首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M A Ator  J Stubbe 《Biochemistry》1985,24(25):7214-7221
Sodium borohydride or ethanethiol protects the Escherichia coli ribonucleoside-diphosphate reductase (RDPR) from inactivation by 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP). Incubation of [3'-3H]ClUDP with RDPR in the presence of NaBH4 allowed trapping of [3H]-2'-deoxy-3'-ketouridine 5'-diphosphate. Degradation of the reduced ketone by a combination of enzymatic and chemical methods indicated that the hydrogen originally present in the 3'-position of ClUDP is transferred to the beta-face of the 2'-position of 2'-deoxy-3'-keto-UDP. RDPR therefore catalyzes a net 1,2 hydrogen shift. Incubation of RDPR with ClUDP in the presence of ethanethiol allowed trapping of 2-methylene-3(2H)-furanone, the species responsible for inactivation of RDPR. Trapped 2-[(ethylthio)methyl]-3(2H)-furanone was identical by 1H NMR spectroscopy with material synthesized chemically. Both subunits of the enzyme are covalently radiolabeled in the reaction of RDPR with [5'-3H]ClUDP. Studies with [3'-3H]ClUDP and prereduced RDPR in the absence of a reductant and with oxidized RDPR indicated that the redox-active thiols of the B1 subunit are not involved in inactivation of the enzyme by ClUDP.  相似文献   

2.
Fluorinated analogs of 2'- and 3'-deoxy-5'-methylthioadenosine 1-4 caused irreversible inactivation of AdoHcy hydrolase. Based on the ESI-Mass spectra analysis of the inactivated enzyme with the fluorinated analog 1 a mechanism of inactivation is proposed.  相似文献   

3.
Poly (2'-deoxy-2'-fluoroinosinic acid) [ poly(If)] was synthesized by polymerization of 2'-deoxy-2'-fluoroinosine 5'-diphosphate catalyzed by Escherichia coli polynucleotide phosphorylase. Although the UV absorption properties of poly(If) closely resembled those of poly(I), thermal melting curves at Na+ concentrations of 0.15M and 0.75M suggested two ordered structures for poly(If) neutral form. CD psectra taken at 0.15M Na+ concentration showed rather larger amplitudes in both a peak at 273 nm and a trough at 246 nm, suggesting rather strong vertical stacking of bases. When complexed with poly(C), poly(If) forms a double-stranded complex, poly(If).poly(C) which has Tm's higher by 10-20 degrees than those of poly(If).poly(C) measured under the same conditions. The CD spectrum of this complex resembled that of poly(I).poly(C). The effect of the fluorine atom at the 2'-position on thermal stability of polynucleotides is discussed.  相似文献   

4.
Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of [3'-3H]ADP, [3'-H]UDP, and [5-3H] UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of [3'-3H]ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of [beta-32P]ClUDP with the reductase resulted in the production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase (Harris, G., Ator, M., and Stubbe, J. A. (1984) Biochemistry 23, 5214-5225; Ator, M., and Stubbe, J. A. (1985) Biochemistry 24, 7214-7221).  相似文献   

5.
Soybean lipoxygenase-1 is inactivated by micromolar concentrations of the following hydrophobic thiols: 1-octanethiol, 12(S)-mercapto-9(Z)-octadecenoic acid (S-12-HSODE), 12(R)-mercapto-9(Z)-octadecenoic acid (R-12-HSODE), and 12-mercaptooctadecanoic acid (12-HSODA). In each case, inactivation is time-dependent and not reversed by dilution or dialysis. Inactivation requires 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid (13-HPOD), which suggests that it is specific for the ferric form of the enzyme. Lipoxygenase catalyzes an oxygenation reaction on each of the aforementioned thiols, as judged by the consumption of O(2). These reactions also require 13-HPOD. 1-Octanethiol is converted to 1-octanesulfonic acid, which was identified by GC/MS of its methyl ester. The rates of oxygen uptake for R- and S-12-HODE are about 5- and 2.5-fold higher than the rate with 1-octanethiol. The stoichiometries of inactivation imply that inactivation occurs on approximately 1 in 18 turnovers for 12-HSODA, 1 in 48 turnovers for 1-octanethiol, 1 in 63 turnovers for S-12-HSODE, and 1 in 240 turnovers for R-12-HSODE. These data imply that close resemblance to lipoxygenase substrates is not a crucial requirement for either oxidation or inactivation. Under the conditions of our experiments, inactivation was not observed with several more polar thiols: mercaptoethanol, dithiothreitol, L-cysteine, glutathione, N-acetylcysteamine, and captopril. The results imply that hydrophobic thiols irreversibly inactivate soybean lipoxygenase by a mechanism that involves oxidation at sulfur.  相似文献   

