首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purine nucleoside kinases in human T- and B-lymphoblasts   总被引:1,自引:0,他引:1  
Purine nucleoside kinases in human B- and T-lymphoblasts were fractionated by DEAE-cellulose chromatography. Human B-lymphoblast cell extracts showed three peaks of nucleoside kinase activities, adenosine kinase (EC 2.7.1.20), deoxyguanosine kinase and deoxycytidine kinase (EC 2.7.1.74). However, T-lymphoblast cell extracts showed a nucleoside kinase activity which phosphorylates deoxycytidine, deoxyadenosine and deoxyguanosine, similar to deoxycytidine kinase, in addition to the three nucleoside kinases. The Km values of T-lymphoblast-specific nucleoside kinase for deoxyadenosine and deoxyguanosine, 15 and 26 microM, respectively, were smaller than those of deoxycytidine kinase, 150 and 330 microM, respectively. Deoxyadenosine phosphorylation by deoxycytidine kinase was strongly inhibited by dCTP, but the phosphorylation by T-lymphoblast-specific nucleoside kinase was only weakly inhibited by dCTP. Deoxyadenosine phosphorylating activity in B-lymphoblast extracts was more distinctly inhibited by dCTP than that in T-lymphoblast extracts.  相似文献   

2.
The optimal assay conditions and specificity for the principal reactions of purine nucleoside phosphorylation were studied in mouse thymocytes. The following relative activities were obtained for the nucleoside substrates: adenosine, 100; deoxyguanosine, 24; and deoxyadenosine, 14. The phosphorylation of adenosine, 45 microM, was optimal between pH 5.8 and 6.0 with a millimolar Mg:ATP ratio of 1:5. This activity was insensitive to inhibition by other nucleosides and dCTP. Optimal phosphorylation of deoxyguanosine, 350 microM, occurred at pH 8.4 with a millimolar Mg:ATP ratio of 10:3.5. Phosphorylation of 80 microM deoxyguanosine was inhibited approximately 90% by 10 microM deoxycytidine or dCTP and was inhibited 70% by 200 microM deoxyadenosine but unaffected by adenosine. Deoxyadenosine, 450 microM, phosphorylation was optimal between pH 6.5 and 8.5 with a millimolar Mg:ATP ratio of 5:1. Phosphorylation of deoxyadenosine, 100 microM, was partially inhibited by 200 microM adenosine, 34%; 200 microM deoxyguanosine, 10%; and 100 microM deoxycytidine or dCTP, 33%. Only deoxyadenosine phosphorylation was inhibited by 200 microM deoxyinosine, 10%. These results and those obtained from isokinetic sucrose density gradient analysis are consistent with there being a specific adenosine kinase, a faster sedimenting deoxycytidine kinase of broad specificity which also catalyzes the phosphorylation of deoxyguanosine and deoxyadenosine, and a specific deoxyguanosine kinase sedimenting more rapidly than either of the other activities.  相似文献   

3.
Human placental deoxyadenosine and deoxyguanosine phosphorylating activity   总被引:2,自引:0,他引:2  
We studied deoxyadenosine and deoxyguanosine phosphorylating activities in human placental cytosol. The specific activities of nucleoside kinase enzymes in nanomoles per h per mg +/- SD were as follows: adenosine kinase, 30 +/- 14; deoxyadenosine kinase, 12 +/- 2; deoxycytidine kinase, 0.30 +/- 0.04; and deoxyguanosine kinase, 27 +/- 16. Three major activities were resolved by ion exchange and affinity chromatography: deoxyguanosine-deoxycytidine kinase, deoxycytidine-deoxyadenosine kinase, and adenosine-deoxyadenosine kinase. Two other activities contained significant quantities of deoxyadenosine kinase. Deoxyguanosine-phosphorylating activity eluted as a single peak in association with deoxycytidine kinase. This deoxyguanosine-deoxycytidine kinase had an apparent molecular weight of 54,000, a Stokes radius of 31 A, and apparent Km values of 10, 130, and 14 microM for deoxyguanosine, deoxycytidine, and ATP, respectively. Four peaks of deoxyadenosine phosphorylating activity were resolved by affinity chromatography with AMP-Sepharose 4B. Adenosine-deoxyadenosine kinase had an apparent molecular weight of 38,000, a Stokes radius of 27.4 A, and apparent Km values of 0.4, 510, and 75 microM for adenosine, deoxyadenosine, and ATP, respectively. Attempts to distinguish whether adenosine-deoxyadenosine kinase was one enzyme with these two activities or two separate enzymes suggested that the former was the case. Deoxycytidine-deoxyadenosine kinase had apparent Km values of 0.7, 670, and 12 microM for deoxycytidine, deoxyadenosine, and ATP, respectively. Its apparent molecular weight was estimated to be 49,000 and its Stokes radius 30 A. Two other minor peaks of deoxyadenosine-phosphorylating activity had characteristics different from either deoxycytidine kinase or adenosine kinase-associated deoxyadenosine kinase. Our studies indicate that human placental cytosol contains a complex mixture of nucleoside kinase enzymes.  相似文献   

