首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and selective ion-pair liquid chromatography-tandem mass spectrometric method (IP-LC-MS/MS) for the simultaneous determination of amodiaquine (AQ) and its active metabolite, N-desethylamodiaquine (AQm), in human blood has been developed and validated. Pentafluoropropionic acid (PFPA) was applied as ion-pairing reagent in reversed-phase chromatographic separation. The effects of PFPA concentrations and the volume fraction of acetonitrile in the mobile phase on the retention of analytes were investigated on a Venusil MP-C(18) column, and the mobile phase was finally optimized as acetonitrile:water (23:77, v/v) with 0.0667% PFPA in the aqueous phase. The results proved that PFPA as an ion-pairing reagent could provide desirable chromatographic performance in the IP-LC-MS/MS determination of 4-aminoquinoline compounds. Blood samples were protein precipitated with acetonitrile using hydroxychloroquine (OHCQ) as the internal standard. The detection was carried out in multiple reaction monitoring (MRM) mode via positive atmospheric pressure chemical ionization (APCI) interface. The lower limits of quantification were established at 0.150 and 1.50 ng/mL for AQ and AQm, respectively. The validated IP-LC-MS/MS method was applied to a clinical pharmacokinetic study of AQ and AQm in human blood after an oral administration of 600 mg AQ hydrochloride (45 9mg base).  相似文献   

2.
A sensitive, specific and rapid liquid chromatographic/tandem mass spectrometric (LC/MS/MS) assay for the determination of allylestrenol in human plasma was established. Plasma samples were extracted by tert-butyl ether and separated by LC/MS/MS using a Phenomenex Curosil-PFP column (250 mm x 4.6 mm ID, dp 5 microm) with a mobile phase of methanol-water (95:5, v/v). The analytes were monitored with atmospheric pressure chemical ionization (APCI) by selected reaction monitoring (SRM) mode. The linear calibration curves covered a concentration range of 0.04-20.0 ng/mL with lower limit of quantification (LLOQ) at 0.04 ng/mL. The mean extraction recovery of allylestrenol was greater than 81.8%. The intra- and inter-day precisions were less than 1.3% and 3.1% respectively, determined from quality control (QC) samples of three representative concentrations. The method has been successfully applied to determining the plasma concentration of allylestrenol and a clinical pharmacokinetics study in healthy Chinese female volunteers.  相似文献   

3.
A non-aqueous reverse-phase HPLC method, based on two columns in series, has been used to separate the major triacylglycerols (TAGs) from commercial castor oil and to perform either on-line negative ion atmospheric pressure chemical ionisation (APCI), or off-line positive ion matrix-assisted laser desorption ionisation (MALDI)/MS. The resulting Mass Spectra showed chloride-attached TAG molecules [M + CI]- in the case of negative-ion APCI, and sodium-attached TAG molecules [M + Na]+ in the case of positive-ion MALDI. For MALDI time-of-flight (TOF)/MS, a liquid binary matrix system consisting of sodium ferrocyanide and glycerol was applied, resulting in excellent TAG sensitivity, which was necessary for the determination of trace amounts of TAGs in castor oil. Both techniques allowed unambiguous molecular mass determination of the intact TAG molecules with no thermal degradation. Furthermore, seamless post source decay (PSD) fragment ion analysis by means of a curved field reflector TOF mass spectrometer allowed the determination of the fatty acid composition of each individual TAG. Castor oil contained eight different TAGs which were successfully determined by both APCI and MALDI techniques. In each TAG, at least two units of 12-hydroxy-9-octadecenoic acid (ricinoleic acid) were present. The following fatty acids were determined by seamless PSD fragment ion analysis and APCI/MALDI molecular mass determination as TAG substructures: ricinoleic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, dihydroxy stearic acid and eicosenoic acid. Triricinolein was the dominating TAG.  相似文献   

