首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the slow potential and spikes of second-order ocellar neurons of the cockroach, Periplaneta americana, was studied. The stimulus was a sinusoidally modulated light with various mean illuminances. A solitary spike was generated at the depolarizing phase of the modulation response. Analysis of the relationship between the amplitude/frequency of voltage modulation and the rate of spike generation showed that (a) the spike initiation process was bandpass at approximately 0.5-5 Hz, (b) the process contained a dynamic linearity and a static nonlinearity, and (c) the spike threshold at optimal frequencies (0.5-5 Hz) remained unchanged over a mean illuminance range of 3.6 log units, whereas (d) the spike threshold at frequencies of less than 0.5 Hz was lower at a dimmer mean illuminance. The voltage noise in the response was larger and the mean membrane potential level was more positive at a dimmer mean illuminance. Steady or noise current injection during sinusoidal light stimulation showed that (a) the decrease in the spike threshold at a dimmer mean illuminance was due to the increase in the noise variance: the noise had facilitatory effects on the spike initiation; and (b) the change in the mean potential level had little effect on the spike threshold. We conclude that fundamental signal modifications occur during the spike initiation in the cockroach ocellar neuron, a finding that differs from the spike initiation process in other visual systems, including Limulus eye and vertebrate retina, in which it is presumed that little signal modification occurs at the analog-to-digital conversion process.  相似文献   

2.
Summary Single neuron responses to sinusoidally amplitude modulated (SAM) signals were studied in the inferior colliculus of the horseshoe bat,Rhinolophus rouxi.57% of the neurons responded to SAM stimuli with periodical discharges synchronized to the modulation cycle. The proportion of cells driven by amplitude modulated signals was independent of the best frequency of the neurons. Best modulation frequencies were at or below 100 Hz in about 70% of the neurons. Synchronized activity could be elicited by modulation frequencies up to 400 Hz.Best SAM responses were observed at stimulus intensities 10 dB above threshold. Generally the BMF of a neuron did not change with intensity. The BMF decreased with decreasing modulation depth of the amplitude modulation.A trend for a topographical organization of neurons according to best modulation frequencies was detected. The results did not reveal any significant specialization of the bat's auditory system for coding of amplitude modulations as compared to other mammals.Abbreviations BF best frequency - BMF best modulation frequency - CF constant frequency - FM frequency modulation - IC inferior colliculus - SAM sinusoidal amplitude modulation - SFM sinusoidal frequency modulation  相似文献   

3.
Recently, physical exercise has been shown to significantly alter neurochemistry and neuronal function and to increase neurogenesis in discrete brain regions. Although we have documented that physical exercise leads to molecular changes in the posterior hypothalamic area (PHA), the impact on neuronal activity is unknown. The purpose of the present study was to determine whether neuronal activity in the PHA is altered by physical exercise. Spontaneously hypertensive rats (SHR) were allowed free access to running wheels for a period of 10 wk (exercised group) or no wheel access at all (nonexercised group). Single-unit extracellular recordings were made in anesthetized in vivo whole animal preparations or in vitro brain slice preparations. The spontaneous firing rates of PHA neurons in exercised SHR in vivo were significantly lower (8.5 +/- 1.6 Hz, n = 31 neurons) compared with that of nonexercised SHR in vivo (13.7 +/- 1.8 Hz, n = 38 neurons; P < 0.05). In addition, PHA neurons that possessed a cardiac-related rhythm in exercised SHR fired significantly lower (6.0 +/- 1.8 Hz, n = 11 neurons) compared with nonexercised SHR (12.1 +/- 2.4 Hz, n = 18 neurons; P < 0.05). Similarly, the spontaneous in vitro firing rates of PHA neurons from exercised SHR were significantly lower (3.5 +/- 0.3 Hz, n = 67 neurons) compared with those of nonexercised SHR (5.6 +/- 0.5 Hz, n = 58 neurons; P < 0.001). Both the in vivo and in vitro findings support the hypothesis that physical exercise can lower spontaneous activity of neurons in a cardiovascular regulatory region of the brain. Thus physical exercise may alter central neural control of cardiovascular function by inducing lasting changes in neuronal activity.  相似文献   

