首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
嗜中性粒细胞是人抵抗素表达的主要细胞   总被引:1,自引:0,他引:1  
抵抗素(resistin)是小鼠白色脂肪组织大量表达的富含半胱氨酸的 分泌型蛋白.近年研究发现,人与啮齿类动物的抵抗素组织表达分布存在很 大差异.小鼠抵抗素主要在白色脂肪组织表达,而人抵抗素主要在单核细 胞/巨噬细胞表达,且在骨髓组织中大量表达,但目前骨髓中的细胞定位还 不清楚.本研究的目的是明确成人骨髓及外周血白细胞中抵抗素表达细胞 的类型.免疫荧光法检测骨髓中抵抗素表达细胞,结果显示,抵抗素主要表 达在细胞核呈杆状和分叶核状的成熟粒细胞中,其中杆状核粒细胞表达较 高,分叶核粒细胞表达减弱.Anti-hresistin IgG-Biotin-PE单色荧光流 式细胞术分选外周血白细胞中抵抗素表达细胞后经瑞氏化学染色,结果显 示,抵抗素表达细胞主要为杆状和分叶核状的嗜中性粒细胞,还有少量嗜酸 性粒细胞,且抵抗素蛋白分布在细胞质中. RT-qPCR结果在RNA水平上证明, 人抵抗素在嗜中性粒细胞中大量表达.Anti-hresistin IgG-FITC和anti- HNL IgG-Biotin-PE 双色荧光流式细胞术进一步证明,抵抗素的主要表达细 胞为成熟的嗜中性粒细胞.嗜中性粒细胞在机体免疫防御中起重要作用, 人骨髓及外周血中抵抗素主要在成熟嗜中性粒细胞中表达,这一研究结论 为人抵抗素与炎症反应的关联性及其功能的进一步研究奠定了基础.  相似文献   

2.
3.
 Moesin is a member of the ERM family consisting of ezrin, radixin, and moesin. The protein is located in the plasma membrane similarly to ezrin and radixin, and is thought to regulate cellular movements and morphological changes. Using monoclonal antibody CR-22, the specificity of which against human moesin was confirmed by immunoprecipitation and western blotting analysis, we immunohistochemically stained various formalin-fixed and paraffin-embedded human tissues, in particular, clots of bone marrow and lymphatic tissues, to examine moesin expression in cells of hematopoietic lineage and lymphatic systems. In the bone marrow, moesin was expressed in myeloid cells, while little staining was detected in erythroid cells. Moesin was highly expressed in both the center and the periphery of mature megakaryocytes. In the lymphatic tissues, moesin was strongly expressed by T-lymphocytes in the paracortex. In the mantle zone, the periphery of the germinal center, moesin was expressed by small lymphocytes which were identified as B-lymphocytes. Furthermore, in areas of inflammation, moesin was expressed in both the center and the periphery of neutrophils, whereas in some neutrophils in distant areas, moesin was localized at the cellular periphery. These results suggest that differential expression of moesin in these cells is involved in their morphology and specialized functions. Accepted: 19 December 1997  相似文献   

4.
Neutrophils are phagocytic effectors which are produced in the bone marrow and released into the circulation. Thereafter, they are either recruited to sites of inflammation or rapidly become senescent, return to the bone marrow, and undergo apoptosis. Stromal cell-derived factor 1 (SDF-1) coordinates the return of senescent neutrophils to the bone marrow by interacting with CXCR4 that is preferentially expressed on senescent neutrophils. We demonstrate that CXCR4 ligation by SDF-1 or other CXCR4 agonists significantly increases the expression of both TNF-related apoptosis-inducing [corrected] ligand (TRAIL) and of the death-inducing TRAIL receptors on neutrophils, which confers an acquired sensitivity to TRAIL-mediated death and results in TRAIL-dependent apoptosis. In vivo administration of TRAIL antagonists results in neutrophilic accumulation within the bone marrow and a reduction in neutrophil apoptosis; conversely recombinant TRAIL administration reduced neutrophil number within bone marrow. Thus, SDF-1 ligation of CXCR4 causes the parallel processes of chemotaxis and enhanced TRAIL and TRAIL death receptor expression, resulting in apoptosis of senescent neutrophils upon their return to the bone marrow.  相似文献   