4.
The fatty acid composition of Shewanella pealeana was determined by the analysis of fatty acid methyl esters via gas chromatography-mass spectrometry (GC-MS) and fatty acid 2-oxo-phenylethyl esters via high-performance liquid chromatography-mass spectrometry (LC-MS) combined with ultra violet (UV) detection. There was good agreement between the percentage composition of components determined by GC-MS and LC-UV analyses. However, LC-MS analysis using Atmospheric Pressure Chemical Ionization (APCI) demonstrated dramatically enhanced detection of unsaturated fatty acid 2-oxo-phenylethyl esters. The degree of enhancement was proportional to the degree of unsaturation. Tests with a pure polyunsaturated fatty acid (PUFA) standard gave an absolute detection limit in full scan mode of 200 pg. In samples, the selectivity of MS over UV gave a significantly lower detection limit due to lack of chemical interferences. In 'Selected Reaction Monitoring' (SRM) mode, the detection limit was 5 pg. This was essentially independent of whether the sample is a standard or complex mixture of fatty acids. Tandem mass spectrometry was used to support structural information and to enhance the ability to target specific fatty acids. Several PUFAs which were not evident from GC-MS analysis were detected and identified by APCI LC-MS, including some rare or novel PUFAs from S. pealeana and a menhaden oil standard. Detailed analysis of bacterial fatty acid composition by either GC-MS or APCI LC-MS is highly preferable to analysis systems based solely on retention time identification.  相似文献   

5.
The metabolism of fatty acids, such as arachidonic acid (AA) and linoleic acid (LA), results in the formation of oxidized bioactive lipids, including numerous stereoisomers1,2. These metabolites can be formed from free or esterified fatty acids. Many of these oxidized metabolites have biological activity and have been implicated in various diseases including cardiovascular and neurodegenerative diseases, asthma, and cancer3-7. Oxidized bioactive lipids can be formed enzymatically or by reactive oxygen species (ROS). Enzymes that metabolize fatty acids include cyclooxygenase (COX), lipoxygenase (LO), and cytochromes P450 (CYPs)1,8. Enzymatic metabolism results in enantioselective formation whereas ROS oxidation results in the racemic formation of products.While this protocol focuses primarily on the analysis of AA- and some LA-derived bioactive metabolites; it could be easily applied to metabolites of other fatty acids. Bioactive lipids are extracted from cell lysate or media using liquid-liquid (l-l) extraction. At the beginning of the l-l extraction process, stable isotope internal standards are added to account for errors during sample preparation. Stable isotope dilution (SID) also accounts for any differences, such as ion suppression, that metabolites may experience during the mass spectrometry (MS) analysis9. After the extraction, derivatization with an electron capture (EC) reagent, pentafluorylbenzyl bromide (PFB) is employed to increase detection sensitivity10,11. Multiple reaction monitoring (MRM) is used to increase the selectivity of the MS analysis. Before MS analysis, lipids are separated using chiral normal phase high performance liquid chromatography (HPLC). The HPLC conditions are optimized to separate the enantiomers and various stereoisomers of the monitored lipids12. This specific LC-MS method monitors prostaglandins (PGs), isoprostanes (isoPs), hydroxyeicosatetraenoic acids (HETEs), hydroxyoctadecadienoic acids (HODEs), oxoeicosatetraenoic acids (oxoETEs) and oxooctadecadienoic acids (oxoODEs); however, the HPLC and MS parameters can be optimized to include any fatty acid metabolites13.Most of the currently available bioanalytical methods do not take into account the separate quantification of enantiomers. This is extremely important when trying to deduce whether or not the metabolites were formed enzymatically or by ROS. Additionally, the ratios of the enantiomers may provide evidence for a specific enzymatic pathway of formation. The use of SID allows for accurate quantification of metabolites and accounts for any sample loss during preparation as well as the differences experienced during ionization. Using the PFB electron capture reagent increases the sensitivity of detection by two orders of magnitude over conventional APCI methods. Overall, this method, SID-LC-EC-atmospheric pressure chemical ionization APCI-MRM/MS, is one of the most sensitive, selective, and accurate methods of quantification for bioactive lipids.  相似文献   

6.
Fatty acid composition and the classification of the Porifera   总被引:1,自引:0,他引:1  
The fatty acid content of 30 species of Porifera, including samples of Hexactinellida and Lithistida for which no fatty acid data previously existed, have been examined. The sponges are unique among animal phyla in diversity of fatty acids with generally high levels of long chain fatty acids (LCFAs; C24–30, high unsaturation (mainly polyunsaturation), high incidence of branched and odd chain fatty acids. Further, peculiarities in proportions of individual acids of particular chain lengths distinguish the phylum. Hexactinellid fatty acid traits corresponded closely to those of Demospongiae while the calcareous species was atypical in exhibiting low levels of LCFAs and unsaturation. Seasonal and geographical influences on components of the fatty acid profile limit the extent to which this information can be utilized in a chemotaxonomic sense.  相似文献   

