most tissues (including the brain) it reaches maximum concentration at 5 min after tracer injection. In agreement with the known distribution of alpha(2)-adrenoceptors in the brain, highest uptake of radioactivity was observed in septum (3.54 +/- 0.52 ID/g, 5 min pi) and entorhinal cortex (1.57 +/- 0.10 ID/g, 5 min pi). Tissue/cerebellum concentration ratios for septum (5.38 +/- 0.45, 30 min pi) and entorhinal cortex (3.43+/-0.24, 30 min pi) increased with time due to rapid uptake followed by a slow washout. In vivo blocking experiments using the non-selective alpha(2)-adrenoceptor antagonist mirtazapine demonstrated specific inhibition of [(11)C]R107474 binding in selective brain areas. The receptor binding profile of mirtazapine is reported and the selectivity of inhibition of binding is discussed. These results suggest that [(11)C]R107474 deserves further investigation as a potential radioligand for studying alpha(2)-adrenoceptors using PET.  相似文献   

20.
To develop agents for radionuclide imaging Aβ plaques in vivo, we prepared three fluorine-substituted analogs of arylbenzothiazole class; compound 2 has a high affinity for Aβ (K(i)=5.5nM) and the specific binding to Aβ in fluorescent staining. In preparation for the synthesis of these arylbenzothiazole analogs in radiolabeled form as an Aβ plaques-specific positron emission tomography (PET) imaging probe, we investigated synthetic route suitable for its labeling with the short-lived PET radionuclide fluorine-18 (t(1/2)=110min) and diaryliodonium tosylate precursors (12, 13a-e and 14). 2-Aryl-6-[(18)F]fluorobenzothiazoles ([(18)F]1-3) were synthesized in efficiently short reaction times (40-60min) with high radiochemical yields (19-40%), purities (>95%) and specific activities (85-118GBq/μmol). Tissue distribution studies showed that high radioactivity of [(18)F]2 accumulated in the brain with rapid clearance in healthy mice. Radioactive metabolites were analyzed in brain samples of mice and corresponded to 81% of parent remained by 30min after a tail-vein injection. These results suggest that [(18)F]2 is a promising probe for evaluation of Aβ plaques imaging in brain using PET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号