4.
The enzymes responsible for the phosphorylation of deoxyadenosine and nucleoside analogs are important in the pathogenesis of adenosine deaminase deficiency and in the activation of specific anticancer and antiviral drugs. We examined the role of adenosine kinase in catalyzing these reactions using an enzyme purified 4000-fold (2.1 mumol/min/mg) from human placenta. The Km values of deoxyadenosine and ATP are 135 and 4 microM, respectively. Potassium and magnesium are absolute requirements for deoxyadenosine phosphorylation, and 150 mM potassium and 5 mM MgCl2 are critical for linear kinetics. With only 0.4 mM MgCl2 in excess of ATP levels, the Km for deoxyadenosine is increased 10-fold. ADP is a competitive inhibitor with a Ki of 13 microM with variable MgATP2-, while it is a mixed inhibitor with a Ki and Ki' of 600 and 92 microM, respectively, when deoxyadenosine is variable. AMP is a mixed inhibitor with Ki and Ki' of 177 and 15 microM, respectively, with variable deoxyadenosine; it is a non-competitive inhibitor with a Ki of 17 microM and Ki' of 27 microM with variable ATP. Adenosine kinase phosphorylates adenine arabinoside with an apparent Km of 1 mM using deoxyadenosine kinase assay conditions. The Km values for 6-methylmercaptopurine riboside and 5-iodotubercidin, substrates for adenosine kinase, are estimated to be 4.5 microM and 2.6 nM, respectively. Other nucleoside analogs are potent inhibitors of deoxyadenosine phosphorylation, but their status as substrates remains unknown. These data indicate that deoxyadenosine phosphorylation by adenosine kinase is primarily regulated by its Km and the concentrations of Mg2+, ADP, and AMP. The high Km values for phosphorylation of deoxyadenosine and adenine arabinoside suggest that adenosine kinase may be less likely to phosphorylate these nucleosides in vivo than other enzymes with lower Km values. Adenosine kinase appears to be important for adenosine analog phosphorylation where the Michaelis constant is in the low micromolar range.  相似文献   

5.
Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides and activate a number of medically important nucleoside analogs. Here we report the structure of the Drosophila deoxyribonucleoside kinase with deoxycytidine bound at the nucleoside binding site and that of the human deoxyguanosine kinase with ATP at the nucleoside substrate binding site. Compared to the human kinase, the Drosophila kinase has a wider substrate cleft, which may be responsible for the broad substrate specificity of this enzyme. The human deoxyguanosine kinase is highly specific for purine substrates; this is apparently due to the presence of Arg 118, which provides favorable hydrogen bonding interactions with the substrate. The two new structures provide an explanation for the substrate specificity of cellular deoxyribonucleoside kinases.  相似文献   

6.
Deoxynucleoside Kinases of Bacillus megaterium KM   总被引:2,自引:0,他引:2       下载免费PDF全文
Dialyzed extracts of Bacillus megaterium KM contain thymidine, deoxyadenosine, and deoxyguanosine kinase activities. Thymidine kinase activity is best with deoxyadenosine triphosphate or deoxyguanosine triphosphate (dGTP) as the phosphoryl donor, whereas the best deoxyadenosine kinase activity is obtained with dGTP or adenosine triphosphate. Deoxyguanosine kinase activity functions optimally with deoxycytidine triphosphate as the donor. Although the thymidine kinase activity of crude extracts does not have a demonstrable divalent cation requirement, the addition of Mg(2+) or Mn(2+) is necessary for the formation of thymidine di- and triphosphates. The synthesis of thymidine kinase appears to be partially derepressed by thymine starvation. Incubation of extracts with deoxyadenosine and dGTP results in the substantial accumulation of deoxyadenosine di- and triphosphates. Extracts deaminate deoxycytidine to deoxyuridine, presumably as a consequence of the action of deoxycytidine deaminase, and then convert deoxyuridine to deoxyuridylic acid. B. megaterium extracts do not contain any detectable deoxycytidine kinase activity.  相似文献   

