首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The paired lanterns of the larval fireflyPhoturis versicolor are bilaterally innervated by four dorsal unpaired median (DUM) neurons the somata of which are found in the terminal abdominal ganglion (A8) and which stain with Neutral Red (Fig. 1A). Both intra- and extracellularly recorded activity in these neurons is always associated with a bilateral glow response, or BGR (Figs. 3 and 4). Luminescence cannot be initiated or maintained in the absence of DUM neuron excitation. Furthermore, there is a linear causative relationship between the frequency of DUM neuron activity and the amplitude of the resultant BGR (Figs. 6 and 7).Due to the intrinsic bilateral morphology, firefly DUM neurons may be antidromically activated through either lantern nerve, resulting in the initiation of luminescence in the contralateral lantern (Figs. 8 and 9). This activation is unaffected by high Mg++ saline indicating that the DUM neurons provide a direct pathway for conduction through the ganglion (Fig. 9). The DUM neurons receive synaptic input from axons descending through both anterior connectives, however, stimulation of only one connective results in a BGR since excitation is carried to both sides of the periphery through the bilateral axons.Firefly DUM neurons exhibit physiological qualities typical of neurosecretory cells: spikes are characterized by a slow time course and a long and deep afterhyperpolarization (Fig. 10). This is consistent with the observation that spontaneous firing rates are usually below 3 Hz, but nevertheless elicit a strong BGR (Figs. 3 and 5). The physiological evidence presented in this study correlates well with the morphological, pharmacological and biochemical evidence compiled from previous studies, which indicates that the four DUM neurons represent the sole photomotor output from the central nervous system to the larval lanterns. Evidence is discussed which indicates that these effects are mediated throught the release of octopamine, long presumed to be the lantern neurotransmitter. These results, therefore, describe a novel and unexpected role for DUM neurons in regulating an unusual invertebrate effector tissue and further expands the growing list of functions for octopamine in neural control mechanisms.Abbreviations A1-A7 first through seventh abdominal ganglia - A8 terminal abdominal ganglion - DUM dorsal unpaired median - BGR bilateral glow response  相似文献   

2.
    
Summary The peripheral nerves of the suboesophageal ganglion of the locust,Locusta migratoria have been investigated with respect to their innervation by dorsal unpaired median (DUM) neurons. The DUM neuron supply of the suboesophageal periphery was found to be strikingly sparse: No segmental DUM neurons could be found in all three mouthpart segments. While in the mandibular segment DUM neuron innervation appears to be missing entirely, both the maxillary and the labial peripheral nerves are supplied by a single, intersegmentally projecting prothoracic DUM neuron.Abbreviation DUM dorsal unpaired median  相似文献   

3.
Release of spermatozoa from the receptaculum seminis of Schistocerca vaga was studied by means of electrical and mechanical stimulation. Electrical stimulation of the receptaculum nerve, or the ductus aperture nerve, leads to release of spermatozoa from the receptaculum seminis, provided the spermathecal innervation is intact. Mechanical stimulation of the ductus aperture in the genital chamber also leads to sperm release, provided the neural loop, ductus aperture/terminal abdominal ganglion/receptaculum seminis, has not been interrupted at any point. Ten somata in the terminal abdominal ganglion, including 6 dorsal unpaired medial (DUM) neurons, innervate the receptaculum seminis; some of these somata may be neurosecretory. Approximately 80 presumed sensory axons run from the ductus aperture to the same ganglion. On the basis of these neuroanatomical data and the results of electrical and mechanical stimulation, a schema of how the release mechanisms operate in S. vaga is proposed.  相似文献   

4.
Summary In the crickets, Gryllus campestris and Gryllus bimaculatus, the innervation of the dorso-ventral neck muscles M62, M57, and M59 was examined using cobalt staining via peripheral nerves and electrophysiological methods. M62 and M57 are each innervated by two motoneurons in the suboesophageal ganglion. The four motoneurons project into the median nerve to bifurcate into the transverse nerves of both sides. M62 and M57 are the only neck muscles innervated via this route. These bifurcating axon-projections are identical to those of the spiracular motoneurons in the prothoracic ganglion innervating the opener and closer muscle of the first thoracic spiracle in the cricket. The morphology of their branching pattern is described. The neck muscle M57 and the opener muscle of the first thoracic spiracle are additionally innervated by one mesothoracic motoneuron each, with similar morphology. These results suggest, that in crickets, the neck muscles M57 and M62 are homologous to spiracular muscles in the thoracic segments. The two neck muscles M62 and M59 (the posterior neighbour of M57) receive projections from a prothoracic dorsal unpaired median (DUM) neuron that also innervates dorsal-longitudinal neck muscles but not M57. In addition, one or two mesothoracic DUM neurons send axon collaterals intersegmentally to M59. This is the first demonstration of the innervation of neck muscles by DUM neurons.  相似文献   