6.
A new reactive ADP analogue has been synthesized: 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-diphosphate (2-BDB-TADP). Reaction of ADP with m-chloroperoxybenzoic acid gave ADP 1-oxide, which was treated with NaOH, followed by reaction with carbon disulfide to yield 2-thioadenosine 5'-diphosphate. The final product was synthesized by condensation of 2-thioadenosine 5'-diphosphate with 1,4-dibromobutanedione. Reaction of pig heart NAD-specific isocitrate dehydrogenase with this nucleotide analogue (0.4 mM) causes a time-dependent loss of activity to a limiting value of 75% inactivation. The rate constant for inactivation exhibits a nonlinear dependence on the concentration of 2-BDB-TADP, with kmax = 0.021 min-1 and KI = 0.067 mM. Complete protection against inactivation by 0.2 mM 2-BDB-TADP is provided by ADP + Mn2+, but not by Mn2+ alone, isocitrate, alpha-ketoglutarate, or NAD. Incorporation of 2-BDB-TADP is proportional to the extent of inactivation, reaching 1 mol of reagent/mol of enzyme subunit when the enzyme is maximally inactivated. However, when inactivation is totally prevented by incubation with 2-BDB-TADP in the presence of ADP and Mn2+, 0.5 mol of reagent/mol of subunit is still incorporated, suggesting that inactivation may be attributed to 0.5 mol of reagent/mol of average subunit. In the native enzyme, the Km for total isocitrate is 1.8 mM and is decreased 6-fold to 0.3 mM in the presence of 1 mM ADP, whereas in the modified enzyme, with 25% residual activity, the Km for total isocitrate is about the same in the absence (2.0 mM) or presence (1.8 mM) of ADP. These results indicate that 2-BDB-TADP acts as an affinity label of the ADP allosteric site of NAD-dependent isocitrate dehydrogenase.  相似文献   

7.
Cell growth is reversibly inhibited by the nucleoside analogue, 2'-deoxy-2'-azidocytidine and the inhibition is a result of interference with DNA replication. The 5'-diphosphate of the analogue was earlier shown to specifically inactivate the enzyme ribonucleotide reductase in vitro. However, measurements of the pools of deoxyribonucleoside triphosphates in cells incubated in azidocytidine showed only minor changes which appeared to result from and not to be the cause of the inhibition of DNA replication. The DNA synthesized in polyoma-infected cells after incubation in azidocytidine showed a sedimentation pattern quite different from that seen after inhibition of DNA synthesis with arabinosyl cytosine or hydroxyurea. Experiments with nuclei isolated from azidocytidine-inhibited, polyoma-infected cells indicated (a) that the number of replicating molecules is decreased during the inhibition and (b) that upon incubation of the nuclei there is a rapid synthesis of DNA occurring in a new class of DNA molecules which are at a very early state of replication. Neither the 5'-triphosphate of azidocytidine nor the nucleoside itself inhibit DNA synthesis in vitro in isolated nuclei from polyoma-infected cells and at present the nature of the DNA-synthesis-inhibiting compound acting in the cells after addition of azidocytidine is unknown. Taken together the results suggest that azidocytidine inhibits DNA synthesis at an early stage, possible by blocking the initiation of DNA synthesis at the origin or by interfering with the elongation of newly initiated DNA molecules.  相似文献   

