首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Euglena gracilis strain (Z) cells were synchronized under photoautotrophic conditions using a 14 hour light:10 hour dark regimen. The cells grew during the light period (growth phase) and divided during the following 10 hour period either in the dark or in the light (division phase). Changes in morphology of the pyrenoid and in the distribution of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) within the chloroplasts were followed by immunoelectron microscopy during the growth and division phases of Euglena cells. Epon-embedded sections were labeled with an antibody to the holoenzyme followed by protein A-gold. The immunoreactive proteins were concentrated in the pyrenoid, and less densely distributed in the stroma during the growth phase. During the division phase, the pyrenoid could not be detected and the gold particles were dispersed throughout the stroma. Toward the end of the division phase, the pyrenoid began to form in the center of a chloroplast, and the immunoreactive proteins started to concentrate over that rudimentary pyrenoid. During the growth phase, small areas rich in gold particles, called `satellite pyrenoid,' were observed, in addition to the main pyrenoid. From a comparison of photosynthetic CO2-fixation with the total carboxylase activity of Rubisco extracted from Euglena cells in the growth phase, it is suggested that the carboxylase in the pyrenoid functions in CO2-fixation in photosynthesis.  相似文献   

2.
The pellicle was isolated from the cell homogenate obtained on sonication of Euglena gracilis z grown aerobically under illumination and purified by a combination of differential and sucrose density gradient centrifugations. The purity and homogeneity of the pellicle fragments were determined by an electron microscopic method and biochemical analysis of the components. The protein, lipid, and sugar contents of the purified pellicle were 68.7, 17.9, and 13.5%, respectively. The equilibrium density of pellicle fragments was 1.21 g/cm3. SDS-polyacrylamide gel electrophoresis revealed that the pellicle contained 50 mol% of nonpolar amino acids. The constituents of the lipid and sugar were very different from those of the cell membrane of other organisms.  相似文献   

3.
The purified glutathione reductase was homogeneous on polyacrylamide-gel electrophoresis. It had an Mr of 79,000 and consisted of two subunits with a Mr of 40,000. The activity was maximum at pH 8.2 and 52 degrees C. It was specific for NADPH but not for NADH as the electron donor; the reverse reaction was not observed. The Km values for NADPH and GSSG were 14 and 55 microM respectively. The enzyme activity was markedly inhibited by thiol inhibitors and metal ions such as Hg2+, Cu2+ and Zn2+. Euglena cells contained total glutathione at millimolar concentration. GSH constituted more than 80% of total glutathione in Euglena under various growth conditions. Glutathione reductase was located solely in cytosol, as were L-ascorbate peroxidase and dehydroascorbate reductase, which constitute the oxidation-reduction cycle of L-ascorbate [Shigeoka et al. (1980) Biochem. J. 186, 377-380]. These results indicate that glutathione reductase functions to maintain glutathione in the reduced form and to accelerate the oxidation-reduction of L-ascorbate, which scavenges peroxides generated in Euglena cells.  相似文献   

4.
5.
Under thiamine-deficient, aerobic culture conditions, Yarrowia lipolytica was found to produce D-(+)-2-hydroxyglutaric acid extracellularly in amounts of about 5 mg per ml of the culture filtrate, together with pyruvic and 2-ketoglutaric acids, from glucose or glycerol in a chemically defined medium. Under similar conditions, however, only a small amount of the hydroxy acid was produced from odd- or even-numbered n-alkanes.  相似文献   

6.
In our preceding work (A. Yokota, Y. Nakano, and S. Kitaoka, 1978, Agric. Biol. Chem. 42, 121-129), extensive decarboxylation of glycolate carboxyl carbon during its metabolism in Euglena gracilis suggested occurrence of a metabolic pathway of glycolate different from that of higher C3 plants. In the present report, we establish the Euglena glycolate pathway from characteristics of the decarboxylation of the carboxyl carbon and from the metabolic fate of hydroxymethyl carbon of glycolate. The ratio of the decarboxylation of the carboxyl carbon of glycolate to the total metabolized carbon increased with increasing metabolic rate in an asymptotic fashion. Thus, the ratio was 20% at the metabolic rate of 0.05 nmol of glycolate/10(6) cells/min, but it was over 60% at the rate of more than 0.35 nmol/10(6) cells/min after 2 min of incubation. Metabolic products were also changed depending on the rate of metabolism of glycolate; glycine was the main product at the low rate of glycolate metabolism and the contribution of glycine was reversed by the increased contribution of evolved CO2 at the high rates. At the metabolic rate of 1.5 nmol of glycolate/10(6) cells/min, the rate of the decarboxylation was 1.0 nmol of CO2/10(6) cells/min, which could not be explained by the extremely low activity of glycine synthase in Euglena. Experiments with [2-14C]glycolate showed that exogenously added formate and methionine caused accumulation of radioactive formate. Based on these results, we have proposed that the glycolate metabolism of E. gracilis consists of glycine and formate pathways and that the relative contribution of both pathways to the glycolate metabolism depends on the metabolic rate of glycolate.  相似文献   