5.
美洲大蠊中枢DUM神经元的分离和电压门控Na+电流的记录   总被引:1,自引:0,他引:1  
许鹏  孙芹  陈超  程洁  高蓉  姜志宽  肖杭 《昆虫学报》2009,52(4):380-385
【目的】建立美洲大蠊Periplaneta americana中枢神经系统背侧不成对中间神经元(dorsal unpaired median neurons, DUM neurons)的分离方法和DUM神经元电生理实验模型。【方法】IA型胶原酶法消化美洲大蠊末端腹神经节, 机械吹打得到DUM神经元细胞, 运用膜片钳技术记录DUM神经元细胞电压门控Na+电流。【结果】分离得到的DUM神经元细胞状态良好, 具有DUN神经元典型的梨状形态和表面特征。以膜片钳全细胞方式记录到的Na+电流符合钠通道电流特征。【结论】IA型胶原酶消化得到美洲大蠊DUM神经元细胞的方法可靠, 能稳定地记录到Na+电流。本文描述的方法为昆虫神经细胞的电生理机制研究提供一个可用的实验模型。  相似文献   

6.
A distinctive group of neurons having cell bodies located along the midline of the dorsal surface of the sixth abdominal (A6) ganglion of the adult cockroach Periplaneta americana has been characterized by direct anterogradc cobalt chloride staining. These neurons identified as dorsal unpaired median (DUM) neurons, present a T-shaped morphology. The soma gives rise to a single primary neurite running anteriorly in the ganglion before dividing into two lateral neurites which run into the left and the right side of the ganglion. A characteristic dendritic arborization arises from the lateral neurites within the ganglion. This major branching pattern is mainly located at the periphery of the A6 ganglion and forms a symmetrical complicated network. A new culture procedure of these same adult DUM neurons has been developed from the dissociation of the median parts of the A6 ganglia. In our experimental conditions, we show that cultured adult DUM neurons can survive for several weeks, and regenerate a single primary neuritc dividing into two symmetrical lateral neurites with a number of fine processes radiating from the endings. This corresponds to the typical DUM neuron morphology revealed in situ on the same preparation using the cobalt chloride staining technique. This culture system developed for the first time on A6 ganglia adult DUM neurons will allow a better understanding of the physiological intracellular mechanisms involved in the neurosecretory functions of DUM neurons, which are currently unknown.  相似文献   

7.
The innervation of the spermatheca and demonstration of neural control of spermathecal contractions in Locusta migratoria was illustrated using anterograde and retrograde fills, combined with electrophysiological stimulation and recording. The anterior portion of the spermatheca receives innervation via the receptaculum seminis nerve (N2B2) from two large ventral neurons and one dorsal neuron. All were bilaterally paired and situated in the VIIIth abdominal ganglion. Three ventral bilaterally paired neurons situated in the VIIIth abdominal ganglion also provide innervation to the posterior portion of the spermatheca via the ductus seminalis aperture nerve (N2B3). Six DUM neurons, located in the VIIIth abdominal ganglion, in addition to two centroposteriorly situated DUM neurons in the VIIth abdominal ganglion, are also associated with these two nerves. N2B4 also provides innervation to the posterior portion of the spermatheca. N2B6b is associated with sensory cells identified in the anterior lateral regions of the genital chamber. The spermatheca contracts spontaneously, with peristaltic contractions beginning at the spermathecal sac and continuing along the length of the spermathecal duct. However electrical stimulation of the ventral ovipositor nerve (VON or N2B), receptaculum seminis nerve (N2B2) and the ductus seminalis aperture nerve (N2B3) indicates that contractions are also under neural control. In particular contractions of the spermathecal sac, coil duct and anterior straight duct are initiated via motor projections from the receptaculum seminis nerve (N2B2) and posterior straight duct contractions are controlled by motor input from the ductus seminalis aperture nerve (N2B3). The results suggest that spermathecal contractions of the anterior and posterior portions of the spermatheca are under separate neural control.  相似文献   