7.
L J Gudas  B Ullman  A Cohen  D W Martin 《Cell》1978,14(3):531-538
The absence of either of the enzymes adenosine deaminase (ADA) or purine nucleoside phosphorylase is associated with an immunodeficiency disease. Because all four nucleoside substrates of the enzyme purine nucleoside phosphorylase accumulate in the urine of patients who lack this enzyme (Cohen et al., 1976), we examined the toxicity of each of the four substrates using a mouse T cell lymphoma (S49) in continuous culture. Of the four substrates (inosine, deoxyinosine, guanosine and deoxyguanosine), only deoxyguanosine is cytotoxic at concentrations lower than 100 μM; furthermore, only deoxyguanosine is directly phosphorylated in S49 cells. Mutant S49 cells lacking deoxycytidine kinase (EC 2.7.1.74) are resistant to the toxic effects of deoxyguanosine, and these same mutants do not phosphorylate deoxyguanosine. Thus the cytotoxicity of exogenous deoxyguanosine correlates with the intracellular concentration of accumulated deoxyGTP.The addition of deoxyguanosine results in the depletion of deoxyCTP in S49 cells, indicating that deoxyGTP is an inhibitor of ribonucleotide reductase. Furthermore, the addition of deoxycytidine prevents the toxic effects of deoxyguanosine. Thus a therapy for purine nucleoside phosphorylase-deficient patients might include deoxycytidine to alleviate the proposed deoxyCTP starvation in those tissues capable of phosphorylating deoxyguanosine.  相似文献   

8.
Deoxyguanosine kinase from human placenta   总被引:1,自引:0,他引:1  
Deoxyguanosine kinase (ATP:deoxyguanosine 5'-phosphotransferase) has been purified up to a specific activity of 10.3 nmol/min per mg protein from human placenta. The enzyme appears to have a molecular weight of 58 000 from the results of Sephadex G-75 gel filtration. The enzyme catalyzed phosphorylation of deoxyguanosine and deoxyadenosine, but deoxycytidine was not phosphorylated. An apparent Km value for deoxyguanosine was 2.5 micro M. When ATP was used as a phosphate donor, the pH optimum was at pH 6.0, but the optimum was shifted to pH 6.8 by the addition of dTTP. At physiological pH, the activity was stimulated 3-4-fold by dTTP. dTTP was also an effective phosphate donor, but using dTTP as a phosphate donor, a broad pH optimum of 7.0 was observed. Two Km values of 0.13 and 2.2 mM were obtained for both MgATP2- and MgdTTP2-. The activity was strongly inhibited by dGTP and dGDP; 50% inhibition by 1.0 micro M dGTP and 2.1 micro M dGDP, respectively. The enzyme required the presence o Mg2+ or Mn2+.  相似文献   