8.
5'-Deoxy-5'-S-allenylthioadenosine 1 and 5'-deoxy-5'-S-propnylthioadenosine 2, derived from adenosine, were prepared. 1 and 2 caused irreversible inactivation of AdoHcy hydrolase. ESI mass spectra analysis of the inactivated enzyme demonstrated that 1 and 2 were type II "mechanism-based" inhibitors.  相似文献   

9.
We report the synthesis of a series of novel 2'-deoxy-2',2'-difluoro-5-halouridines and their corresponding phosphoramidate ProTides. All compounds were evaluated for antiviral activity and for cellular toxicity. Interestingly, 2'-deoxy-2',2'-difluoro-5-iodo- and -5-bromo-uridines showed selective activity against feline herpes virus replication in cell culture due to a specific recognition (activation) by the virus-encoded thymidine kinase.  相似文献   

10.
Human erythrocyte pyruvate kinase was modified with bromopyruvate and the kinetic behavior of the modified enzyme was investigated. When the enzyme was modified with bromopyruvate in the absence of adenosine-5'-diphosphate, phosphoenolpyruvate or fructose-1,6-diphosphate the inactivation followed a pseudo first-order kinetics. The inactivation rate constant, ks, was 1.84 +/- 0.15 min(-1). Kd of the bromopyruvate-enzyme complex was 0.14 +/- 0.03 mM. The presence of adenosine-5'-diphosphate, phosphoenolpyruvate or fructose-1,6-diphosphate in the modification medium or the presence of fructose-1,6-diphosphate in the assay medium resulted in deviation of the inactivation kinetics from pseudo first-order. Phosphoenolpyruvate was better than adenosine-5'-diphosphate for protection against bromopyruvate modification whereas fructose-1,6-diphosphate was ineffective. The modified enzyme showed negative cooperativity in the presence of fructose-1,6-diphosphate whereas in the absence of it no activity was detected.  相似文献   