8.
Modified protocols for cobalt-filling and silver intensification of neurons in the larval and adult stages of the moth, Manduca sexta, have led to improved neuronal visualization and minimal background staining. In particular, long distance projecting multisegmental in-terneurons. originating in the pterothoracic or terminal abdominal ganglion, were best visualized when a cobalt:lysine complex was used to fill hemi-connectives for several days at 4 C. Ganglia closest to the placement of tracer, which became flooded with cobalt:lysine during the filling period. were removed from the insect. This step eliminated the artifactual filling of neurons that may have taken up the tracer from such pooled regions. This led to a more accurate assessment of whether a multisegmental interneuron projected through the full length of nerve cord to the original site of tracer placement. The protocol for light insensitive silver intensification of cobalt-filled neurons was modified to include an important pH adjustment. NaOH was used to alter the pH of the protective colloid, sodium tungstate, to 10.4 or greater in solution. Especially in larvae. our techniques produced intensely stained cobalt-filled neurons within ganglia that remained transparent and relatively free of nonspecific silver deposition.  相似文献   

9.
Summary The localization and intraneuronal distribution of the monoaminergic transmitters in the nervous system of the earthworm, Lumbricus terrestris, have been investigated in detail with the aid of the histochemical fluorescence method of Falck and Hillarp.In the ventral nerve cord, many yellow fluorescent, 5-hydroxytryptamine containing neurons are found, but only few green fluorescent noradrenaline containing cell bodies, which, however, are numerous in the peripheral nervous system. There is an abundance of both fibre types in the neuropile.The 5-hydroxytryptaminergic neurons probably have a motor (possibly inhibitor) function; the adrenergic neurons in the body segments are supposed to have a receptor (exteroceptive and possibly proprioceptive) function.In the cerebral ganglion, both 5-hydroxytryptamine and noradrenaline containing neurons are found in large numbers, and there are closely packed numerous fibres of both types in the neuropile. Their function is more obscure, though an associative function can be presumed for some adrenergic neurons; smaller 5-hydroxytryptaminergic neurons might have a motor (perhaps inhibitor) function.Adrenergic sensory cells are found in the body integument, most frequently in the clitellum segments, in the prostomium, and in the roof of the buccal cavity. These cells give off varicose fibres that form a basi-epithelial network which is in communication with the green fluorescent sensory fascicles in the ventral nerve cord via the epidermal nerves, the ring nerves, and the segmental nerves. No direct adrenergic sensory-effector innervation of either circular and/or longitudinal musculature or gland cells seems to exist. No adrenergic free nerve endings in the body integument have been observed. Instead, there must be a synaptic contact with the motoneurons, either directly in the neuropile or via an interjacent neuron.No synaptic contacts have been observed in the ventral nerve cord between adrenergic or 5-hydroxytryptaminergic fibres and either the giant fibres or fluorescent or nonfluorescent perikarya.An adrenergic innervation of the pharynx musculature has been found, and sensory cells of a different type are present in and below the epithelium; here, a direct senso-motoric innervation of the pharyngeal musculature cannot be excluded. It is established that the adrenergic neurons in the stomatogastric nervous system have an exciting function on the pharynx, whereas a direct monoaminergic influence of the muscular movements of the intestine probably does not exist.Abbreviations Used A adrenaline - CA catecholamine - DA dopamine - 5-HT 5-hydroxytryptamine - MA monoamine - NA noradrenaline The research reported in this document has been sponsored by the Air Force Office of Scientific Research under Grant AF EOAR 67-15 through the European Office of Aerospace Research (OAR), United States Air Force, by the Swedish Natural Science Research Council (99-34, 6627), and by the Swedish Medical Research Council (B67-12X-712-02A).  相似文献   

10.
A group of six dorsal unpaired median (DUM) neurons of the suboesophageal ganglion (SOG) of locusts was studied with neuroanatomical and electrophysiological techniques. The neurons are located posteriorly in the SOG and have axons that descend into the ganglia of the ventral nerve cord, some as far as the terminal abdominal ganglion. Within thoracic ganglia the neurons have profuse dendritic ramifications in many neuropiles, including ventral sensory neuropiles. Based on their projection patterns three different morphological types of neurons can be distinguished. These neurons receive excitatory inputs through sensory pathways that ascend from the thoracic ganglia and are activated by limb movements. They may be involved in the modulation of synaptic transmission in thoracic ganglia.  相似文献   