5.
Ym is one of the chitinase family proteins, which are widely distributed in mammalian bodies and can bind glycosaminoglycans such as heparin/heparan sulfate. Ym1 is a macrophage protein produced in parasitic infections, while its isoform, Ym2, is upregulated in lung under allergic conditions. In the present study, we revealed the distinct cellular expression of Ym1 and Ym2 in normal mice by in situ hybridization and immunohistochemistry. Ym1 was principally expressed in the lung, spleen, and bone marrow, while Ym2 was found in the stomach. Ym1-expressing cells in the lung were alveolar macrophages, and the immunoreactivity for Ym1 was localized in rough endoplasmic reticulum. In the spleen, Ym1-expressing cells gathered in the red pulp and were electron microscopically identified as immature neutrophils. In the bone marrow, immature neutrophils were intensely immunoreactive, but lost this immunoreactivity with maturation. Moreover, needle-shaped crystals in the cytoplasm of macrophages, which formed erythroblastic islands, also showed intense Ym1 immunoreactivity. Ym2 expression was restricted to the stratified squamous epithelium in the junctional region between forestomach and glandular stomach. The function of Ym1 and Ym2 is still unclear; however, the distinct cellular localization under normal conditions suggests their important roles in hematopoiesis, tissue remodeling, or immune responses as an endogenous lectin.  相似文献   

6.
Under homeostatic conditions, a proportion of senescent CXCR4(hi) neutrophils home from the circulation back to the bone marrow, where they are phagocytosed by bone marrow macrophages. In this study, we have identified an unexpected role for the anti-inflammatory molecule annexin A1 (AnxA1) as a critical regulator of this process. We first observed that AnxA1(-/-) mice have significantly increased neutrophil numbers in their bone marrow while having normal levels of GM and G colony-forming units, monocytes, and macrophages. Although AnxA1(-/-) mice have more neutrophils in the bone marrow, a greater proportion of these cells are senescent, as determined by their higher levels of CXCR4 expression and annexin V binding. Consequently, bone marrow neutrophils from AnxA1(-/-) mice exhibit a reduced migratory capacity in vitro. Studies conducted in vitro also show that expression of AnxA1 is required for bone marrow macrophages, but not peritoneal macrophages, to phagocytose apoptotic neutrophils. Moreover, in vivo experiments indicate a defect in clearance of wild-type neutrophils in the bone marrow of AnxA1(-/-) mice. Thus, we conclude that expression of AnxA1 by resident macrophages is a critical determinant for neutrophil clearance in the bone marrow.  相似文献   

7.
Human neutrophils label with fluorochrome-labeled monoclonal antibody 31D8 as bright or dull. We determined the source and fate of 31D8 dull neutrophils by studying volunteers injected with endotoxin, epinephrine, or hydrocortisone, by examining bone marrow, and by examining skin blister exudate. We find that 31D8 dull neutrophils are normally not present in significant numbers in the circulation, are present in large numbers in normal marrow, and are recruited from the marrow by endotoxin, to a lesser extent by steroid, but not at all by epinephrine. 31D8 dull pattern correlates with morphologic immaturity in postendotoxin peripheral blood and bone marrow; however, blister exudate neutrophils contain only morphologically mature neutrophils, of which a significant number are 31D8 dull. We conclude that 31D8 dull neutrophils reside primarily in bone marrow and are released by agents which enhance bone marrow release of neutrophils. Their accumulation in skin blister exudate is unexplained, but suggests a special role in the inflammatory process.  相似文献   