7.
8.
The on-line combination of high-performance liquid chromatography with mass spectrometry (HPLC–MS) has become a powerful tool for trace analysis thanks to the developments in interface techniques. However, non-volatile salts such as ion-pairing reagents are considered to be incompatible with HPLC–MS systems; they cause drops in analyte signals because of contamination of mass analyzers and also because of blocking of the capillary transferring ions from atmospheric pressure to the vacuum manifold. In this work, a new type of ion-pairing reagent, di-n-butylammonium acetate (DBA), was evaluated for use in HPLC–MS. DBA did not cause these problems to HPLC–MS systems; a possible explanation might be that DBA decomposed to volatile compounds under APCI conditions. In addition, DBA was very useful for obtaining sharp peaks, which resulted in high sensitivity. With this ion-pairing reagent, we developed a procedure for the measurement of five (including internal standard) anticoagulant rodenticides in whole blood and urine samples by SIM detection of [M−H] ions. Calibration range, recoveries and precision of the method were examined; detection limits as low as 1–5 ng/ml blood sample or 0.5–2.5 ng/ml urine sample were achieved.  相似文献   

9.
A comparison of the analytical performance of atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) for the quantitative determination of six urinary phytoestrogens (daidzein, O-desmethylangolensin, equol, enterodiol, enterolactone and genistein) by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) is presented here. Both APCI and ESI were suitable for the analysis of these compounds; however, ESI did improve measurement imprecision and sensitivity in certain cases. Method imprecision (between-run coefficients of variation [CVs] from duplicate analysis of three quality control [QC] urine pools across 20 runs) was 5.6-12% for ESI, as opposed to 5.3-30% for APCI. At low concentrations (3-60 ng/mL, analyte dependent) imprecision was lower with ESI, whereas both techniques were generally commensurate at high concentrations (200-1000 ng/mL, analyte dependent). Method accuracy (spiked analyte recovery from the QC pools) was comparable between techniques: 86-114% for ESI; 95-105% for APCI. Limits of detection (LODs) were equivalent or better with ESI compared to APCI, with the most significant LOD improvement observed for equol (ESI: 0.3 ng/mL; APCI: 2.7 ng/mL). This translated into a substantial increase in equol detection frequency (% of sample results above LOD) within a random patient sample subset (98% for ESI, compared to 81% for APCI, n=378). Correlation (Pearson) and agreement (Deming regression, Bland-Altman bias) between ESI and APCI results in the patient subset was better in cases where imprecision and sensitivity was similar for both techniques (daidzein, enterolactone, genistein: r=0.993-0.998; slope=0.98-1.03; bias=-4.2 to -0.8%); correlation and/or agreement was poorer for analytes, where APCI imprecision and sensitivity were inferior (equol, O-desmethylangolensin, enterodiol). Baring significant factors arising from differences in ionization source design, these observations suggest that ESI is more appropriate for urinary biomonitoring of these compounds by LC-MS/MS.  相似文献   

10.
Protodioscin (3-O-[alpha-L-rhamnopyranosyl-(1-->2)-{alpha-L-rhamnopyranosyl-(1-->4)}-beta-D-glucopyranosyl]-26-O-[beta-D-glucopyranosyl]-(25 R)-furost-5-ene-3 beta,26-diol) is a naturally occurring saponin present in many oriental vegetables and traditional medicinal plants, which has been associated with potent bioactivity. However, there is no specific and sensitive assay for quantitative determination of protodioscin in biological samples. We have established a rapid, sensitive and selective LC-ESI-MS/MS method to measure protodioscin in rat plasma and investigated the pharmacokinetics of protodioscin after intravenous administrations. Plasma samples were prepared after plasma protein precipitation, and a aliquot of the supernatant was injected directly onto an analytical column with a mobile phase consisted of acetonitrile-water-formic acid (80:20:0.1, v/v/v). Analytes were detected with a LC-ESI-MS/MS system in positive selected multiple reaction-monitoring mode. The lower limit of quantification (LLOQ) was 20.0 ng/mL and a linear range of 20-125,000 ng/mL. The intra- and inter-day relative standard deviation (R.S.D.) across three validation runs over the entire concentration range was <8.0%. Accuracy determined at three concentrations (50, 5000 and 50,000 ng/mL for protodioscin) ranged from 0.2 to 1.8% as terms of relative error (R.E.). Each plasma sample was chromatographed within 3.5 min. This LC-ESI-MS/MS method allows accurate, high-throughput analysis of protodioscin in small amounts of plasma.  相似文献   