4.
The topography of the largest ocellar interneurons in the brain of the cockroach Periplaneta americana was shown with cobalt chloride. The ocellar interneurons coloured from one nerve are confined to the ipsilateral side of the pars intercerebralis; their number and their position vary along the ocellar tract. If two ocellar nerves colour from the ocelli, the interneurons show a bilateral symmetry. Only one interneuron runs through the brain between each ocellus and the contralateral connective to the mesothoracic ganglion. When the injection of cobalt chloride is done without any current from the ocellus, the second-order ocellar neurons only are coloured, but when it is done using a current the higher order interneurons are also coloured.Axonal iontophoresis from a cervical connective back into the brain, has revealed that the cellular body of the contralateral higher-order interneuron is situated in the postero-ventral part of the protocerebrum. This pericaryon with a long cellular process is the largest of the ocellar ones (Ø = 50–60 μm). These results are discussed in relation to the ocellar and visual pathways of Schistocerca.  相似文献   

5.
6.
Rowell CH 《Tissue & cell》1991,23(2):271-276
1. Thirty-seven pairs of mesothoracic interneurons respond selectively to visual or ocellar stimuli corresponding to deviations from course in flight, expressed as angular rotation around the three spatial axes. 2. Sensitivities to roll and yaw are very strongly associated. All interneurons showing a directional preference for yaw rotations showed the same preference for roll rotations. A few roll-sensitive cells were not directionally sensitive to yaw. Some interneurons respond exclusively to pitch rotations, most to both pitch and roll/yaw. 3. Approximately equal numbers of interneurons prefer pitch up, pitch down, roll/yaw to the ipsilateral side and roll/yaw to the contralateral side. All four possible combinations of pitch (up or down) with roll/yaw (ipsilateral or contralateral) preferences occur with equal probability. 4. No relationship between neuronal structure and directional properties could be discerned. 5. The average latency of the ocellar EPSPs recorded in the interneurons is not significantly different from the average latency of the ocellar spike in the descending neurons (at the same temperature and in the same ganglion). The average ocellar IPSP latency is 8.5 ms longer. The data support the hypothesis that most EPSPs are derived from monosynaptic inputs from the DNs, and most IPSPs from polysynaptic inputs. A few EPSPs are also derived from polysynaptic inputs. 6. Most of these neurons are sensitive to wind, at least some directionally so, in a manner functionally compatible with their visual or ocellar directionality, and most are excited. Two neurons respond to movement of small objects in the visual field, and 5 to high frequency sound.  相似文献   

7.
The differential actions of 5-hydroxytryptamine (5-HT) (100 microM) were investigated on isolated motoneurons, interneurons, and primary sensory neurons from the lamprey spinal cord using patch-clamp techniques. Application of 5-HT did not evoke membrane currents in any of the spinal neurons tested (n = 62). However, in most motoneurons and interneurons (15 of 18), 5-HT produced a small depolarization (2-6 mV), which was not accompanied by a change in input resistance. In the remaining motoneurons and interneurons (3 of 18), 5-HT induced a large depolarization (up to 10-20 mV) and a decrease in input resistance of 20-60%. In most sensory neurons (dorsal sensory cells, DSCs), 5-HT evoked a short-lasting, low-amplitude depolarization, followed by a long-lasting hyperpolarization of 2-7 mV. The DSCs showed no significant change in input resistance to 5-HT application (n = 8). Spike afterpolarization were also differentially modulated by 5-HT. In motoneurons and interneurons, 5-HT decreased the amplitude of the afterhyperpolarization following the action potential while increasing the amplitude of the after depolarization. In the DSCs, no significant effect of 5-HT on spike afterpolarization was observed. 5-HT differentially modulated the current induced by application of N-methyl-D-aspartate (NMDA). In motoneurons and interneurons, 5-HT enhanced NMDA-evoked current, while in DSCs, 5-HT decreased this current. These results demonstrate that 5-HT differentially modulates the activity of functionally different groups of spinal neurons. In motoneurons and interneurons, 5-HT enhances excitation by inducing depolarization and decreasing the afterhyperpolatization, while NMDA currents are enhanced. These effects facilitate the appearance of rhythmic discharges in these cells in the presence of NMDA. In primary dorsal sensory cells, 5-HT enhances inhibition by hyperpolarizing the cells and depressing NMDA currents. These differential effects are presumably mediated by different types of 5-HT receptors on these classes of spinal neurons.  相似文献   