8.
Kim J  Shin JM  Jeon YJ  Chung HM  Chae JI 《PloS one》2012,7(5):e32350
Mesenchymal stem cells (MSCs) are one of the most attractive therapeutic resources in clinical application owing to their multipotent capability, which means that cells can differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle and marrow stroma. Depending on the cellular source, MSCs exhibit different application potentials according to their different in vivo functions, despite similar phenotypic and cytological characteristics. To understand the different molecular conditions that govern the different application or differentiation potential of each MSC according to cellular source, we generated a proteome reference map of MSCs obtained from bone marrow (BM), umbilical cord blood (CB) and peripheral blood (PB). We identified approximately 30 differentially regulated (or expressed) proteins. Most up-regulated proteins show a cytoskeletal and antioxidant or detoxification role according to their functional involvement. Additionally, these proteins are involved in the increase of cell viability, engraftment and migration in pathological conditions in vivo. In summary, we examined differentially expressed key regulatory factors of MSCs obtained from several cellular sources, demonstrated their differentially expressed proteome profiles and discussed their functional role in specific pathological conditions. With respect to the field of cell therapy, it may be particularly crucial to determine the most suitable cell sources according to target disease.  相似文献   

9.
OBJECTIVE: The aim of this study was to compare the cytological changes in skin, lymph nodes, liver and bone marrow in patients with lepromatous leprosy. METHODS: Skin lesion, lymph node, liver and bone marrow aspirates were analysed. May-Grunwald-Giemsa (MGG) and Ziehl-Neelsen (Z-N) stains were employed. Comparative cytomorphology was studied. RESULTS: Twenty patients with lepromatous leprosy were studied. Lepra cells (LC) predominated in the skin aspirates of 12 patients with lepromatous leprosy (LL), lymphocytes accompanied LC in eight patients with borderline-lepromatous (BL) leprosy. Three patients of LL leprosy and two of BL leprosy in type 2 reaction additionally had numerous neutrophils. Two patterns of lymph node aspirates were seen: partial replacement with few LC in a reactive lymphoid background (10), complete replacement with either only LC or LC in a background of degenerating neutrophils (10), the latter a feature of type 2 reaction. Liver aspiration was performed in seven patients and of bone marrow in eight patients. Occasional LC were present in five liver-aspirated patients, steatosis and Kupffer cell hyperplasia in four patients, and myelopoiesis in two patients. Bone marrow smears invariably had occasional LC and a relative increase in mature plasma cells; sea-blue histiocytes were seen in six patients. CONCLUSION: Lepra cells predominated in skin and lymph node aspirates with complete replacement. In comparison, liver, bone marrow and lymph node aspirates with partial replacement were dominated by a preponderance of cells native to these organs with only few or occasional LC.  相似文献   

10.
The regulation of neutrophil functions by Type I cGMP-dependent protein kinase (cGKI) was investigated in wild-type (WT) and cGKI-deficient (cGKI-/-) mice. We demonstrate that murine neutrophils expressed cGKIalpha. Similar to the regulation of Ca2+ by cGKI in other cells, there was a cGMP-dependent decrease in Ca2+ transients in response to C5a in WT, but not cGKI-/- bone marrow neutrophils. In vitro chemotaxis of bone marrow neutrophils to C5a or IL-8 was significantly greater in cGKI-/- than in WT. Enhanced chemotaxis was also observed with cGKI-/- peritoneal exudate neutrophils (PE-N). In vivo chemotaxis with an arachidonic acid-induced inflammatory ear model revealed an increase in both ear weight and myeloperoxidase (MPO) activity in ear punches of cGKI-/- vs WT mice. These changes were attributable to enhanced vascular permeability and increased neutrophil infiltration. The total extractable content of MPO, but not lysozyme, was significantly greater in cGKI-/- than in WT PE-N. Furthermore, the percentage of MPO released in response to fMLP from cGKI-/- (69%) was greater than that from WT PE-N (36%). PMA failed to induce MPO release from PE-N of either genotype. In contrast, fMLP and PMA released equivalent amounts of lysozyme from PE-N. However, the percentage released was less in cGKI-/- (approximately 60%) than in WT (approximately 90%) PE-N. Superoxide release (maximum velocity) revealed no genotype differences in responses to PMA or fMLP stimulation. In summary, these results show that cGKIalpha down-regulates Ca2+ transients and chemotaxis in murine neutrophils. The regulatory influences of cGKIalpha on the secretagogue responses are complex, depending on the granule subtype.  相似文献   

