首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Programmed cell death is a mechanism through which organisms get rid of unwanted cells and is thought to be an important process in organogenesis. Although large-scale cell death is observed in the developing kidney, the precise roles of cell death in kidney organogenesis remain to be elucidated. To address this question, we prevented cell death in metanephric explants by applying caspase inhibitors. Administration of caspase inhibitors (Z-D-CH2DCB and Ac-DEVD-CHO) effectively prevented the cell death that is normally observed in nondifferentiating mesenchymal cells. Both ureteric bud branching and nephrogenesis were prevented by caspase inhibition. Our results suggest that caspases are crucial in kidney organogenesis and cell death in the nondifferentiating mesenchyme.  相似文献   

2.
A new protein (EnPo 1 antigen) abundant on endothelial cells and glomerular podocytes has been characterized by means of the mouse monoclonal antibody EnPo 1. Following electrophoretical separation of rabbit kidney homogenates EnPo 1 recognized a protein with a molecular weight of 110 kDa and an isoelectric point of 5.9 in Western blots. Using immunohistological techniques, the EnPo 1 antigen has been localized in high concentrations on glomerular podocytes of different developmental stages. Furthermore, the EnPo 1 antigen was expressed on endothelial cells of all adult rabbit organs tested so far. Detailed analysis of neonatal rabbit kidney revealed the abundance of EnPo 1 antigen on both differentiated vessels as well as on immature endothelial cells and endothelium of the microvasculature. Thus, for the first time a marker for in situ investigations of angiogenic processes within the mammalian kidney is available. Analysis of kidney cryosections by confocal laser scan microscopy revealed a direct connection between mature and differentiating vessels in the outer kidney cortex. Furthermore, two differentially organized cell populations discriminated by their EnPo 1 binding pattern were localized in the embryonic renal cortex. Morphologically, these cells were not distinguishable from other mesenchymal cells.  相似文献   

3.
Summary Proliferation and differentiation of opossum kidney cells in a serum-free defined medium was investigated and compared to that under conditions in which fetal bovine serum FBS (10%) was employed. Monolayers were grown in Dulbecco's modified Eagle's medium-Ham's F12 nutrient mixture containing insulin (10 μg/ml), bovine serum albumin fraction V (1 mg/ml) and fetuin (1 mg/ml). Cells in serum-free medium seeded at 1×104 per cm2 grew to confluency within 6 to 8 d and formed hemicysts or domes at a frequency equivalent to those in serum-containing medium. Electron microscopy of cultures grown in serum-free medium revealed polarized monolayers with the presence of microvilli and tight junctions. The differentiated characteristics, including sodium-dependent phosphate transport, the inhibition of this transport by parathyroid hormone (PTH), and the generation of cyclic AMP in response to PTH, were preserved in opossum kidney cells grown in serum-free medium.  相似文献   

4.
5.
Despite the indispensable role thyroid hormone (TH) plays in brain development, only a small number of genes have been identified to be directly regulated by TH and its precise mechanism of action remains largely unknown, partly because most of the previous studies have been carried out at postnatal day 15 or later. In the present study, we screened for TH-responsive genes in the developing mouse cerebellum at postnatal day 4 when morphological alterations because of TH status are not apparent. Among the new candidate genes selected by comparing gene expression profiles of experimentally hypothyroid, hypothyroid with postnatal thyroxine replacement, and control animals using oligoDNA microarrays, six genes were confirmed by real-time PCR to be positively ( orc1l, galr3, sort1, nlgn3, cdk5r2 , and zfp367 ) regulated by TH. Among these, sort1 , cdk5r2, and zfp367 were up-regulated already at 1 h after a single injection of thyroxine to the hypothyroid or control animal, suggesting them to be possible primary targets of the hormone. Cell proliferation and apoptosis examined by BrdU incorporation and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay revealed that hypothyroidism by itself did not enhance apoptosis at this stage, but rather increased cell survival, possibly through regulation of these newly identified genes.  相似文献   

6.
Astrocyte differentiation is essential for late embryonic brain development, and autophagy is active during this process. However, it is unknown whether and how autophagy regulates astrocyte differentiation. Here, we show that Atg5, which is necessary for autophagosome formation, regulates astrocyte differentiation. Atg5 deficiency represses the generation of astrocytes in vitro and in vivo. Conversely, Atg5 overexpression increases the number of astrocytes substantially. We show that Atg5 activates the JAK2‐STAT3 pathway by degrading the inhibitory protein SOCS2. The astrocyte differentiation defect caused by Atg5 loss can be rescued by human Atg5 overexpression, STAT3 overexpression, and SOCS2 knockdown. Together, these data demonstrate that Atg5 regulates astrocyte differentiation, with potential implications for brain disorders with autophagy deficiency.  相似文献   