8.
Low-frequency respiratory mechanical impedance in the rat   总被引:1,自引:0,他引:1  
A modified forced oscillatory technique was used to determine the respiratory mechanical impedances in anesthetized, paralyzed rats between 0.25 and 10 Hz. From the total respiratory (Zrs) and pulmonary impedance (ZL), measured with pseudorandom oscillations applied at the airway opening before and after thoracotomy, respectively, the chest wall impedance (ZW) was calculated as ZW = Zrs - ZL. The pulmonary (RL) and chest wall resistances were both markedly frequency dependent: between 0.25 and 2 Hz they contributed equally to the total resistance falling from 81.4 +/- 18.3 (SD) at 0.25 Hz to 27.1 +/- 1.7 kPa.l-1 X s at 2 Hz. The pulmonary compliance (CL) decreased mildly, from 2.78 +/- 0.44 at 0.25 Hz to 2.36 +/- 0.39 ml/kPa at 2 Hz, and then increased at higher frequencies, whereas the chest wall compliance declined monotonously from 4.19 +/- 0.88 at 0.25 Hz to 1.93 +/- 0.14 ml/kPa at 10 Hz. Although the frequency dependence of ZW can be interpreted on the basis of parallel inhomogeneities alone, the sharp fall in RL together with the relatively constant CL suggests that at low frequencies significant losses are imposed by the non-Newtonian resistive properties of the lung tissue.  相似文献   

9.
Double-barreled O2 microelectrodes were used to study O2 diffusion and consumption in the superfused drone (Apis mellifera) retina in darkness at 22 degrees C. Po2 was measured at different sites in the bath and retinas. It was found that diffusion was essentially in one dimension and that the rate of O2 consumption (Q) was practically constant (on the macroscale) down to Po2 s less than 20 mm Hg, a situation that greatly simplified the analysis. The value obtained for Q was 18 +/- 0.7 (SEM) microliter O2/cm3 tissue . min (n = 10), and Krogh's permeation coefficient (alpha D) was 3.24 +/- 0.18 (SEM) X 10(-5) ml O1/min . atm . cm (n = 10). Calculations indicate that only a small fraction of this Q in darkness is necessary for the energy requirements of the sodium pump. the diffusion coefficient (D) in the retina was measured by abruptly cutting off diffusion from the bath and analyzing the time-course of the fall in Po2 at the surface of the tissue. The mean value of D was 1.03 +/- 0.08 (SEM) X 10(-5) cm2/s (n = 10). From alpha D and D, the solubility coefficient alpha was calculated to be 54 +/- 4.0 (SEM) microliter O2 STP/cm3 . atm (n = 10), approximately 1.8 times that for water.  相似文献   

10.
A current status of knowledge about high-frequency (140-200 Hz) ripple oscillations in the CA1 hippocampal subfield is summarized and considered in the context of two-stage model of the hippocampal memory processing. A large body of evidence suggests highly-selective recruitment of pyramidal cells and interneurons in the generation of the oscillatory pattern after co-operative sharp-wave-related discharge of CA3 pyramidal neurons. We also discuss a role of transmission via gap junctions in the mechanisms of ripple oscillations as well as their adaptive aminergic (histaminergic) modulation. Patterns of neuronal firing in the hippocampus observed during ripple oscillations reproduce space-dependant neuronal activity from the previous waking period. Together with a data about efficacy of high-frequency stimulation for induction of synaptic modification it points out a role for ripples in the formation of long-term memory. Focal ultra fast ripples (up to 500 Hz) have been shown to participate in the development of temporal lobe epilepsy.  相似文献   

