首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Methods for the isolation and in vitro culture of larval and adultXenopus laevis epidermal cells have been developed. Epidermal cells of stage 52–54 tadpoles and adult epidermal cells were enzymatically dissociated and purified (98%) by Percoll-density centrifugation and unit-gravity sedimentation. Both cell types attached on fibronectin-coated dishes and proliferated for 1 wk when the proper medium was used. There were four significant differences between larval and adult cells: a) Adult cells had a greater buoyant density than larval cells. b) Keratin synthesis patterns were markedly different. c) A combination of medium F12 and Eagle's minimum essential medium was optimal for growth of larval cells whereas MCDB151 medium was optimal for adult cells. d) Adult cells needed fetal bovine serum (>5%) whereas larval cells grew without fetal bovine serum. In contrast to these differences, larval and adult cells had two similar properties: a) Insulin had a potent effect on the growth of both cells, and b) The optimal Ca++ concentration for cell growth was quite low for both cell types; 0,1 mM for larval cells and below 0.05 mM for adult cells. These results suggest that low Ca++ levels are essential for both cornifying (adult) and uncornifying (larval) amphibian keratinocytes. The culture techniques described herein for larval and adult epidermal cells provide a new in vitro model for analyzing development of the epidermis during amphibian metamorphosis. This study was supported by grant (HD 24438) from the National Institutes of Health, Bethesda, MD.  相似文献   

2.
Metamorphosis of the central nervous system of Drosophila   总被引:2,自引:0,他引:2  
The study of the metamorphosis of the central nervous system of Drosophila focused on the ventral CNS. Many larval neurons are conserved through metamorphosis but they show pronounced remodeling of both central and peripheral processes. In general, transmitter expression appears to be conserved through metamorphosis but there are some examples of possible changes. Large numbers of new, adult-specific neurons are added to this basic complement of persisting larval cells. These cells are produced during larval life by embryonic neuroblasts that had persisted into the larval stage. These new neurons arrest their development soon after their birth but then mature into functional neurons during metamorphosis. Programmed cell death is also important for sculpting the adult CNS. One round of cell death occurs shortly after pupariation and a second one after the emergence of the adult fly.  相似文献   

3.
Morphological diversity of leg appendages is one of the hallmarks of developmental evolution. Limbs in insects may develop either from their embryonic prototypes or from imaginal discs harbored inside the larva. Bombyx mori (B. mori), a Lepidopteran insect, develops adult wings from larval wing imaginal discs. However, it has been debated whether the adult legs of B. mori arise from imaginal discs or from the larval legs. Here we addressed how the larval legs relate to their adult counterparts. We present the morphological landmarks during early leg development. We used expression of developmental genes like Distalless and extradenticle to mark leg primordia. Finally, we employed classical excision approach to develop a fate map of the adult leg. Excision and ablation of thoracic legs along proximo-distal axis at various times during larval development resulted in the loss of corresponding adult leg segments. Our data suggest that B. mori legs develop from larval appendages rather than leg imaginal discs.  相似文献   

4.
Summary The thoracic legs of the moth Manduca sexta acquire a new form and develop a new complement of sensory organs and muscles during metamorphosis from larva to adult. Because of our interest in the reorganization of neural circuitry and the acquisition of new behaviors during metamorphosis, we are characterizing sensory elements of larval and adult legs so that we may determine the contribution of new sensory inputs to the changes in behaviors. Here we describe the sensory structures of adult legs using scanning electron microscopy to view the external sensilla and cobalt staining to examine innervation by underlying sensory neurons. We find that, in contrast to larval legs, the adult legs are covered with a diverse array of sensilla. All three pairs of thoracic legs contain scattered, singly innervated scalelike sensilla. Campaniform sensilla occur singly or in clusters near joints. Hair plates, consisting of numerous singly innervated hairs, are also present near joints. Other more specialized sensilla occur on distal leg segments. These include singly innervated spines, two additional classes of singly innervated hairs, and three classes of multiply innervated sensilla. Internal sensory organs include chordotonal organs, subgenual organs, and multipolar joint receptors.  相似文献   