11.
G Harris  M Ator  J Stubbe 《Biochemistry》1984,23(22):5214-5225
Incubation of 2'-chloro-2'-deoxy[3'-3H]uridine 5'-diphosphate ([3'-3H]ClUDP) with Escherichia coli ribonucleotide reductase (RDPR) and use of thioredoxin-thioredoxin reductase as reductants result in release of 4.7 equiv of 3H2O/equiv of B1 protomer, concomitant with enzyme inactivation. Inactivation is accompanied by the production of 6 equiv of inorganic pyrophosphate [Stubbe, J. A., & Kozarich, J.W. (1980) J. Am. Chem. Soc. 102, 2505-2507] and by the release of uracil as previously shown [Thelander, L., Larsson, A., Hobbs, J., & Eckstein, F. (1976) J. Biol. Chem. 251, 1398-1405]. Reisolation of RDPR by Sephadex chromatography and analysis by scintillation counting indicate that 0.96 equiv of 3H is bound per protomer of the B1 subunit of the inactivated enzyme. Incubation of [5'-3H]ClUDP with RDPR followed by similar analysis indicates that 4.6 mol of 3H is bound per protomer of the B1 subunit of the inactivated enzyme. No 3H2O is released, and 6 equiv of inorganic pyrophosphate is produced during the inactivation. RDPR is protected against inactivation when dithiothreitol (DTT) is used as a reductant in place of thioredoxin-thioredoxin reductase. Incubation of [5'-3H]ClUDP with RDPR and DTT results in the isolation of CHCl3-extractable material that exhibits infrared absorptions at 1710 and 1762 cm-1. The infrared spectrum and the NMR spectrum of the CHCl3-extracted material are very similar to model compounds prepared by the interaction of 2-methylene-3(2H)-furanone with ethanethiol. Incubation of ribonucleoside-triphosphate reductase (RTPR) from Lactobacillus leichmannii with [3'-3H]ClUTP and 3 mM DTT also results in time-dependent 3H2O release concomitant with enzyme inactivation. Reisolation of the inactive protein by Sephadex chromatography followed by radiochemical analysis indicates that 0.4 equiv of 3H is bound covalently per mol of inactivated enzyme. Similar studies with [5'-3H]ClUTP indicate that 2.9 equiv of 3H is bound covalently per mol of inactivated enzyme. No 3H2O is released. High concentrations of DTT protect the enzyme against inactivation. Extraction of the enzymatic reaction mixture with CHCl3 and analysis of the isolated products result in an infrared spectrum and an NMR spectrum remarkably similar to those observed with the E. coli RDPR. Data presented are consistent with the proposal that both the E. coli and L. leichmannii enzymes are able to catalyze the breakdown of the appropriate 2'-chloro-2'-deoxynucleotide to a 3'-keto-2'-deoxynucleotide that can collapse to form the reactive sugar intermediate 2-methylene-3(2H)-furanone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The effect of 5-iodo-2'-deoxyuridine monophosphate (IdUMP), various 5-halogenated-5'-azido-2', 5' -dideoxyuridine derivatives, 2'-deoxy-6-azauridine (AzdUrd), and its halogenated analogs on the ultraviolet sensitization of Escherichia coli thymidylate kinase has been investigated. Only those compounds iodinated in position 5 enhance the rate of ultraviolet inactivation of this enzyme. However, 5'-azido nucleosides with iodo, bromo, chloro, or fluoro substituents in position 5 neither protect nor sensitize thymidylate kinase to ultraviolet inactivation. Thymidine 5'-monophosphate partially protects the enzyme against ultraviolet inactivation either in the presence or absence of ultraviolet-sensitizing iodinated analogs. Magnesium ion does not enhance the ultraviolet inactivation of thymidylate kinase by 5-iodinated nucleoside analogs. The kinatic data support an active site-directed enhancement of the enzyme to ultraviolet inactivation by 5-iodo-2'-deoxyuridine monophosphate, since the concentration of IdUMP required to attain 50% maximal enhancement is 0.24 mM which is in good agreement with its Ki of 0.18 mM. When either [125I]IdUMP or [2-14C]IdUMP was irradiated with the enzyme, both radioactivities were associated with the enzyme, however only with the 14C analog was the amount bound at half-saturation essentially equal to the amount required to inactivate the enzyme by 50%. These data support the hypothesis that the active entity in the enhancement by IdUMP of thymidylate kinase inactivation during ultraviolet irradiation is the uridylate free radical which is formed photochemically from IdUMP. Photochemical studies of 6-azauracil (AzUra), 2'-deoxy-6-azauridine, and 5-iodo-2'-deoxy-6-azauridine (IAzdUrd) were performed. Photolysis of IAzdUrd in the presence of a hydrogen donor yields AzdUrd which upon further photolysis yields the photohydrate. The photohydrate of AzdUrd when incubated in the dark at pH 5.2 is 90% converted back to AzdUrd, whereas the photohydrate of AzUra is only partially (20%) converted to AzUra. The rate of deiodination of IAzdUrd is 2.1-fold greater than that of IdUMP. Although the Ki of IdUMP and IAzdUrd is similar, the increased photosensitivity of the aza analog accounts for the much greater enhancement of ultraviolet inactivation of thymidylate kinase. The ability of a compound to enhance the ultraviolet inactivation of deoxythymidylate kinase is correlated with the potential of the compound to produce a free radical rather than a photohydrate when the enzyme-substrate analog complex is irradiated.  相似文献   

13.
The protected analogue of 2-amnio-6-chloropurine arabinoside (3b) was subjected to reaction with diethylaminosulfur trifluoride (DAST) and subsequently treated with NaOAc in Ac2O/AcOH to give N2, O3', O5'-triacetyl-2'-deoxy-2'-fluoroguanosine (5a). After deacetylation of the sugar moiety and protection of 5'-OH by a 4,4'-dimethoxytrityl group, this nucleoside component was converted to 2'-deoxy-2'-fluoroguanyl-(3',5')-guanosine (6c, GfpG).  相似文献   