11.
Liquid chromatography-mass spectrometry (LC-MS) using atmospheric pressure ionization is drastically different from hitherto available analytical methods used to detect polar analytes. The electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources of MS have contributed to the advancement of LC-MS and LC-MS/MS techniques for the analysis of biological samples. However, one major obstacle is the weak ionization of some analytes in the ESI and APCI techniques. In this review, we introduce high-sensitivity methods using several derivatization reagents for ionization enhancement. We also present an overview of chemical derivatization methods that have been applied to small molecules, such as amino acids and steroids, in biological samples.  相似文献   

12.
A method is described for the enrichment of very-long-chain polyunsaturated fatty acids (VLCPUFAs) from total fatty acids of Amphidinium carterae and their identification as picolinyl esters by means of microbore liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (LC-MS/APCI). The combination of argentation TLC and LC-MS/APCI was used to identify unusual VLCPUFAs up to hexatriacontaoctaenoic acid. Two acids, 36:7n-6 and 36:8n-3, were also synthesized to unambiguously confirm their structure. The possibilities of VLCPUFAs biosynthesis are proposed.  相似文献   

13.
Abstract

This study was conducted to determine the effects of long chain fatty acids (LCFAs) on triacylglycerol (TAG) content, as well as on genes associated with lipid synthesis and fatty acid composition in bovine satellite cells. Both saturated (palmitic and stearic) and unsaturated (oleic and linoleic) fatty acids stimulated the TAG accumulation at a concentration of 100?µM and oleate increased it significantly more than stearate and palmitate. The results revealed that the lipid droplet formation was markedly stimulated by linoleate and oleate at 100?µM. Compared to control, the expressions of adipose triglyceride lipase, carnitine acyltransferase 1 and the fatty acid translocase 36 were upregulated by LCFAs. All the fatty acids also significantly increased diacylglycerol acyltransferase 2 than the untreated control (p?<?0.05). The monounsaturated fatty acids significantly increased (p?<?0.05) in response to oleate and linoleate compared to the control as did the polyunsaturated fatty acids (p?<?0.05), in addition to stearate, linoleate and oleate. In contrast, saturated fatty acids were significantly decreased in the oleate and linoleate-treated groups. The study results contribute to our enhanced understanding of LCFAs’ regulatory roles on the bovine cell lipid metabolism.  相似文献   

14.
Allyl and 3-butenyl isothiocyanate with two nitriles and an epithiobutane derivative were estimated. These glucosinolate degradation products were found in callus, seed, and dried plant but not in suspension cultures. Seventeen alkanes and five fatty acids were also identified and estimated in plant material and cultures. 4-Methylthiobutyl and 2-phenylethyl isothiocyanates were also detected in seeds. Incubation of cultures at 4° increased levels of the fatty acids but not isothiocyanates.Abbreviations GC Gas chromatography - MS Mass Spectroscopy - 2,4-D 2,4-Dichlorophenoxy acetic acid - NAA - Naphthalene acetic acid  相似文献   

15.
The F-domain of rat HNF-4alpha1 has a crucial impact on the ligand binding affinity, ligand specificity and secondary structure of HNF-4alpha. (i) Fluorescent binding assays indicate that wild-type, full-length HNF-4alpha (amino acids 1-455) has high affinity (Kd=0.06-12 nm) for long chain fatty acyl-CoAs (LCFA-CoA) and low affinity (Kd=58-296 nm) for unesterified long chain fatty acids (LCFAs). LCFA-CoA binding was due to close molecular interaction as shown by fluorescence resonance energy transfer (FRET) from full-length HNF-4alpha tryptophan (FRET donor) to bound cis-parinaroyl-CoA (FRET acceptor), which yielded an intermolecular distance of 33 A, although no FRET to cis-parinaric acid was detected. (ii) Deleting the N-terminal A-D-domains, comprising the AF1 and DNA binding functions, only slightly affected affinities for LCFA-CoAs (Kd=0.9-4 nm) and LCFAs (Kd=93-581 nm). (iii) Further deletion of the F-domain robustly reduced affinities for LCFA-CoA and reversed ligand specificity (i.e. high affinity for LCFAs (Kd=1.5-32 nm) and low affinity for LCFA-CoAs (Kd=54-302 nm)). No FRET from HNF-4alpha-E (amino acids 132-370) tryptophan (FRET donor) to bound cis-parinaroyl-CoA (FRET acceptor) was detected, whereas an intermolecular distance of 28 A was calculated from FRET between HNF-4alpha-E and cis-parinaric acid. (iv) Circular dichroism showed that LCFA-CoA, but not LCFA, altered the secondary structure of HNF-4alpha only when the F-domain was present. (v) cis-Parinaric acid bound to HNF-4alpha with intact F-domain was readily displaceable by S-hexadecyl-CoA, a nonhydrolyzable thioether analogue of LCFA-CoAs. Truncation of the F-domain significantly decreased cis-parinaric acid displacement. Hence, the C-terminal F-domain of HNF-4alpha regulated ligand affinity, ligand specificity, and ligand-induced conformational change of HNF-4alpha. Thus, characteristics of F-domain-truncated mutants may not reflect the properties of full-length HNF-4alpha.  相似文献   