5.
刘影  刘韩菡  李胜 《昆虫知识》2009,46(5):673-677
程序化细胞死亡(programmed cell death,PCD)分为I型PCD细胞凋亡(apoptosis)和II型PCD细胞自噬(autophagy)。果蝇等完全变态昆虫有2种类型的器官:即细胞内分裂器官(如脂肪体、表皮、唾液腺、中肠、马氏管等)和有丝分裂器官(复眼、翅膀、足、神经系统等)。在昆虫变态过程中,细胞内分裂器官进行器官重建,幼虫器官大量发生细胞凋亡和细胞自噬到最后完全消亡,同时成虫器官由干细胞从新生成;而有丝分裂器官则由幼虫器官直接发育为成虫器官。在果蝇等昆虫的变态过程中,细胞凋亡和细胞自噬在幼虫器官的死亡和成虫器官的生成中发挥了非常重要的作用。文章简要介绍细胞凋亡和细胞自噬在果蝇变态过程中的生理功能和分子调控机制。  相似文献   

6.
The conversion of the larval to adult epidermis during metamorphosis of tadpoles of bullfrog, Rana catesbeiana, was investigated utilizing newly cloned Rana keratin cDNAs as probes. Rana larval keratin (RLK) cDNA (rlk) was cloned using highly specific antisera against Xenopus larval keratin (XLK). Tail skin proteins of bullfrog tadpoles were separated by 2-dimensional gel electrophoresis and subjected to Western blot analysis with anti-XLK antisera. The Rana antigen detected by this method was sequenced and identified as a type II keratin. We cloned rlk from tadpole skin by PCR utilizing primers designed from these peptide sequences of RLK. RLK predicted by nucleotide sequences of rlk was a 549 amino acid -long type II keratin. Subtractive cloning between the body and the tail skin of bullfrog tadpole yielded a cDNA (rak) of Rana adult keratin (RAK). RAK was a 433 amino acid-long type I keratin. We also cloned a Rana keratin 8 (RK8) cDNA (rk8) from bullfrog tadpole epidermis. RK8 was 502 amino acid-long and homologous to cytokeratin 8. Northern blot analyses and in situ hybridization experiments showed that rlk was actively expressed through prometamorphosis in larva-specific epidermal cells called skein cells and became completely inactive at the climax stage of metamorphosis and in the adult skin. RAK mRNA was expressed in basal cells of the tadpole epidermis and germinative cells in the adult epidermis. The expression of rlk and rak was down- and up-regulated by thyroid hormone (TH), respectively. In contrast, there was no change in the expression of RK8 during spontaneous and TH-induced metamorphosis. RK8 mRNA was exclusively expressed in apical cells of the larval epidermis. These patterns of keratin gene expression indicated that the expression of keratin genes is differently regulated by TH depending on the type of larval epidermal cells. The present study demonstrated the usefulness of these genes for the study of molecular mechanism of postembryonic epidermal development and differentiation.  相似文献   

7.
The tobacco hornworm Manduca sexta, like many holometabolous insects, makes two versions of its thoracic legs. The simple legs of the larva are formed during embryogenesis, but then are transformed into the more complex adult legs at metamorphosis. To elucidate the molecular patterning mechanism underlying this biphasic development, we examined the expression patterns of five genes known to be involved in patterning the proximal-distal axis in insect legs. In the developing larval leg of Manduca, the early patterning genes Distal-less and Extradenticle are already expressed in patterns comparable to the adult legs of other insects. In contrast, Bric-a-brac and dachshund are expressed in patterns similar to transient patterns observed during early stages of leg development in Drosophila. During metamorphosis of the leg, the two genes finally develop mature expression patterns. Our results are consistent with the hypothesis that the larval leg morphology is produced by a transient arrest in the conserved adult leg patterning process in insects. In addition, we find that, during the adult leg development, some cells in the leg express the patterning genes de novo suggesting that the remodeling of the leg involves changes in the patterning gene regulation.  相似文献   

8.
During larval stages of Drosophila development, the abdominal epidermis is composed of histoblasts (adult precursors) and larval epidermal cells (LECs). During metamorphosis, histoblasts proliferate and colonize the territories occupied by the LECs, which die and become engulfed by macrophages. This morphogenetic process is an excellent model for in vivo analysis of epithelial migration, cell division, cell death, patterning and differentiation. Here, we describe a protocol for time-lapse recording of the developing epidermis during metamorphosis. The protocol describes the removal of the pupal case (which acts as an opaque barrier to effective imaging) and mounting and imaging of specimens of different stages so that normal developmental processes are preserved. This method enables high-resolution studies over long time periods using fluorescent markers and confocal microscopy. The protocol requires 1 h for pupal dissection and mounting and, depending on the stages and genotypes to be analyzed, several more hours for preprocessing and aging and developmental staging of flies and pupae.  相似文献   