9.
B Ullman  L J Gudas  A Cohen  D W Martin 《Cell》1978,14(2):365-375
The inherited absence of either adenosine deaminase (ADA) or purine nucleoside phosphorylase is associated with severe immunological impairment. We have developed a cell culture model using a mouse T cell lymphoma to simulate ADA deficiency and to study the relationship between purine salvage enzymes and immune function. 2′-deoxyadenosine triphosphate (deoxyATP) levels have been shown to be greatly elevated in erythrocytes of immunodeficient, ADA-deficient patients, suggesting that deoxyadenosine is the potentially toxic substrate in ADA deficiency. Using a potent ADA inhibitor, we have demonstrated that deoxyadenosine is growth-inhibitory and cytotoxic to S49 cells, and that deoxyATP accumulates in these cells. Cell variants, unable to transport or phosphorylate deoxyadenosine, are much less sensitive to deoxyadenosine, indicating that intracellular phosphorylation of deoxyadenosine is required for the lethal effects.We have partially reversed the cytotoxic effects of deoxyadenosine with deoxycytidine in wild-type cells, but we cannot show any reversal in cell lines lacking deoxycytidine kinase. Adenosine (ado) kinase-deficient cells are extremely resistant to deoxyadenosine in the presence of deoxycytidine. This deoxycytidine reversal of deoxyadenosine toxicity is consistent with an inhibition of ribonucleotide reductase by deoxyATP, and we have shown that incubation of S49 cells with deoxyadenosine markedly reduces intracellular levels of deoxyCTP, deoxyGTP and TTP.Kinetics data in wild-type cells and in cell variants are consistent with the presence of two deoxyadenosine-phosphorylating activities — one associated with ado kinase and another associated with deoxycytidine kinase.The S49 cells appear to be a valid model for the simulation of ADA deficiency in cell culture, and from our results, we can suggest administration of deoxycytidine as a pharmacological regimen to circumvent the clinicopathologic symptoms in ADA deficiency.  相似文献   

10.
Human T-lymphoblast deoxycytidine kinase: purification and properties   总被引:3,自引:0,他引:3  
Previous observations present tremendous variations in the properties of deoxycytidine kinase. To clarify the properties and physiologic role of deoxycytidine kinase, we have undertaken its purification. Deoxycytidine kinase was purified from cultured human T-lymphoblasts (MOLT-4) to 90% purity with an estimated specific activity of 8 mumol min-1 (mg of protein)-1. The purification procedure included ammonium sulfate precipitation, Superose-12 HPLC gel filtration chromatography, DE-52 ion-exchange chromatography, AMP-Sepharose 4B affinity chromatography, and dCTP-Sepharose-4B affinity chromatography. Deoxyguanosine, deoxyadenosine, and cytidine phosphorylating activities copurified with deoxycytidine kinase to final specific activities of 7.2, 13.5, and 4 mumol min-1 (mg of protein)-1, respectively. The enzyme is very unstable at low protein concentration and is stabilized by storage at -85 degrees C with 1 mg/mL bovine serum albumin, 20% glycerol (v/v), 200 mM potassium chloride, and 25 mM dithiothreitol. The molecular weight was 60,000, and the Stokes radius was 32 A by gel filtration chromatography. The subunit molecular weight was 30,500. This enzyme had apparent Km values of 1.5, 430, 500, 450, and 40 microM for deoxycytidine, deoxyguanosine, deoxyadenosine, cytidine, and cytosine arabinoside, respectively. The pH optimum ranged from 6.5 to 9.0. Mg2+ and Mn2+ were the preferred divalent cations. ATP, GTP, dGTP, ITP, dITP, TTP, and XTP were substrates for the enzymes. Our study indicates that deoxycytidine kinase is a dimer with two subunits and has phosphorylating activity for deoxyguanosine, deoxyadenosine, cytidine, and cytosine arabinoside. This highly purified enzyme will facilitate the study of its regulation and phosphorylation of anticancer or antiviral nucleoside analogues.  相似文献   

11.
Three different deoxyribonucleoside kinases with specificities toward thymidine, deoxyguanosine, and deoxyadenosine/deoxycytidine, respectively, are identified in Bacillus subtilis. The deoxyadenosin/deoxycytidine kinase is purified 950-fold employing blue Sepharose CL-6B column chromatography. The two deoxyribonucleoside kinase activities copurify and are present in the same band after polyacrylamide gel electrophoresis. The molecular weight is determined by gel filtration to be 47,000. Cytidine, adenosine, arabinosylcytosine, and arabinosyladenine are substrates for the enzyme. The activities toward these substrates are less than 20% of the activities obtained with deoxyadenosin and deoxycytidine. The deoxycytidine and deoxyadenosine saturation curves are hyperbolic with Km values for both nucleosides around 5 microM. The maximal velocities for the two deoxyribonucleosides are nearly identical with GTP as phosphate donor. GTP is the best donor showing hyperbolic saturation curves and Km values around 150 microM depending on the deoxyribonucleoside concentration. dATP and dCTP are inhibitors when GTP is the phosphate donor. They may both act as phosphate donors themselves. A divalent metal ion is required, Mg2+ giving the highest activity. A spontaneous mutant, selected as resistant to 5-fluorodeoxycytidine, lacks both deoxycytidine and deoxyadenosine kinase activity, while it retains normal activities toward deoxyguanosine, deoxyuridine, and thymidine.  相似文献   