7.
Lee JH  Kim TS  Yang TH  Koo BK  Oh SP  Lee KP  Oh HJ  Lee SH  Kong YY  Kim JM  Lim DS 《The EMBO journal》2008,27(8):1231-1242
The role and molecular mechanisms of a new Hippo signalling pathway are not fully understood in mammals. Here, we generated mice that lack WW45 and revealed a crucial role for WW45 in cell-cycle exit and epithelial terminal differentiation. Many organs in the mutant mouse embryos displayed hyperplasia accompanied by defects in terminal differentiation of epithelial progenitor cells owing to impaired proliferation arrest rather than intrinsic acceleration of proliferation during differentiation. Importantly, the MST1 signalling pathway is specifically activated in differentiating epithelial cells. Moreover, WW45 is required for MST1 activation and translocation to the nucleus for subsequent LATS1/2 activation upon differentiation signal. LATS1/2 phosphorylates YAP, which, in turn, translocates from the nucleus into the cytoplasm, resulting in cell-cycle exit and terminal differentiation of epithelial progenitor cells. Collectively, these data provide compelling evidence that WW45 is a key mediator of MST1 signalling in the coordinate coupling of proliferation arrest with terminal differentiation for proper epithelial tissue development in mammals.  相似文献   

8.
9.
Ali SM  Nambi P  Fredrickson TA  Brooks DP 《Peptides》1999,20(12):49-1495
Epithelins are polypeptides that are preferentially expressed in epithelial cells and modulate growth. Epithelin expression is predominant in tissues of epithelial origin such as the kidney, spleen, lung, placenta, and colon. Because polycystic kidney disease involves abnormal proliferation of the proximal and/or distal tubule epithelial cells, we investigated epithelin mRNA expression in polycystic kidneys of mice homozygous for the mutation. Epithelin mRNA was highly expressed in the polycystic kidneys of homozygous mice when compared with the heterozygotes or wild type controls. A study on the time course of epithelin expression indicated that epithelin mRNA expression paralleled cyst formation and progression of the disease. A 2-fold increase in expression was observed at Day 15, a stage when cystic changes were first visible. This increase in expression was also observed at Day 21, a stage of maximum disease pathology, which ultimately results in the death of the animal. In situ hybridization localized epithelin mRNA predominantly to the epithelial cell layer surrounding the cysts. The high levels of epithelin in epithelial cells suggest a role in renal epithelial cell proliferation and cyst formation in polycystic kidney disease.  相似文献   

10.
Podocyte dysfunction results in glomerular diseases accounted for 90% of end‐stage kidney disease. The evolutionarily conserved Notch signalling makes a crucial contribution in podocyte development and function. However, the underlying mechanism of Notch pathway modulating podocyte differentiation remains less obvious. Autophagy, reported to be related with Notch signalling pathways in different animal models, is regarded as a possible participant during podocyte differentiation. Here, we found the dynamic changes of Notch1 were coincided with autophagy: they both increased during kidney development and podocyte differentiation. Intriguingly, when Notch signalling was down‐regulated by DAPT, autophagy was greatly diminished, and differentiation was also impaired. Further, to better understand the relationship between Notch signalling and autophagy in podocyte differentiation, rapamycin was added to enhance autophagy levels in DAPT‐treated cells, and as a result, nephrin was recovered and DAPT‐induced injury was ameliorated. Therefore, we put forward that autophagy is involved in kidney development and podocyte differentiation regulated by Notch signalling.  相似文献   