11.
Summary Innervation of the antennal heart, an independent accessory circulatory motor in the head of insects, was investigated in the cockroach Periplaneta americana by use of axonal cobalt filling and transmission electron microscopy. The muscles associated with this organ are innervated by neurones located in a part of the suboesophageal ganglion, generally considered to be formed by the mandibular neuromere. Dorsal unpaired median (DUM) and paired contralateral neurones were stained. The axons of all these neurones run along the circumoesophageal connectives and through the paired nervus corporis cardiaci III into the corpora cardiaca. They pass through these organs forming fine arborizations there and exit anteriorly as a small pair of nerves which terminate at the antennal heart-dilator muscles. Numerous branches of these nerves extend beyond the lateral borders of the large transverse dilator muscle and terminate in the ampullar walls of the antennal heart. These neurosecretory fibres form neurohaemal areas which obviously release their products into the haemolymph, which is pumped into the antennae. The possible functions of the neurones associated with the antennal heart are discussed with respect to both, their role as a modulatory input for the circulatory motor and as a neurohormonal release site.  相似文献   

12.
Among the three clusters of dorsal unpaired median neurons of the Periplaneta americana terminal abdominal ganglion, another type of neuron has been characterized by anterograde cobalt stainings and microelectrode technique. These neurons are bilaterally distributed in the ganglion. Their axons ipsilaterally exit the ganglion via the anterior proctodeal nerves, to innervate the proctodeum. They are characterized by a long-duration overshooting action potentials and a low firing frequency. Most often the depolarizing phase is composed of two peaks: a fast spike followed by a slow phase. Tetrodotoxin suppressed the fast peak and blocked the spontaneous activity suggesting that sodium channels are involved in the depolarizing phase as well as in the initiation of the action potential. Calcium channel blockers induced a disappearing of the slow depolarizing phase indicating the participation of calcium ions and a reduction of the afterhyperpolarization reflecting the participation of calcium-activated potassium channels. Furthermore, cadmium, as lanthanum or barium, induced a long-lasting plateau potential, which would be due to a persistent sodium conductance. Tetraethylammonium increased the duration of the action potential indicating that potassium channels are implicated in the falling phase. The results demonstrate that these neurons are different from other cells, especially dorsal unpaired median neurons, of the central nervous system of the cockroach.Abbreviations DUM dorsal unpaired median - SDP slow depolarizing phase - AP action potential - PAP plateau action potential - TAG terminal abdominal ganglion - CNS central nervous system  相似文献   

13.
Summary The distribution, morphology and synaptic connections of the hindgut efferent neurons in the last (sixth) abdominal ganglion of the crayfish, Orconectes limosus, have been investigated using light and electron microscopy in conjunction with retrograde cobalt/nickel and HRP labeling through the intestinal nerve. The hindgut efferent neurons occur singly and in clusters, and are unipolar. Their axonal projections are uniform and consist of a thick primary neurite with typical lateral projections and limited arborization of varicose fibers in the ganglionic neuropil. They also send lower order axon processes to the ganglionic neural sheath, where they arborize profusely, forming a network of varicose fibers. The majority of the efferent neurons project to the anterior part of the hindgut. HRP-labeled axon profiles are found in both pre- and postsynaptic position in the neuropil of the ganglion. HRP-labeled axon profiles also establish pre- and postsynaptic contacts in the intestinal nerve root. All hindgut efferent terminals contain similar synaptic vesicle populations: ovoid agranular vesicles (50–60 nm) and a few large granular vesicles (100–200 nm). It is suggested that the hindgut efferent neurons in the last abdominal ganglion are involved in: (1) innervation of the hindgut; (2) central integrative processes; (3) en route synaptic modification of efferent and afferent signals in the intestinal nerve; (4) neurohumoral modulation of peripheral physiological processes.Fellow of the Alexander von Humboldt Stiftung  相似文献   

14.
Patterns of tracheation in the abdominal central nervous system and the cerci of Acheta domesticus are described from whole mounts, and light and electron microscopy. The tracheal supply of the ganglia is derived from ventral longitudinal tracheal trunks which have segmental connections to the spiracels. Each abdominal ganglion is served by a single pair of tracheal trunks, except the terminal ganglion, which has two pairs. Within the ganglia, tracheoles occur principally in association with glia-rich areas of the neuropile. We suggest that the respiratory exchange may be concentrated in the cell bodies of neurons and glia. Each cercus has a tracheal supply in paralle with a large air sac which, it is suggested, serves to lighten the cercus, functions as a resonator for sound reception, or facilitates tidal flow of hemolymph and postecdysial expansion of the cercus. No tracheae run continuously between ganglia or between the terminal ganglion and the cerci, and they do not appear to have a potential role as a contact guidance pathway for cercal nerve growth.  相似文献   