11.
Long-term liquid cultures of normal and cyclic hematopoietic (CH) dog bone marrow produce committed granulocyte-macrophage progenitor cells (CFU-GM) and differentiated granulocytes for several weeks. Analysis of in situ fixed cultures or of cells harvested from the culture supernatants revealed that the cells had ultrastructure and surface morphology characteristic of immature and mature myeloid cells. The surface morphologies of adherent cells from both normal and CH dogs were similar. The characteristic abnormalities previously reported in neutrophils obtained from CH dogs were not observed in neutrophils obtained from long-term marrow cultures of CH dogs. These results indicate that the cellular abnormalities in the neutrophils of CH dogs may be secondary manifestations of the disease and are not inherent to the pathogenesis of the hematopoietic cells.  相似文献   

12.
The CD69 glycoprotein is an early activation antigen of T and B lymphocytes and it is constitutively expressed on thymocytes and platelets. Here we report its presence on neutrophils and on bone marrow-derived myeloid precursors. Indeed, promyelocytic cells are CD69+ on the cell membrane, while in resting neutrophils this molecule is located inside the cell. However, intracellular CD69 molecules are rapidly mobilized to the cell surface upon activation by PMA or fMLP. This translocation is independent on a new protein synthesis, as it is not inhibited by cycloheximide; furthermore, CD69 molecules are likely stored in a trans-Golgi structure since their expression is not affected by brefeldin A, a drug that blocks molecular trafficking from ER to Golgi vesicles. Immunoprecipitation of CD69 molecules either from activated neutrophils or from bone marrow cells showed that this protein has the same molecular size (28-34 kDa) as observed in platelets, T and B lymphocytes, and thymocytes. This similarity is reflected also in the functional role played by this molecule: in neutrophils as well as in lymphocytes and platelets, CD69 stimulation induced Ca2+ influx through cellular membrane; furthermore, the perturbation of the CD69 antigen on PMA-activated neutrophils enhances the lysozyme release, suggesting a role of this molecule in the regulation of granule exocytosis, probably through a Ca(2+)-dependent mechanism.  相似文献   

13.
The Rho family GTPase Rac acts as a molecular switch for signal transduction to regulate various cellular functions. Mice deficient in the hematopoietic-specific Rac2 isoform exhibit agonist-specific defects in neutrophil chemotaxis and superoxide production, despite expression of the highly homologous Rac1 isoform. To examine whether functional defects in rac2(-/-) neutrophils reflect effects of an overall decrease in total cellular Rac or an isoform-specific role for Rac2, retroviral vectors were used to express exogenous Rac1 or Rac2 at levels similar to endogenous. In rac2(-/-) neutrophils differentiated from transduced myeloid progenitors in vitro, increasing cellular Rac levels by expression of either exogenous Rac1 or Rac2 increased formylmethionylleucylphenylalanine- or phorbol ester-stimulated NADPH oxidase activity. Of note, placement of an epitope tag on the N terminus of Rac1 or Rac2 blunted reconstitution of responses in rac2(-/-) neutrophils. In rac2(-/-) neutrophils isolated from mice transplanted with Rac-transduced bone marrow cells, superoxide production and chemotaxis were fully reconstituted by expression of exogenous Rac2, but not Rac1. A chimeric Rac1 protein in which the Rac1 C-terminal polybasic domain, which contains six lysines or arginines, was replaced with that of the human Rac2 polybasic domain containing only three basic residues, also reconstituted superoxide production and chemotaxis, whereas expression of a Rac2 derivative in which the polybasic domain was replaced with that of Rac1 did not and resulted in disoriented cell motility. Thus, the composition of the polybasic domain is sufficient for determining Rac isoform specificity in the production of superoxide and chemotaxis in murine neutrophils in vivo.  相似文献   

14.
Although PKD is broadly expressed and involved in numerous cellular processes, its function in osteoclasts has not been previously reported. In this study, we found that PKD2 is the main PKD isoform expressed in osteoclastic cells. PKD phosphorylation, indicative of the activated state, increased after 2–3 days of treatment of bone marrow macrophages with M-CSF and RANKL, corresponding to the onset of preosteoclast fusion. RNAi against PKD2 and treatment with the PKD inhibitor CID755673 showed that PKD activity is dispensable for induction of bone marrow macrophages into tartrate-resistant acid phosphatase-positive preosteoclasts in culture but is required for the transition from mononucleated preosteoclasts to multinucleated osteoclasts. Loss of PKD activity reduced expression of DC-STAMP in RANKL-stimulated cultures. Overexpression of DC-STAMP was sufficient to rescue treatment with CID755673 and restore fusion into multinucleated osteoclasts. From these data, we conclude that PKD activity promotes differentiation of osteoclast progenitors through increased expression of DC-STAMP.  相似文献   