12.
We have shown previously that a low concentration of tritiated deoxyadenosine, i.e., 1 µCi/ml, selectively kills wild-type S49 murine lymphoma cells. Mutant cells resistant to [3H]deoxyadenosine lacked adenosine kinase completely but retained a significant level of deoxyadenosine phosphorylating activity. To study further the specificity of [3H]deoxyadenosine selection, lymphoma cell clones resistant to 15 µCi/ml [3H]deoxyadenosine have been derived. The resistant line, S49-dA15, is also resistant to high levels of nonradioactive deoxyadenosine and to deoxyguanosine but remains sensitive to thymidine. The thymidine inhibition of the growth of the mutant, in contrast to that of the wild-type cells, cannot be prevented by deoxycytidine. The mutant line lacks deoxycytidine kinase that also phosphorylates deoxyadenosine. In addition, the mutant cells excrete a large amount of deoxycytidine into culture medium, consistent with a failure of salvage of the nucleoside in the absence of an appropriate kinase, i.e., deoxycytidine kinase. In contrast, a deoxycytidine kinase-deficient cell line that was selected with arabinosylcytosine does not excrete deoxycytidine and contains high deoxycytidine deaminase activity. [3H]Deoxyadenosine can be used as a selective agent for specific selection of deoxycytidine kinase-negative mutants.  相似文献   

13.
Adenosine kinase from human liver   总被引:5,自引:0,他引:5  
Adenosine kinase (ATP: adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to homogeneity from human liver. The yield was 55% of the initial activity with a final specific activity of 6.3 mumol/min per mg protein. The molecular weight was estimated as about 40 000 by Sephadex G-100 gel filtration and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 18% of that of adenosine. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad optimum at pH 7.5--8.5. The Km value for adenosine was 0.15 micrometer, and the activity was strongly inhibited at higher concentrations than 0.5 micrometer. ATP, dATP, GTP and dGTP were proved to be effective phosphate donors. Co2+ was more effective than Mg2+, and Ca2+, Mn2+, Fe2+ and Ni2+ showed about 50% of the activity for Mg2+. Some difference in structure between the adenosine kinase from human liver and that from rabbit or rat tissue, was observed by amino acid analysis and peptide mapping analysis.  相似文献   

14.
Mutant sublines were derived of S49 mouse T-lymphoma cells that were resistant to tritiated deoxyadenosine. Twenty-five isolates that were selected in 1 microCi/ml of the nucleoside were cross-resistant to 6-thioguanine, were sensitive to HAT (hypoxanthine, aminopterin, and thymidine), and contained less than 1% of hypoxanthine phosphoribosyltransferase activity in wild-type cells. One of the mutant clones, S49-dA2, was further subjected to selection in a medium containing 2 microCi/ml tritiated deoxyadenosine and 1 microgram/ml deoxycoformycin, an inhibitor of adenosine deaminase. All resistant subclones were cross-resistant to tubercidin, 6-methylmercaptopurine riboside, and arabinosyladenine. One of the subclones, S49-12, was completely devoid of adenosine kinase and was partially deficient in deoxyadenosine kinase. This subclone, however, contained wild-type levels of deoxycytidine kinase. DEAE chromatography of the wild-type cell extracts revealed two deoxyadenosine phosphorylating activities, one of which coeluted with adenosine kinase and was the enzyme missing in S49-12. The other species phosphorylated both deoxyadenosine and deoxycytidine, of which deoxycytidine was the preferred substrate.  相似文献   

15.
A rapid, simple, and sensitive radiochemical assay for the measurement of purine or pyrimidine nucleoside kinases (EC 2.7.1.-) is described. The substrate (thymidine, deoxyuridine, deoxycytidine, deoxyguanosine, deoxyadenosine, uridine, cytidine, and adenosine) is separated from the product (the respective 5′-nucleotide) on neutral alumina columns which retain the nucleotides but not the nucleosides. The nucleotides are recovered by elution with 0.4 m sodium phosphate buffer, pH 7.6.  相似文献   