11.
The present study was designed to investigate brain stem responses to manual acupuncture (MA) and electroacupuncture (EA) at different frequencies at pericardial P (5-6) acupoints located over the median nerve. Activity of premotor sympathetic cardiovascular neurons in the rostral ventral lateral medulla (rVLM) was recorded during stimulation of visceral and somatic afferents in ventilated anesthetized rats. We stimulated either the splanchnic nerve at 2 Hz (0.1-0.4 mA, 0.5 ms) or the median nerve for 30 s at 2, 10, 20, 40, or 100 Hz using EA (0.3-0.5 mA, 0.5 ms) or at approximately 2 Hz with MA. Twelve of 18 cells responsive to splanchnic and median nerve stimulation could be antidromically driven from the intermediolateral columns of the thoracic spinal cord, T2-T4, indicating that they were premotor sympathetic neurons. All 18 neurons received baroreceptor input, providing evidence of their cardiovascular sympathoexcitatory function. Evoked responses during stimulation of the splanchnic nerve were inhibited by 49 +/- 6% (n = 7) with EA and by 46 +/- 4% (n = 6) with MA, indicating that the extent of inhibitory effects of the two modalities were similar. Inhibition lasted for 20 min after termination of EA or MA. Cardiovascular premotor rVLM neurons responded to 2-Hz electrical stimulation at P 5-6 and to a lesser extent to 10-, 20-, 40-, and 100-Hz stimulation (53 +/- 10, 16 +/- 2, 8 +/- 2, 2 +/- 1, and 0 +/- 0 impulses/30 stimulations, n = 7). These results indicate that rVLM premotor sympathetic cardiovascular neurons that receive convergent input from the splanchnic and median nerves during low-frequency EA and MA are inhibited similarly for prolonged periods by low-frequency MA and EA.  相似文献   

12.
To evaluate a possible role of ornithine-delta-aminotransferase (EC 2.6.1.13; Orn-T) as a rate-limiting enzyme for the synthesis of transmitter glutamate and gamma-aminobutyric acid (GABA), respectively, its activity and kinetic properties were analyzed in cultured astrocytes as well as in neuronal cultures consisting mainly of glutamatergic neurons (cerebellar granule cells) or GABAergic neurons (cerebral cortex interneurons). For comparison the activity and kinetics of Orn-T were also assayed in mouse brain homogenates. The highest activity of Orn-T was found in astrocytes and in cerebral cortical neurons (5.3 +/- 0.5 and 5.3 +/- 0.4 nmol X mg-1 X min-1, respectively) whereas the activities of Orn-T in cerebellar granule cell cultures and in mouse brain were found to be about half of these values (3.1 +/- 0.3 and 2.8 +/- 0.1 nmol X min-1 X mg-1, respectively). From a kinetic study of Orn-T in the different preparations only a relatively low affinity for the enzyme with respect to ornithine was found in cerebellar granule cells, astrocytes, and whole brain [apparent Km values (at 0.5 mM alpha-ketoglutarate): 4.7 +/- 0.9, 4.3 +/- 2.2, and 6.8 +/- 2.2 mM, respectively] whereas the corresponding Km value for Orn-T in cerebral cortex interneurons was found to be significantly lower (apparent Km: 0.8 +/- 0.3 mM). The enzyme was not found to be inhibited by GABA (range 0.1 - 10 mM) in any of the preparations.  相似文献   

13.
细胞外Ca2+对爪蟾脑片神经元微抑制性突触后电流的调制   总被引:2,自引:0,他引:2  
Wang H  Cai HR 《生理学报》2003,55(5):599-606
应用盲法膜片钳全细胞记录技术,以爪蟾视顶盖神经元微抑制性突触后电流(miniature inhibitory postsyn-aptic currents,mIPSCs)为指标,观察了细胞外Ca^2 对爪蟾脑片神经元突触后mIPSC的调制。结果表明:用细胞外无钙或无钙含乙二醇双乙胺醚-N,N′-四乙酸(EGTA)(200nmol/L—2mmol/L)溶液灌流,均可使mIPSCs的发放频率降低;非特异性钙离子拮抗剂氯化铬(100μmol/L)也可使mIPSCs的频率降低;内质网钙泵抑制剂thapsigargin(TG)以及内质网ryanodine受体(RyR)激动剂ryanodine均可使mIPSCs频率升高,内质网RyR拮抗剂普鲁卡因则可降低mIPSCs的频率;磷脂酶C抑制剂U73122也可降低mIPSCs的频率,对三磷酸肌醇(inositol 1,4,5-triphosphate,IP3)水平有抑制作用的咖啡因亦可显著地降低mIPSCs,甚至完全抑制mIPSCs。从而表明:对突触前神经元及其末梢,细胞外钙离子可通过细胞膜上的钙通道进入细胞内,使细胞内钙浓度升高,突触前神经末梢释放出更多的神经递质。进而可能使突触后mIPSCs的频率增加;突触前细胞内钙储池上的Rya和IP3R均可介导钙从其中释放,并也可使突触前细胞内的钙离子浓度升高,进而可能使突触后mIPSCs的发放频率增加。  相似文献   