14.
F Boulay  P Dalbon  P V Vignais 《Biochemistry》1985,24(25):7372-7379
2-Azidoadenosine 5'-diphosphate (2-azido-ADP) labeled with 32P in the alpha-position was prepared and used to photolabel the nucleotide binding sites of beef heart mitochondrial F1-ATPase. The native F1 prepared by the procedure of Knowles and Penefsky [Knowles, A. F., & Penefsky, H. S. (1972) J. Biol. Chem. 247, 6617-6623] contained an average of 2.9 mol of tightly bound ADP plus ATP per mole of enzyme. Short-term incubation of F1 with micromolar concentrations of [alpha-32P]-2-azido-ADP in the dark in a Mg2+-supplemented medium resulted in the rapid supplementary binding of 3 mol of label/mol of F1, consistent with the presence of six nucleotide binding sites per F1. The Kd relative to the reversible binding of [alpha-32P]-2-azido-ADP to mitochondrial F1 in the dark was 5 microM in the presence of MgCl2 and 30 microM in the presence of ethylenediaminetetraacetic acid. A linear relationship between the percentage of inactivation of F1 and the extent of covalent photolabeling by [alpha-32P]-2-azido-ADP was observed for percentages of inactivation up to 90%, extrapolating to 2 mol of covalently bound [alpha-32P]-2-azido-ADP/mol of F1. Under these conditions, only the beta subunit was photolabeled. Covalent binding of one photolabel per beta subunit was ascertained by electrophoretic separation of labeled and unlabeled beta subunits based on charge differences and by mapping studies showing one major radioactive peptide segment per photolabeled beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
2'-Deoxy-2'-methylene-6-azauridine (5) and 2'-deoxy-2'-methylene-6-azacytidine (8) have been synthesized via a multi-step procedure from 6-azauridine. 2'-Deoxy-2'-methylene-5-azacytidine (14a) and 2'-deoxy-2'-methylene-3-deazaguanosine (19a) and their corresponding alpha-anomers (14b and 19b) have been synthesized by the transglycosylation of 3',5'-O-(1,1,3,3- tetraisopropyldisiloxane-1,3-diyl)-2'-deoxy-2'-methyleneu ridine (12) with silylated 5-azacytosine and silylated N2-palmitoyl-3-deazaguanine, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by separation of the isomers and deprotection of the blocking groups. These compounds were tested for cytotoxicity against B16F10, L1210, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1, HSV-1, and HSV-2.  相似文献   

16.
The reactions of diol dehydratase with 3-unsaturated 1,2-diols and thioglycerol were investigated. Holodiol dehydratase underwent rapid and irreversible inactivation by either 3-butene-1,2-diol, 3-butyne-1,2-diol or thioglycerol without catalytic turnovers. In the inactivation, the Co-C bond of adenosylcobalamin underwent irreversible cleavage forming unidentified radicals and cob(II)alamin that resisted oxidation even in the presence of oxygen. Two moles of 5'-deoxyadenosine per mol of enzyme was formed as an inactivation product from the coenzyme adenosyl group. Inactivated holoenzymes underwent reactivation by diol dehydratase-reactivating factor in the presence of ATP, Mg(2+) and adenosylcobalamin. It was thus concluded that these substrate analogues served as mechanism-based inactivators or pseudosubstrates, and that the coenzyme was damaged in the inactivation, whereas apoenzyme was not damaged. In the inactivation by 3-unsaturated 1,2-diols, product radicals stabilized by neighbouring unsaturated bonds might be unable to back-abstract the hydrogen atom from 5'-deoxyadenosine and then converted to unidentified products. In the inactivation by thioglycerol, a product radical may be lost by the elimination of sulphydryl group producing acrolein and unidentified sulphur compound(s). H(2)S or sulphide ion was not formed. The loss or stabilization of product radicals would result in the inactivation of holoenzyme, because the regeneration of the coenzyme becomes impossible.  相似文献   