16.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

17.
Extracts of Lactobacillus leichmannii (ATCC 7830) catalyze the phosphorylation of the four principal deoxynucleosides. Thymidine, deoxyguanosine, and deoxycytidine kinase activities were found to be optimal with deoxyadenosine triphosphate as the phosphoryl donor, whereas deoxycytidine triphosphate was the optimal donor for deoxyadenosine kinase activity. L. leichmannii catalyzes the conversion of deoxycytidine to deoxyuridylic acid, probably by a pathway involving deoxycytidylate deaminase.  相似文献   

18.
The antiviral activity of L-nucleoside analogs depends in part on the enantioselectivity of nucleoside kinases which catalyse their monophosphorylation. The substrate properties of human recombinant deoxycytidine kinase (dCK) and human recombinant deoxyguanosine kinase (dGK) with respect to L-adenosine and L-guanosine analogs, in the presence of saturating amounts of ATP and relatively high concentrations of substrates, demonstrated a marked lack of enantioselectivity of both these enzymes. Human dCK catalysed the phosphorylation of D- and L-enantiomers of beta-dA, beta-araA, and beta-dG with enantioselectivities favoring the unnatural enantiomer for the adenosine derivatives and the natural enantiomer for 2'-deoxyguanosine. No other tested L-adenosine or L-guanosine analog was a substrate of dCK. Similarly, D- and L-enantiomers of beta-dA, beta-araA, and beta-dG were substrates of human dGK but with different enantioselectivities compared to dCK, especially concerning beta-dA. The present results indicate that human dCK and dGK have similar properties including substrate properties, relaxed enantioselectivities, and possibly catalytic cycles.  相似文献   

19.
Deoxycytidine kinase specific activity was high in human peripheral lymphocytes and increased less than 2-fold when the lymphocytes were stimulated by phytohemagglutinin A. Ion-exchange chromatography showed the same profile of deoxycytidine kinase activity in resting and proliferating cells. This enzyme could also efficiently phosphorylate deoxyadenosine and deoxyguanosine. In contrast, the thymidine kinase activity was very low in resting peripheral lymphocytes and increased more than 40-fold upon stimulation. Similar relative changes in the activities of the two enzymes were observed in human T-lymphoblast cells (CCRF-CEM) separated by centrifugal elutriation into cells of different cell cycle phases. The ratio of deoxycytidine to thymidine kinase activities is 20:1 in extracts from resting human lymphocytes and 1:2 in PHA-stimulated cells. This drastic change in deoxyribonucleoside phosphorylating activities during the cell cycle in human lymphocytes is of importance for studies on unscheduled DNA synthesis, for the design of therapies to interfere with viral DNA metabolism, and for a correct interpretation of the compartmentation effects observed in DNA precursor metabolism.  相似文献   

20.
High levels of deoxyadenosine and deoxyguanosine in patients with inherited deficiency of either adenosine deaminase or purine-nucleoside phosphorylase, respectively, are considered to be responsible for the associated immunological disorder. The mechanism involves phosphorylation to the corresponding deoxyribonucleoside triphosphates which subsequently inhibit the CDP-reducing activity of ribonucleotide reductase. Addition of deoxycytidine protects cells from the cytotoxic effects of deoxyadenosine and deoxyguanosine by competition for phosphorylation and by replenishing dCTP, the apparent limiting DNA precursor. Addition of cytidine, but not uridine, led to a reversal of deoxyguanosine and thymidine growth inhibition, comparable to that obtained with deoxycytidine. Analysis of the intracellular nucleotide pools showed that increased levels of cytidine ribonucleotides were sufficient to overcome the inhibitory effects of dGTP and dTTP on CDP reduction, thereby circumventing a depletion of the dCTP pool. A partial reversal of deoxyadenosine toxicity was also obtained with addition of cytidine. In this case little change in the dCTP level was observed, but a decreased dGTP pool appeared to be correlated with growth inhibition. High cytidine ribonucleotide levels partially prevented this effect. The present results may encourage the use of cytidine in combination with deoxycytidine as a pharmacological regime in treatment of immunodeficiency disease associated with increased deoxyribonucleotide levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号