14.
Xia BL  Wu ZZ  Li X  Li Q  Li ZW 《生理学报》2001,53(3):205-208
本研究探讨了甲硫-脑啡肽(met-Enk)对ATP-激活电流(IATP)的调制作用.实验在大鼠新鲜分离背根神经节(DRG)神经元上进行.应用全细胞膜片钳技术所记录的IATP为内向电流.在被检测的DRG神经元中,90.0%(45/50)的细胞对ATP有反应.在45个对ATP敏感的细胞中对大部分细胞(29/45)施加met-Enk(10-9~10-5mol/L)也引起一内向电流;少部分细胞(9/45)为外向电流;其余的细胞(7/45)未引起可检测的膜反应.预加met-Enk后IATP明显地被抑制,此种抑制作用为剂量依赖性的.在预加10-9、10-8、10-7、10-6、10-5mol/Lmet-Enk后,IATP的抑制分别为13.2±5.4%(n=5)、39.2±8.6%(n=8)、54.1±8.6%(n=8)、43.3±7.9%(n=7);43.1±7.9%(n=7)(mean±SKM).阿片肽拮抗剂纳洛酮能翻转此种抑制效应.IATP的量-效关系表明,预加met-Enk后曲线明显压低,在浓度为10-3mol/L时IATP下降约25%,而Kd值几乎不变.应用二次钳压技术胞内透析H-9(PKA抑制剂)能取消此种抑制作用.上述结果提示met-Enk对IATP的抑制效应为非竞争性抑制作用,可能是由于阿片受体激活后,经相应的胞内信号转导途径使ATP受体磷酸化所致.  相似文献   

15.
Distribution of blood flow in muscles of miniature swine during exercise   总被引:7,自引:0,他引:7  
The purpose of this study was to determine how the distribution of blood flow within and among the skeletal muscles of miniature swine (22 +/- 1 kg body wt) varies as a function of treadmill speed. Radiolabeled microspheres were used to measure cardiac output (Q) and tissue blood flows in preexercise and at 3-5 min of treadmill exercise at 4.8, 8.0, 11.3, 14.5, and 17.7 km/h. All pigs (n = 8) attained maximal O2 consumption (VO2max) (60 +/- 4 ml X min-1 X kg-1) by the time they ran at 17.7 km/h. At VO2max, 87% of Q (9.9 +/- 0.5 l/min) was to skeletal muscle, which constituted 36 +/- 1% of body mass. Average total muscle blood flow at VO2max was 127 +/- 14 ml X min-1 X 100 g-1; average limb muscle flow was 135 +/- 17 ml X min-1 X 100 g-1. Within the limb muscles, blood flow was distributed so that the deep red parts of extensor muscles had flows about two times higher than the more superficial white portions of the same muscles; the highest muscle blood flows occurred in the elbow flexors (brachialis: 290 +/- 44 ml X min-1 X 100 g-1). Peak exercise blood flows in the limb muscles were proportional (P less than 0.05) to the succinate dehydrogenase activities (r = 0.84), capillary densities (r = 0.78), and populations of oxidative (slow-twitch oxidative + fast-twitch oxidative-glycolytic) fiber types (r = 0.93) in the muscles. Total muscle blood flow plotted as a function of exercise intensity did not peak until the pigs attained VO2max, although flows in some individual muscles showed a plateau in this relationship at submaximal exercise intensities. The data demonstrate that blood flow in skeletal muscles of miniature swine is distributed heterogeneously and varies in relation to fiber type composition and exercise intensity.  相似文献   

16.
In Schistocerca gregaria ocellar pathways, large second-order L-neurons use graded potentials to communicate signals from the ocellar retina to third-order neurons in the protocerebrum. A third-order neuron, DNI, converts graded potentials into axonal spikes that have been shown in experiments at room temperature to be sparse and precisely timed. I investigated effects of temperature changes that a locust normally experiences on these signals. With increased temperature, response latency decreases and frequency responses of the neurons increase. Both the graded potential responses in the two types of neuron and the spikes in DNI report greater detail about a fluctuating light stimulus. Over a rise from 22 to 35°C the power spectrum of the L-neuron response encompasses higher frequencies and its information capacity increases from about 600 to 1,700 bits/s. DNI generates spikes more often during a repeated stimulus but at all temperatures it reports rapid decreases in light rather than providing a continual measure of light intensity. Information rate carried by spike trains increases from about 50 to 185 bits/s. At warmer temperatures, increased performance by ocellar interneurons may contribute to improved aerobatic performance by delivering spikes earlier and in response to smaller, faster light stimuli.  相似文献   