15.
The CD11/18 (LFA-1, Mac-1) molecules participate in neutrophil adhesion to cultured endothelium in vitro and are critical for effective neutrophil localization into inflamed tissues in vivo. More recently, the MEL-14 Ag, which was first defined as a lymphocyte homing receptor, has also been implicated in inflammatory neutrophil extravasation. Here we compare the regulation and function of these adhesion molecules on neutrophils during the in vivo inflammatory response. The MEL-14 Ag is expressed at high levels on bone marrow and peripheral blood neutrophils, but is lost on neutrophils isolated from the thioglycollate-inflamed peritoneal cavity. In contrast, Mac-1 is up-regulated on inflammatory neutrophils and little change is seen in the level of LFA-1 expression. In vitro activation of bone marrow neutrophils with PMA or leukotriene B4 results in a dose dependent increase in Mac-1 and decrease in MEL-14 Ag expression within 1 h after treatment, thus reflecting what is found during inflammation in vivo. Neutrophils activated in vitro or in vivo (MEL-14Low, Mac-1Hi) do not home to inflammatory sites in vivo, correlating with the loss of the MEL-14 Ag and the increased Mac-1 expression. Anti-LFA-1, anti-Mac-1, or MEL-14 antibody given i.v. suppress neutrophil accumulation within the inflamed peritoneum (38%, 30%, and 37% of medium control, respectively) without affecting the levels of circulating neutrophils. However, when FITC-labeled cells are precoated with the mAb and injected i.v., only MEL-14 inhibits extravasation into the inflamed peritoneum (25% of medium control). Finally, in ex vivo adhesion assays of neutrophil binding to high endothelial venules in inflamed-lymph node frozen sections MEL-14 inhibits greater than 90%. anti-LFA-1 20 to 30% and anti-Mac-1 less than 10% of the binding of bone marrow neutrophils to inflamed-lymph node high endothelial venules. These results confirm that both the MEL-14 antigen and Mac-1/LFA-1 are important in neutrophil localization to inflamed sites in vivo, but suggest that their roles in endothelial cell interactions are distinct.  相似文献   

16.
With the desire to understand the contributions of multiple cellular elements to the development of a complex tissue; such as the numerous cell types that participate in regenerating tissue, tumor formation, or vasculogenesis, we devised a multi-colored cellular transplant model of tumor development in which cell populations originate from different fluorescently colored reporter gene mice and are transplanted, engrafted or injected in and around a developing tumor. These colored cells are then recruited and incorporated into the tumor stroma. In order to quantitatively assess bone marrow derived tumor stromal cells, we transplanted GFP expressing transgenic whole bone marrow into lethally irradiated RFP expressing mice as approved by IACUC. 0ovarian tumors that were orthotopically injected into the transplanted mice were excised 6-8 weeks post engraftment and analyzed for bone marrow marker of origin (GFP) as well as antibody markers to detect tumor associated stroma using multispectral imaging techniques. We then adapted a methodology we call MIMicc- Multispectral Interrogation of Multiplexed cellular compositions, using multispectral unmixing of fluoroprobes to quantitatively assess which labeled cell came from which starting populations (based on original reporter gene labels), and as our ability to unmix 4, 5, 6 or more spectra per slide increases, we''ve added additional immunohistochemistry associated with cell lineages or differentiation to increase precision. Utilizing software to detect co-localized multiplexed-fluorescent signals, tumor stromal populations can be traced, enumerated and characterized based on marker staining.1  相似文献   