11.
During development, Bone Morphogenetic Proteins (BMPs) can induce apoptosis, cell growth or differentiation. These different effects are mediated by dimers of two types of BMP–receptors (BMPRs). To identify the responding cells during tooth development and search for possible tissue–or stage–specificities in the receptors involved, the distribution patterns of BMPR–IA, –IB and –II were investigated in the mouse molar, from bud to bell stage. At the bud stage, BMP–2 was suggested to be involved in the formation of an epithelial signaling center, the primary enamel knot (PEK), while BMP–4 would mediate the condensation of the mesenchyme. Immunostaining showed the presence of BMPR–IA and –II in the epithelium instead of BMPR–IB and –II in the mesenchyme. At the cap stage, BMPR–IB was detected in the epithelium but not BMPR–II, suggesting the existence of another type II receptor to form a functional dimer. At the late cap stage in the epithelium, BMP–4, BMPR–IA and –II were restricted to the internal part of the PEK and the stalk: two apoptotic areas. The three proteins were detected in the mesenchyme, showing a strong staining where cusps were about to form. At the late bell stage, BMP–2 or –4 may induce cell differentiation. BMPR–IB and –II were detected in odontoblasts instead of BMPR–IA and –II in ameloblasts. These results provide the first evidence of multiple type I and type II BMP–receptors, expressed in the dental epithelium and mesenchyme at different stages of development, to signal different cellular activities in a time– and tissue–specific way.  相似文献   

12.
The biosynthesis of phosphatidylethanolamine was examined during differentiation of P19 teratocarcinoma cells into cardiac myocytes. P19 cells were induced to undergo differentiation into cardiac myocytes by the addition of dimethyl sulfoxide to the medium. Immunofluorescence labeling confirmed the expression of striated myosin 10 days postinduction of differentiation. The content of phosphatidylethanolamine increased significantly within the first 2 days of differentiation. [1,3-(3)H]Glycerol incorporation into phosphatidylethanolamine was increased 7.2-fold during differentiation, indicating an elevation in de novo synthesis from 1, 2-diacyl-sn-glycerol. The mechanism for the increase in phosphatidylethanolamine levels during cardiac cell differentiation was a 2.8-fold increase in the activity of ethanolaminephosphotransferase, the 1,2-diacyl-sn-glycerol utilizing reaction of the cytidine 5'-diphosphate-ethanolamine pathway of phosphatidylethanolamine biosynthesis. Incubation of P19 cells with the phosphatidylethanolamine biosynthesis inhibitor 8-(4-chlorophenylthio)-cAMP inhibited the differentiation-induced elevation in phosphatidylethanolamine levels but did not affect the expression of striated myosin. The results suggest that elevation in phosphatidylethanolamine is an early event of P19 cell differentiation into cardiac myocytes, but is not essential for differentiation to proceed.  相似文献   

13.
The pattern of expression of the carbohydrate epitope L5 was studied during early development of the chick neuroepithelium. Immunoreactivity first appears during gastrulation, at mid-primitive streak stage, and persists until at least 3.5 days of development. The epitope is expressed on all the components of the developing nervous system, both central and peripheral. In immunoblots, the antibody recognises a major component of about Mr 500,000 and several more minor components of lower molecular mass. If a Hensen's node from a donor embryo is transplanted into the area opaca of a host embryo, L5 immunoreactivity appears in the epiblast surrounding the graft. If hybridoma cells secreting the antibody are grafted together with Hensen's node into a host chick embryo, the induction of a supernumerary nervous system is inhibited. We suggest that the L5 epitope is an early and general marker for neural induction and that it may be involved directly in inductive interactions.  相似文献   

14.
High-mobility-group (HMG) proteins are a family of non-histone chromosomal proteins which bind to DNA. They have been implicated in multiple aspects of gene regulation and cellular differentiation. Sulfoglucuronyl carbohydrate binding protein, SBP-1, which is also localized in the neuronal nuclei, was shown to be required for neurite outgrowth and neuronal migration during development of the nervous system. In order to establish relationship between SBP-1 and HMG family proteins, two HMG proteins were isolated and purified from developing rat cerebellum by heparin-sepharose and sulfatide-octyl-sepharose affinity column chromatography and their biochemical and biological properties were compared with those of SBP-1. Characterization by high performance liquid chromatography--mass spectrometry (HPLC-MS), partial peptide sequencing and western blot analysis showed the isolated HMG proteins to be HMG-1 and HMG-2. Isoelectric focusing, HPLC-MS and peptide sequencing data also suggested that HMG-1 and SBP-1 were identical. Similar to SBP-1, both HMG proteins bound specifically to sulfated glycolipids, sulfoglucuronylglycolipids (SGGLs), sulfatide and seminolipid in HPTLC-immuno-overlay and solid-phase binding assays. The HMG proteins promoted neurite outgrowth in dissociated cerebellar cells, which was inhibited by SGGLs, anti-Leu7 hybridoma (HNK-1) and anti-SBP-1 peptide antibodies, similar to SBP-1. The proteins also promoted neurite outgrowth in explant cultures of cerebellum. The results showed that the cerebellar HMG-1 and -2 proteins have similar biochemical and biological properties and HMG-1 is most likely identical to SBP-1.  相似文献   