7.
8.
9.
10.
Euglena gracilis z contained two succinic semialdehyde dehydrogenases (EC 1.2.1.16), one requiring NAD and the other NADP, and these isozymes were separated from each other and partially purified. The NAD-linked isozyme was relatively stable on storage at 5 degrees C whereas the NADP-linked one was extremely unstable unless 30% glycerol or ethyleneglycol was added. The optimum pH was 8.7 and optimum temperature 35-45 degrees C for both isozymes. They were inhibited by Zn2+ and activated, particularly the NAD-linked enzyme, by K+. Sulfhydryl reagents activated both isozymes. The Km values for succinic semialdehyde were 1.66 - 10(-4) M with the NAD-linked isozyme and 1.06 - 10(-3) M with the NADP-linked one. The NADP-linked isozyme was induced by glutamate while the NAD-linked one was not. Probable roles of these isozymes in the physiology of Euglena gracilis are discussed.  相似文献   

11.
12.
The many vestibular tests now available provide the means of accurate localization of lesions at all levels of the vestibular pathways. The value of the test procedures described has been well established in the examination of very many patients over the past twenty years, and though other forms of tests are available only those have been included which have proved to give consistently useful information.Most of these tests can be undertaken by the clinician without the use of any costly equipment, and together with a careful history and examination the diagnosis can in most cases be arrived at. Recognition of the highly important role of optic fixation and ocular deviations on vestibular nystagmus, together with recent facilities to demonstrate this electronystagmographically, may provide additional valuable and more precise information.  相似文献   

13.
Microsatellite DNA has been developed into one of the most popular genetic markers. We have identified and cloned microsatellite loci in the genome of a free-living protozoan Euglena gracilis FACHB-848, using the random amplified microsatellites method (RAMS). The digoxigenin-labelled oligonucleotides (CT)10 and (GT)10 served as probes to detect complementary sequences in the randomly amplified polymorphic DNA (RAPD) fingerprints produced by means of Southern blotting. Subsequently, positive RAPD fragments were cloned. From a total of 31 RAPD primer profiles, eight microsatellite loci of E. gracilis were detected and characterized. Further, six sites (i.e. EGMS1, EGMS3, EGMS4, EGMS5, EGMS6, and EGMS7) showed polymorphisms. We found a GT or CT microsatellite every 10.5 kb in the genome of E. gracilis, and similar to animal genomes, the (GT)(n) motif was much more abundant than the (CT)(n) motif. These polymorphic microsatellite DNA will serve as advantageous molecular markers for studying the genetic diversity and molecular ecology of Euglena.  相似文献   

14.
Euglena contains glutamate:glyoxylate aminotransferase (GGT) both in mitochondria and in cytosol. Both isoforms were separated from each other by DEAE-cellulose chromatography. The mitochondrial enzyme had an apparent Km of 1.9 mM for glutamate and the cytosolic enzyme 52.6 mM. Mitochondrial GGT was further purified by ammonium sulfate fractionation, isoelectric focusing, and gel chromatography. It had a molecular weight of 141,000 and an isoelectric point of pH 4.88; the optimum pH was 8.5. Its apparent Km values for glutamate and for glyoxylate were 2.0 and 0.25 mM, respectively. In addition to glutamate, mitochondrial GGT used 5-hydroxytryptophan, tryptophan, and cysteine as amino donors in the transamination to glyoxylate. Alanine did not support the activity. The relative activity of the enzyme for amino acceptors on the transamination from glutamate was 4-hydroxyphenylpyruvate greater than phenylpyruvate greater than glyoxylate greater than hydroxypyruvate. Pyruvate and 2-oxoglutarate were not used in the reaction. Evidence that GGT functions mainly in the irreversible transamination between glutamate and glyoxylate is presented. The functional significance of GGT in the glycolate pathway of Euglena is also discussed.  相似文献   