15.
The abdominal cerci of the wood cricket, Nemobius sylvestris, are covered by a variety of hair‐like sensilla that differ in length, thickness, and articulation. Fillings from the cercal nerves with cobalt chloride and fluorescent dyes revealed the projection of sensory axons into the terminal abdominal ganglion of the ventral nerve chain. Two projection areas on each side of the terminal abdominal ganglion midline could be identified: a posterior cercal glomerulus and an anterior bristle neuropil. Axons from some cercal sensilla ascend through the connectives to reach the metathoracic ganglionic mass. As their axons pass through each segmental abdominal ganglion, they project medial arborization. Cross‐sections of the terminal abdominal ganglion and retrograde fills with cobalt chloride and fluorescent dyes from connectives revealed several small cells and seven pairs of giant ascending interneurons organized symmetrically. Giant somata are located contralateral to their axons (diameters between 20 and 45 μm). The cercal projections overlap extensively with the dendritic fields of the giant interneurons. In the terminal abdominal ganglion, we identified nine longitudinal tracts, two major tracts, and seven smaller ones. The functional implications of the neuranatomical organization of the system are discussed on a comparative basis. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
Summary An antiserum against the cockroach neuropeptide leucokinin I (LKI) was used to study peptidergic neurons and their innervation patterns in larvae and adults of three species of higher dipteran insects, the flies Drosophila melanogaster, Calliphora vomitoria, and Phormia terraenovae, as well as larvae of a primitive dipteran insect, the crane fly Phalacrocera replicata. In the larvae of the higher dipteran flies, the antiserum revealed three pairs of cells in the brain, three pairs of ventro-medial cells in the subesophageal ganglion, and seven pairs of ventro-lateral cells in the abdominal ganglia. Each of these 14 abdominal leucokinin-immunoreactive (LKIR) neurons innervates a single muscle of the abdominal body wall (muscle 8), which is known to degenerate shortly after adult emergence. Conventional electron microscopy demonstrates that this muscle is innervated by at least one axon containing clear vesicles and two axons containing dense-cored vesicles. Electronmicroscopical immunocytochemistry shows that the LKIR axon is one of these two axons with dense-cored vesicles and that it forms terminals on the sarcolemma of its target muscle. The abdominal LKIR neurons appear to survive metamorphosis. In the adult fly, the efferent abdominal LKIR neurons innervate the spiracles, the heart, and neurohemal regions of the abdominal wall. In the crane fly larva, dorso-medial and ventrolateral LKIR cell bodies are located in both thoracic and abdominal ganglia of the ventral nerve cord. As in the larvae of the other flies, the abdominal ventrolateral LKIR neurons form efferent axons. However, in the crane fly larva there are two pairs of efferent LKIR neurons in each of the abdominal ganglia and their peripheral targets include neurohemal regions of the dorsal transverse nerves. An additional difference is that in the crane fly, a caudal pair of LKIR axons originating from the penultimate pair of dorso-median LKIR cells in the terminal ganglion innervate the hindgut.  相似文献   

17.
Four tachykinin-related peptides, locustatachykinin 1–4 (LomTK 1–4) are distributed in interneurons throughout the central nervous system of the locust Locusta migratoria and may have important roles as neurotransmitters or neuromodulators. In search of the central actions of LomTKs, we analyzed the response of the efferent dorsal unpaired median (DUM) neurons in the locust metathoracic ganglion. Immunocytochemistry, using an antiserum against LomTK 1, combined with intracellular filling of efferent DUM neurons with Lucifer yellow, revealed that LomTK-immunoreactive fibers are in close proximity to dendritic arborizations of the DUM neurons. Hence, LomTKs may act on DUM neurons by releasing locally in the metathoracic ganglion. Intracellular recordings were made from somata of DUM neurons, and LomTKs were either bath-applied to an isolated metathoracic ganglion or pressure-ejected onto the DUM neuron soma. LomTK 1 at concentrations of 0.1 mM–0.1 μM caused a relatively slow, reversible depolarization with a subsequent increase in the frequency of action potential firing. Amino-terminally truncated forms of LomTK 1 were applied to DUM neurons. The heptapeptide [3–9]-LomTK 1 had a substantially reduced activity, and bioactivity was lost after further truncation. Spantide 1, an antagonist of mammalian tachykinin receptors, reversibly blocked the effect of LomTK 1. The effect of LomTK 1 was clearly reduced in the presence of GDP-β-S, a stable analog of GDP that inactivates G-proteins. The action of LomTK 1 was potentiated by both IBMX and theophylline, two cyclic AMP (cAMP) phosphodiesterase inhibitors. The action of LomTK 1 was mimicked by pressure-ejecting 8-bromo-cAMP, a membrane permeable analog of cAMP, and by forskolin, an adenylate cyclase activator. Furthermore, cAMPS, a blocker of protein kinase A activity, reduced the effect of LomTK 1. These findings indicate that cAMP is involved in mediating DUM neuron depolariztion. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 297–315, 1997  相似文献   