15.
Echinococcus granulosus is the causative agent of hydatidosis, a major zoonoses that affects humans and herbivorous domestic animals. The disease is caused by the pressure exerted on viscera by hydatid cysts that are formed upon ingestion of E. granulosus eggs excreted by canine. Protoscoleces, larval forms infective to canine, develop asynchronously and clonally from the germinal layer (GL) of hydatid cysts. In this report, we describe the cellular organization and the appearance of differentiated structures both in nascent buds and developed protoscoleces attached to the GL. Early protoscolex morphogenesis is a highly complex and dynamic process starting from the constitution of a foramen in the early bud, around which nuclei are distributed mainly at the lateral and apical regions. Similarly, distribution of nuclei in mature protoscoleces is not homogenous but underlies three cellular territories: the suckers, the rostellar pad, and the body, that surrounds the foramen. Several nuclei are associated to calcareous corpuscles (Cc), differentiated structures that are absent in the earlier bud stages. The number of nuclei is similar from the grown, elongated bud stage to the mature protoscolex attached to the GL, strongly suggesting that there is no significant cellular proliferation during final protoscolex development. The amount of DNA per nucleus is in the same range to the one described for most other platyhelminthes. Our results point to a sequential series of events involving cell proliferation, spatial cell organization, and differentiation, starting in early buds at the GL of fertile hydatid cysts leading to mature protoscoleces infective to canine.  相似文献   

16.
Contrast-induced acute kidney injury (CI-AKI) is the common hospitalized acute kidney injury (AKI). However, the diagnosis by serum creatinine might not be early enough. Currently, the roles of circulating mitochondria in CI-AKI are still unclear. Since early detection is crucial for treatment, the association between circulating mitochondrial function and CI-AKI was tested as a potential biomarker for detection of CI-AKI. Twenty patients with chronic kidney disease (CKD) undergoing percutaneous coronary intervention (PCI) were enrolled. Blood and urine samples were obtained at the time of PCI, and 6, 24, 48 and 72 h after PCI. Plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) were measured. Oxidative stress, inflammation, mitochondrial function, mitochondrial dynamics and cell death were determined from peripheral blood mononuclear cells. Forty percent of patients developed AKI. Plasma NGAL levels increased after 24 h after receiving contrast media. Cellular and mitochondrial oxidative stress, mitochondrial dysfunction and decreased mitochondrial fusion occurred at 6 h following contrast media exposure. Subgroup of AKI had higher %necroptosis cells and TNF-α mRNA expression than subgroup without AKI. Collectively, circulating mitochondrial dysfunction could be an early predictive biomarker for CI-AKI in CKD patients receiving contrast media. These findings provide novel strategies to prevent CI-AKI according to its pathophysiology.  相似文献   

17.
18.
In the early kidney development, a simple epithelial tube called ureteric bud is derived from the intermediate mesoderm and undergoes a complex process of growth and terminal bifid branching. The branching of the ureteric bud is achieved by different cellular behaviors including cell proliferation and chemotaxis. In this paper, we examine how the branching morphology depends on different physical or chemical factors by constructing a cell-based model to describe the simple tube branching in the early kidney development. We conclude that a proper balance between growth speed of epithelial sheet due to cell proliferation and cell mobility due to chemotaxis is necessary to realize the development of normal Y-shaped pattern. When cell proliferation is fast compared to chemotaxis, kinked pattern is formed, and when cell proliferation is slow, bloated pattern is formed. These are consistent with experimental observations in different morphological anomalies of mutants. We show that the different branching patterns are accurately predicted by growth-chemotaxis ratio.  相似文献   

19.
《Journal of lipid research》2017,58(6):1132-1142
Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or NEFAs. With overnight fasting, kidneys accumulated triglyceride, but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a β adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cluster of differentiation (Cd)36 mRNA increased 2-fold, and angiopoietin-like 4 (Angptl4), an LPL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LPL with poloxamer 407 or by use of mice with induced genetic LPL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter, CD36.  相似文献   

20.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily. A critical role for BMP signaling in the development of the metanephric kidney is supported by a growing number of studies using in vitro assays and in vivo animal models. Here we review current knowledge of BMPs, BMP receptors and regulators of the BMP signaling pathway in the developing kidney. We highlight major gaps in our knowledge of the roles of BMP signaling in the development of the normal and abnormal kidney and identify areas and techniques likely to improve our understanding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号