15.
Much of the work on the distribution of 14C-labelled assimilatesin tomato has been done in winter under low light intensities,and consequently the reported distribution patterns of 14C maynot be representative of plants growing in high light. Further,there are several somewhat conflicting reports on patterns ofdistribution of 14C-assimilates in young tomato plants. We soughtto clarify the situation by studying the distribution of 14C-assimilatesin tomato plants of various ages grown in summer when the lightintensity was high. In addition, the role of the stem as a storageorgan for carbon was assessed by (a) identifying the chemicalfractions in the stem internode below a fed leaf and monitoring14 C activity in these fractions over a period of 49 d, and(b) measuring concentrations of unlabelled carbohydrates inthe stem over the life of the plant. The patterns of distribution of 14C-assimilates we found fortomato grown under high light intensity confirmed some of thosedescribed for plants grown under low light, but export of 14Cby fed leaves was generally higher than reported for much ofthe earlier work. Lower leaves of young plants exported over50% of the 14C they fixed, although export fell sharply as theplants aged. Initially, the roots and apical tuft were strongsinks for assimilates, but they had declined in importance bythe time plants reached the nine-leaf stage. On the other hand,the stem became progressively more important as a sink for 14C-assimilates.Older, lower leaves exported more of their 14C-assimilates tothe upper part of the plant than to the roots, whereas youngleaves near the top of the plant exported more of their assimilatesto the roots. The stem internode immediately below a fed leafhad about twice the 14C activity of the internode above theleaf. Mature leaves above and below a fed leaf rarely importedmuch 14C, even when in the correct phyllotactic relationshipto the fed leaf. In the first 3 d after feeding leaf 5 of nine-leaf plants, theorganic and amino acid pools and the neutral fraction of theinternode below the fed leaf had most of the 14C activity, butby 49 d after feeding, the ethanolic-insoluble, starch and lipidfractions had most of the 14C activity. Glucose, fructose andsucrose were the main sugars in the stem. Although concentrationsof these sugars and starch declined in the stem as the plantsmatured, there was little evidence to indicate their use infruit production. Stems of plants defoliated at the 44-leafstage had lower concentrations of sugars and starch at maturity,and produced less fruit than the controls. It was concludedthat tomato is sink rather than source limited with respectto carbon assimilates, and that the storage of carbon in thestem for a long period is possibly a residual perennial traitin tomato.Copyright 1994, 1999 Academic Press Lycopersicon esculentum, tomato, assimilate distribution, 14C, internode storage, sink-source relationships, starch, stem reserves, sugars  相似文献   

16.
1. Light-grown cells of Euglena gracilis strain Z, var. bacillaris and 1224/5g contain phylloquinone, plastoquinone, alpha-tocopherol, alpha-tocopherolquinone and ubiquinone-9 (i.e. ubiquinone with 9 isoprene units/mol.). 2. The concentration (per g. dry wt.) of plastoquinone (and chlorophyll) in light-grown cells of strain Z was governed by the composition of the culture medium and age of the cells. Highest yields of plastoquinone were obtained under autotrophic conditions, the concentration reaching a maximum after 6-8 days' growth. The concentrations were less in heterotrophic media. The concentration of ubiquinone was relatively unaffected by the age of the cells or composition of the medium. 3. In light-grown cells of strain Z plastoquinone, alpha-tocopherolquinone and alpha-tocopherol were mainly localized in the chloroplast; ubiquinone was found to be in the mitochondria. 4. Etiolated (dark-grown) cells of strain Z contained no phylloquinone, plastoquinone or alpha-tocopherolquinone; alpha-tocopherol was present in lower concentrations compared with light-grown cells; ubiquinone concentrations were similar to those for light-grown cells. The presence of alpha-tocopherol in etiolated cells suggested that this chromanol was not entirely confined to the chloroplast. 5. On illumination of etiolated cells of strain Z the chloroplastidic components plastoquinone, alpha-tocopherolquinone and alpha-tocopherol were synthesized in step with chloroplast formation. Ubiquinone concentrations, as expected, were unaffected. 6. [2-(14)C]Mevalonic acid, the specific distal terpenoid precursor, was not incorporated into any of the terpenoid components examined. This was attributed to the impermeability of the cell wall to this compound, rather than to a novel pathway of terpenoid biosynthesis.  相似文献   

17.
18.
The galactosephilic and mannosephilic hemagglutinins of Pseudomonas aeruginosa adsorbed onto Euglena gracilis, Chlamydomonas reinhardi, and Tetrahymena pyriformis. Furthermore, peroxidase binding to the 3 protozoan species was shown to be mediated by these lectins. Binding of Pseudomonas lectins to E. gracilis and C. reinhardi caused their specific agglutination, whereas no agglutination was observed with T. pyriformis, even after treatment by papain or by NaF. Added to the culture medium, the Pseudomonas hemagglutins stimulated growth of E. gracilis and T. pyriformis due to their binding to these protozoa; this effect was partly inhibited by the specific sugar.  相似文献   

19.
20.
Abstract: The high levels of dopamine (DA) detected in the ventral tegmental area (VTA), as well as in the substantia nigra (SN) of human brain, suggest the presence of DA cells in these areas. This favors the possible existence of a mesocortico-limbic system besides the mesostriatal pathway. In Parkinson's disease both DA systems seem to be deficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号