17.
2'-Deoxy-2'-azidocytidine-5'-triphosphate was investigated as an inhibitor in two reconstructed enzyme systems which catalyze the replication of two viral DNAs. During replication of the duplex replicative form of phiX174 DNA, DNA polymerase III holoenzyme was weakly inhibited and inhibition was reversed by dCTP. A more pronounced inhibition, not reversed by either dCTP or CTP, was observed during replication of the single-stranded DNA of the bacteriophage G4, a close relative of phiX174. This effect depended on the incorporation of 2'-deoxy-2'-azidocytidine-5'-triphosphate by primase (dnaG protein) which synthesizes a 29-residue RNA primer at the unique origin of bacteriophage G4 DNA replication. Extension of the primer strand, terminated by 2'-deoxy-2'-azidocytidine-5'-triphosphate is then severely inhibited. Primase was also inhibited by the 2'-deoxy-2'-azido derivatives of ATP, GTP, and UTP.  相似文献   

18.
G R Flentke  P A Frey 《Biochemistry》1990,29(9):2430-2436
UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5'-diphosphate chloroacetol (UDC) and uridine 5'-diphosphate bromoacetol (UDB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a KD of 0.110 mM and kinact of 0.84 min-1 at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD+. The inactivation of epimerase by uridine 5'-diphosphate [2H2]chloroacetol proceeds with a primary kinetic isotope effect (kH/kD) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD+ at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD+ is proposed to be the chromophore with lambda max at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction.  相似文献   

19.
S P Salowe  M A Ator  J Stubbe 《Biochemistry》1987,26(12):3408-3416
Ribonucleoside diphosphate reductase (RDPR) from Escherichia coli was completely inactivated by 1 equiv of the mechanism-based inhibitor 2'-azido-2'-deoxyuridine 5'-diphosphate (N3UDP). Incubation of RDPR with [3'-3H]N3UDP resulted in 0.2 mol of 3H released to solvent per mole of enzyme inactivated, indicating that cleavage of the 3' carbon-hydrogen bond occurred in the reaction. Incubation of RDPR with [beta-32P]N3UDP resulted in stoichiometric production of inorganic pyrophosphate. One equivalent of uracil was eliminated from N3UDP, but no azide release was detected. Analysis of the reaction of RDPR with [15N3]N3UDP by mass spectrometry revealed that the azide moiety was converted to 0.9 mol of nitrogen gas per mole of enzyme inactivated. The tyrosyl radical of the B2 subunit was destroyed during the inactivation by N3UDP as reported previously [Sj?berg, B.-M., Gr?slund, A., & Eckstein, F. (1983) J. Biol. Chem. 258, 8060-8067], while the specific activity of the B1 subunit was reduced by half. Incubation of [5'-3H]N3UDP with RDPR resulted in stoichiometric covalent radiolabeling of the enzyme. Separation of the enzyme's subunits by chromatofocusing revealed that the modification was specific for the B1 subunit.  相似文献   

20.
Rapid and efficient syntheses for the preparation of 2'-deoxy-5-vinyluridine and 2'-deoxy-5-vinylcytidine are described starting from nucleoside precursors. Contrary to some previous reports, 2-deoxy-5-vinyluridine has be found to be quite stable under normal laboratory conditions but when tested in animals shows neither toxicity nor anti-leukemic (L1210 cells) or anti-parasitic (Plasmodium berghei) activity. 2'-Deoxy-5-vinylcytidine appears to polymerise readily. It is much less toxic to cell cultures than 2'-deoxy-5'vinyluridine but is almost as active against herpes virus replication (ID50:0.2 microgram/ml) for both type 1 and type 2 herpes virus (selectivity index:225).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号