18.
Modified protocols for cobalt-filling and silver intensification of neurons in the larval and adult stages of the moth, Manduca sexta, have led to improved neuronal visualization and minimal background staining. In particular, long distance projecting multisegmental in-terneurons. originating in the pterothoracic or terminal abdominal ganglion, were best visualized when a cobalt:lysine complex was used to fill hemi-connectives for several days at 4 C. Ganglia closest to the placement of tracer, which became flooded with cobalt:lysine during the filling period. were removed from the insect. This step eliminated the artifactual filling of neurons that may have taken up the tracer from such pooled regions. This led to a more accurate assessment of whether a multisegmental interneuron projected through the full length of nerve cord to the original site of tracer placement. The protocol for light insensitive silver intensification of cobalt-filled neurons was modified to include an important pH adjustment. NaOH was used to alter the pH of the protective colloid, sodium tungstate, to 10.4 or greater in solution. Especially in larvae. our techniques produced intensely stained cobalt-filled neurons within ganglia that remained transparent and relatively free of nonspecific silver deposition.  相似文献   

19.
Octopaminergic dorsal unpaired median (DUM) neurons of locust thoracic ganglia are important components of motor networks and are divided into various sub-populations. We have examined individually stained metathoracic DUM neurons, their dendritic projection patterns, and their relationship to specific architectural features of the metathoracic ganglion, such as longitudinal tracts, transverse commissures, and well-defined sensory neuropils. The detailed branching patterns of individually characterized DUM neurons of various types were analyzed in vibratome sections in which architectural features were revealed by using antibodies against tubulin and synapsin. Whereas DUM3,4,5 and DUM5 neurons (the group innervating leg and "non-wing-power" muscles) had many ventral and dorsal branches, DUM1 and DUM3,4 neurons (innervating "wing-power" muscles) branched extensively only in dorsal areas. The structure of DUM3 neurons differed markedly from that of the other DUM neurons examined in that they sent branches into dorsal areas and had differently structured side branches that mostly extended laterally. The differences between the branching patterns of these neurons were quantified by using currently available new reconstruction algorithms. These structural differences between the various classes of DUM neurons corresponded to differences in their function and biophysical properties.  相似文献   

20.
Pigment‐dispersing factor (PDF) is a neuropeptide that has been indicated as a likely output signal from the circadian clock neurons in the brain of Drosophila. In addition to these brain neurons, there are PDF‐immunoreactive (PDFI) neurons in the abdominal ganglia of Drosophila and other insects; the function of these neurons is not known. We have analyzed PDFI neurons in the abdominal ganglia of the locust Locusta migratoria. These PDFI neurons can first be detected at about 45% embryonic development and have an adult appearance at about 80%. In each of the abdominal ganglia (A3–A7) there is one pair of lateral PDFI neurons and in each of the A5–A7 ganglia there is additionally a pair of median neurons. The lateral neurons supply varicose branches to neurohemal areas of the lateral heart nerves and perisympathetic organs, whereas the median cells form processes in the terminal abdominal ganglion and supply terminals on the hindgut. Because PDF does not influence hindgut contractility, it is possible that also these median neurons release PDF into the circulation. Release from one or both the PDFI neuron types was confirmed by measurements of PDF‐immunoreactivity in hemolymph by enzyme immunoassay. PDF applied to the terminal abdominal ganglion triggers firing of action potentials in motoneurons with axons in the genital nerves of males and the 8th ventral nerve of females. Because this action is blocked in calcium‐free saline, it is likely that PDF acts via interneurons. Thus, PDF seems to have a modulatory role in central neuronal circuits of the terminal abdominal ganglion that control muscles of genital organs. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 19–41, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号