17.
Electro-olfactogram (EOG) oscillations induced by odorant stimulation have been often reported in various vertebrates from fishes to mammals. However, the mechanism of generation of EOG oscillations remains unclear. In the present study, we first characterized the properties of EOG oscillations induced by amino acid odorants in the rainbow trout and then performed a computer simulation based on the main assumption that olfactory receptor neurons (ORNs) have intrinsic oscillatory properties due to two types of voltage-gated ion channels, which have not yet been reported in vertebrate ORNs. EOG oscillations appeared mostly on the peak and decay phases of negative EOG responses, when odorant stimuli at high intensity flowed regularly anterior to posterior olfactory lamellae in the olfactory organ. The appearance of EOG oscillations was dependent on the odorant intensity but not on the flow rate. The maximum amplitude and the maximum power frequency of EOG oscillations were 3.51 +/- 3.35 mV (mean +/- SD, n = 232, range 0.12-16.79 mV) and 10.59 +/- 5.05 Hz (mean +/- SD, n = 232, range 3.51-40.03 Hz), respectively. The simulation represented sufficiently well the characteristics of EOG oscillations; occurrence at high odorant concentration, odorant concentration-dependent amplitude and the maximum power frequency range actually observed. Our results suggest that EOG oscillations are due to the intrinsic oscillatory properties of individual ORNs, which have two novel types of voltage-gated ion channels (resonant and amplifying channels). The simulation program for Macintosh ('oscillation 3.2.4' for MacOS 8.6 or later) is available on the world wide web (http://bio2.sci.hokudai.ac.jp/bio/chinou1/noriyo_home.html).  相似文献   

18.
Golden hamster testes regress after short day exposure. The present study asks: 1) are Leydig cell numbers depleted during short days, and 2) if so, how are they replenished during recrudescence. Control hamsters were shown 14 h of light and 10 h of dark (LD 14:10) for 10 weeks (n = 12). Testicular regression was induced by LD 6:18 for 10 weeks (n = 4), and recrudescence by switching regressed hamsters to LD 14:10 for 3 and 5 weeks (n = 8 for each group). All hamsters were injected with [3H]thymidine [3 microCi/gm body wt., intraperitoneally (i.p.)] 1 h or 2 weeks before sacrifice. Leydig cell number per testis was determined by stereological analysis of sections of perfusion-fixed testes, and labeling indices were determined by autoradiography. Leydig cell numbers were reduced significantly from 18.2 X 10(6) in control to 9.0 X 10(6) in regressed testes (p less than 0.05); then increased to 14.0 X 10(6) and 17.9 X 10(6) in 3- and 5-week recrudesced hamsters. The labeling index was nondetectable (n.d.) for regressed hamsters. In control and recrudescing hamsters the labeling index was measured at two times (t1 = 1 h vs. t2 = 2 weeks post-injection): in controls, t1 = 0.22 +/- 0.15% (mean +/- SEM) vs. t2 = 0.28 +/- 0.22%; in 1 week recrudesced, n.d. vs. 1.92 +/- 0.77% (p less than 0.05); at 3 wk, n.d. vs. 4.58 +/- 1.74% (p less than 0.05); at 5 weeks, 1.92 +/- 0.61% vs. 2.25 +/- 0.59%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
ACh对大鼠皮层体感区神经元延迟整流钾电流的抑制作用   总被引:6,自引:1,他引:5  
Cui LW  Li YR  Yang L  Jia SW  Qu LH  Yao K  Jin HB 《生理学报》2006,58(1):58-64
利用全细胞膜片钳技术研究乙酰胆碱(acetylcholine,ACh)对大鼠皮层体感区神经元延迟整流钾电流(IK)的调制作用。结果表明:(1)ACh(0.1、1、10、100 μmol/L)对大鼠皮层体感区神经元IK有抑制作用,并具有剂量依赖性关系(P<0.01)。 (2)ACh可使IK激活曲线的斜率变大,并使激活曲线向超极化方向移动。IK激活曲线的半数激活电压(V1/12)和斜率因子(k)分别由给药前的(-41.8±9.7)mV和(30.7±7.2)mV变为给药后的(-122.4±38.6)mV和(42.4±7.0)mV。(3)100 μmol/L的N受体拮抗剂筒箭毒碱(tubocurarine)可减弱ACh对IK的抑制作用,在指令电压+60 mV时tubocurarine+ACh组的IK幅度下降了(16.9± 13.8)%(n=8),与10 μmol/L ACh组引起的(36.5±7.8)%的IK下降幅度相比,有极显著差异(P<0.01)。10 μmol/L的M1受体拮抗剂哌仑西平(pirenzepin)拮抗ACh对IK的抑制作用不明显(n=7,P>0.05);而10 μmol/L的M3受体拮抗剂4-DAMP可部分拮抗ACh对IK的抑制作用,并且4-DAMP+ACh组使IK的电流值下降了(26.8±4.7)%(n=6),与ACh组引起的IK电流下降相比,有显著差异(P<0.05)。(4)蛋白激酶C(protein kinase C,PKC)阻断剂chelerythrine拮抗ACh对IK的抑制作用,PKC激动剂PDBu可增强ACh对IK的抑制作用(P<0.05)。综上所述,ACh对人鼠皮层体感区神经元IK的抑制作用主要是通过烟碱受体(nAChRs)和M3受体介导,并经过PKC信号途径。  相似文献   