17.
Supervillin is a 205-kDa F-actin binding protein originally isolated from bovine neutrophils. This protein is tightly associated with both actin filaments and plasma membranes, suggesting that it forms a high-affinity link between the actin cytoskeleton and the membrane. Human supervillin cDNAs cloned from normal human kidney and from the cervical carcinoma HeLa S3 predict a bipartite structure with three potential nuclear localization signals in the NH2-terminus and three potential actin-binding sequences in the COOH-terminus. In fact, throughout its length, the COOH-terminal half of supervillin is similar to segments 2–6 plus the COOH-terminal “headpiece” of villin, an actin-binding protein in intestinal microvilli. A comparison of the bovine and human sequences indicates that supervillin is highly conserved at the amino acid level, with 79.2% identity of the NH2-terminus and conservation of three of the four nuclear localization signals found in bovine supervillin. The COOH-terminus is even more highly conserved, with 95.1% amino acid identity overall and 100% conservation of the villin-like headpiece. Supervillin mRNAs are expressed in all human tissues tested, but are most abundant in muscle, bone marrow, thyroid gland, and salivary gland; comparatively little message is found in brain. Human supervillin mRNA is ∼7.5 kb; this message is especially abundant in HeLa S3 cervical carcinoma, SW480 adenocarcinoma, and A549 lung carcinoma cell lines. The human supervillin gene (SVIL) is localized to a single chromosomal locus at 10p11.2, a region that is deleted in some prostate tumors.  相似文献   

18.
Summary The subcellular localization of lactoferrin in human neutrophils was studied by an electron-microscopic immunoperoxidase method. This molecule was detected in small granules of blood polymorphonuclear leukocytes. A morphometrical analysis showed that there was no significant difference in the mean size between lactoferrin-positive and myeloperoxidase-negative granules. In contrast, the mean size of myeloperoxidase-positive granules was significantly larger than that of lactoferrin-positive granules. This indicates that lactoferrin is contained in the myeloperoxidase-negative, secondary, granules of human neutrophils. In immature bone marrow mononuclear neutrophils, lactoferrin was present in cytoplasmic granules of somewhat larger size than lactoferrin-positive granules of polymorphonuclear leucocytes. A morphometrical study showed that the mean size of lactoferrin-positive granules was significantly greater in immature bone marrow cells than in polymorphonuclear leucocytes. This indicates that lactoferrin-positive granules decrease in size as the cells mature. Besides cytoplasmic granules, lactoferrin was demonstrated in the Golgi complex and a part of the rough endoplasmic reticulum of immature bone marrow neutrophils, probably myelocytes and early metamyelocytes. These results show that lactoferrin is synthesized and packed into secondary granules in immature bone marrow neutrophils and therefore that the secondary granules are a type of secretory granule.  相似文献   

19.
The possible role of normal chicken cellular sequences c-erb, c-myb and c-myc, together referred to as c-onc genes and related to the oncogenes of defective avian acute leukemia retroviruses (DLVs), was investigated by determining the accumulation of c-onc RNA in different avian cells an cell lines. Levels of c-myc and in some instances c-myb RNA are elevated in immature hematopoietic cells or cell lines from various lineages but more mature hematopoietic cells, as well as non-hematopoietic cells, contain only low levels. In contrast, the level of c-erb RNA is generally low, but high in a small number of normal bone marrow cells. The results indicate that the cellular homologues of the viral oncogenes are differentially expressed during hematopoiesis. They also indicate that the hypothesis that DLV target cells express their homologous c-onc genes might hold for c-erb, but is not valid in its simple form for c-myc and c-myb.  相似文献   

20.
Experimental hypoplasia of femoral bone marrow in rats was induced by cyclophosphamide, injected i.p. at various clock hours (08.00, 12.00, 16.00, 20.00, 24.00, and 04.00). Cyclophosphamide-induced neutropenia persisted for six days and was followed by transitory granulocytosis with subsequent decrease in the cont of circulating mature granulocytes. The absolute counts of circulating segmented neutrophils changed in parallel with the absolute counts of segmented neutrophils in the bone marrow. The count of circulating neutrophils was not essentially influenced by the clock hour of cyclophosphamide injection. The toxic action of cyclophosphamide upon the bone marrow exhibited a circadian rhythmicity: the greatest decrease in the count of nucleated marrow cells was found in the morning, and the least, in the evening. The minimal compartment transit times of the development stages of bone-marrow neutrophils, and the daily granulocyte production in the rat were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号