16.
While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity and metabolic syndrome. Consequently, mammals evolved fatty acid-binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15-member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP or FABP1), is expressed in very high levels (2–5% of cytosolic protein) in liver as well as in intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair fed a high-fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity.  相似文献   

17.
桐油脂肪酸组成分析和甘三酯结构判定   总被引:1,自引:0,他引:1  
采用2-氨基-2-甲基丙醇(2-amino-2-methylpropanol,AMP)衍生化、GC/MS法分析桐油的脂肪酸组成:软脂酸3.41%,硬脂酸3.71%,油酸7.07%,亚油酸7.51%,亚麻酸1.31%,十八碳共轭三烯酸73.19%,未定出成分3.80%;采用RP—HPLC/APCI—MS法分离桐油中的甘三酯组分,并根据特定甘三酯断裂生成的特征甘二酯离子的丰度比初步判定主要甘三酯的结构。  相似文献   

18.
The purpose of this study was to investigate the effects of long-chain fatty acids (LCFAs) on AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylation and beta-oxidation in skeletal muscle. L6 rat skeletal muscle cells were exposed to various concentrations of palmitate (1-800 microM). Subsequently, ACC and AMPK phosphorylation and fatty acid oxidation were measured. A 2-fold increase in both AMPK and ACC phosphorylation was observed in the presence of palmitate concentrations as low as 10 microM, which was also accompanied by a significant increase in fatty acid oxidation. The effect of palmitate on AMPK and ACC phosphorylation was dose-dependent, reaching maximum increases of 3.5- and 4.5-fold, respectively. Interestingly, ACC phosphorylation was coupled with AMPK activation at palmitate concentrations ranging from 10 to 100 microM; however, at concentrations >200 microM, ACC phosphorylation and fatty acid oxidation remained high even after AMPK phosphorylation was completely prevented by the use of a selective AMPK inhibitor. This indicates that LCFAs regulate ACC activity by AMPK-dependent and -independent mechanisms, based on their abundance in skeletal muscle cells. Here, we provide novel evidence that the AMPK/ACC pathway may operate as a mechanism to sense and respond to the lipid energy charge of skeletal muscle cells.  相似文献   

19.
Rezanka T  Sigler K 《Phytochemistry》2006,67(9):916-923
A method is described for the enrichment of very long chain fatty acids (VLCFAs) from total fatty acids of sugar cane wax and their identification as picolinyl esters by means of liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (LC-MS/APCI). The method is based on the use of preparative reversed phase HPLC of 100 mg amounts and their subsequent identification by microbore APCI LC-MS. The combination of these two techniques was used to identify unusual saturated VLCFAs up to C(50).  相似文献   

20.
A method is described for the enrichment of odd very-long-chain polyunsaturated fatty acids (VLCPUFAs) by means of RP-HPLC and argentation TLC from total fatty acids of the dinoflagellate A. carterae and their identification as picolinyl esters by means of microbore liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (LC-MS/APCI). The combination of argentation TLC and LC-MS/APCI was used to identify rare and unusual odd VLCPUFAs up to nonacosahexaenoic acid. Two acids, (allZ)-nonacosa-11,14,17,20,23-pentaenoic acid (29:5n-6) and (allZ)-nonacosa-11,14,17,20,23,26-hexaenoic acid (29:6n-3), were synthesized for the first time to unambiguously confirm their structure. Possible biosynthetic pathways for odd VLCPUFAs are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号