20.
The effect of temperature on the binding of thyroxine and triiodothyronine to thyroxine-binding globulin has been studied by equilibrium dialysis. Inclusion of ovalbumin in the dialysis mixture stabilized thyroxine-binding globulin against losses in binding activity which had been found to occur during equilibrium dialysis. Ovalbumin by itself bound the thyroid hormones very weakly and its binding could be neglected when analyzing the experimental results. At pH 7.4 and 37 degrees in 0.06 M potassium phosphate/0.7 mM EDTA buffer, thyroxine was bound to thyroxine-binding globulin at a single binding site with apparent association constants: at 5 degrees, K = 4.73 +/- 0.38 X 10(10) M-1; at 25 degrees, K = 1.55 +/- 0.17 X 10(10) M-1; and at 37 degrees, K = 9.08 +/- 0.62 X 10(9) M-1. Scatchard plots of the binding data for triiodothyronine indicated that the binding of this compound to thyroxine-binding globulin was more complex than that found for thyroxine. The data for triiodothyronine binding could be fitted by asuming the existence of two different classes of binding sites. At 5 degrees and pH 7.4 nonlinear regression analysis of the data yielded the values n1 = 1.04 +/- 0.10, K1 = 3.35 +/- 0.63 X 10(9) M-1 and n2 = 1.40 +/- 0.08, K2 = 0.69 +/- 0.20 X 10(8) M-1. At 25 degrees, the values for the binding constants were n1 = 1.04 +/- 0.38, K1 = 6.5 +/- 2.8 X 10(8) M-1 and n2 = 0.77 +/- 0.22, K2 = 0.43 +/- 0.62 X 10(8) M-1. At 37 degrees where less curvature was observed, the estimated binding constants were n1 = 1.02 +/- 0.06, K1 = 4.32 +/- 0.59 X 10(8) M-1 and n2K2 = 0.056 +/- 0.012 X 10(8) M-1. When n1 was fixed at 1, the resulting values obtained for the other three binding constants were at 25 degrees, K1 = 6.12 +/- 0.35 X 10(8) M-1, n2 = 0.72 +/- 0.18, K2 = 0.73 +/- 0.36 X 10(8) M-1; and at 37 degrees K1 = 3.80 +/- 0.22 X 10(8) M-1, n2 = 0.44 +/- 0.22, and K2 = 0.43 +/- 0.38 X 10(8) M-1. The thermodynamic values for thyroxine binding to thyroxine-binding globulin at 37 degrees and pH 7.4 were deltaG0 = -14.1 kcal/mole, deltaH0 = -8.96 kcal/mole, and deltaS0 = +16.7 cal degree-1 mole-1. For triiodothyronine at 37 degrees, the thermodynamic values for binding at the primary binding site were deltaG0 = -12.3 kcal/mole, deltaH0 = -11.9 kcal/mole, and deltaS0 = +1.4 cal degree-1 mole-1. Measurement of the pH dependence of binding indicated that both thyroxine and triiodothyronine were bound maximally in the region of physiological pH, pH 6.8 to 7.7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号