9.
 In one of his classical studies on insect metamorphosis, Weismann compared the imaginal anlagen of the ancestral phantom midge, Chaoborus, with those of advanced brachycerans. We have expanded his findings on the relationships between larval and imaginal organs using electron microscopy and cobalt backfilling of the antenna and leg anlagen and the axonal trajectories of corresponding larval sensilla. We show that both primordia are confluent with the larval antennae and ”leg” sensilla (an ancestral Keilin organ), respectively. These fully developed larval organs represent the distal tips of the imaginal anlagen rather than separate cell clusters. The axons of the larval antenna and leg sensilla project across the corresponding anlagen to their target neuromeres within the central nervous system (CNS). Within the discs, nerves composed of these larval axons, developing afferent fibres and efferences ascending from the CNS are found. Both the structure of the primordia and the axonal trajectories thus relate the situation found in advanced brachycerans with that seen in more ancestral insects. In addition, the larval antennae, legs, wings and even the eyes possess very similar afferent pioneer trajectories supporting the idea that the described pattern is generally used in the ontogeny of sensory systems. Received: 30 June 1998 / Accepted: 27 September 1998  相似文献   

10.
During metamorphosis in the hawkmoth, Manduca sexta, identified larval leg motoneurons survive the degeneration of their larval targets to innervate new muscles of the adult legs. The dendrites and axon terminals of these motoneurons regress at the end of the larval stage and then regrow during adult development. Previous studies have implicated the insect steroid, 20-hydroxyecdysone (20-HE), in similar examples of dendritic reorganization during metamorphosis. The present studies were undertaken to test whether 20-HE acts directly on the leg motoneurons to regulate dendritic growth. Larval leg motoneurons were labeled with a fluorescent dye to permit their identification in culture following the dissociation of thoracic ganglia at later stages of development. Leg motoneurons isolated from early pupal stage animals (just before the normal onset of dendritic regrowth) survived in vitro and grew processes regardless of whether 20-HE was added to the culture medium. The extent of process outgrowth, however, as measured by the total length of all processes and the number of branches, was significantly greater for motoneurons maintained in the presence of 20-HE. The enhancement could be blocked by the addition of a juvenile hormone analog. By contrast, larval leg motoneurons that were isolated just before the normal period of dendritic regression did not show enhanced growth of neurites in the presence of 20-HE. The results suggest that 20-HE acts directly on the leg motoneurons to regulate the growth of processes during metamorphosis.  相似文献   

11.
It has been shown that larval skin (LS) grafts are rejected by an inbred strain of adult Xenopus, which suggests a mechanism of metamorphosis by which larval cells are recognized and attacked by the newly differentiating immune system, including T lymphocytes. In an attempt to define the larval antigenic molecules that are targeted by the adult immune system, anti-LS antibodies (IgY) were produced by immunizing adult frogs with syngeneic LS grafts. The antigen molecules that reacted specifically with this anti-LS antiserum were localized only in the larval epidermal cells. Of 53 and 59-60 kDa acidic proteins that were reactive with anti-LS antibodies, a protein of 59 kDa and with an isoelectric point of 4.5 was selected for determination of a 19 amino acid sequence (larval peptide). The rat antiserum raised against this peptide was specifically reactive with the 59 kDa molecules of LS lysates. Immunofluorescence studies using these antisera revealed that the larval-specific molecules were localized in both the tail and trunk epidermis of premetamorphic larvae, but were reduced in the trunk regions during metamorphosis, and at the climax stage of metamorphosis were detected only in the regressing tail epidermis. Culture of splenocytes from LS-immunized adult frogs in the presence of larval peptide induced augmented proliferative responses. Cultures of larval tail pieces in T cell-enriched splenocytes from normal frogs or in natural killer (NK)-cell-enriched splenocytes from early thymectomized frogs both resulted in significant destruction of tail pieces. Tissue destruction in the latter was enhanced when anti-LS antiserum was added to the culture. These results indicate that degeneration of tail tissues during metamorphosis is induced by a mechanism such that the larval-specific antigen molecules expressed in the tail epidermis are recognized as foreign by the newly developing adult immune system, and destroyed by cytotoxic T lymphocytes and/or NK cells.  相似文献   

12.
The anuran remodels the larval epidermis into the adult one during metamorphosis. Larval and adult epidermal cells of the bullfrog were characterized by determining the presence of huge cytoplasmic keratin bundles and the expression profiles of specific marker genes, namely colalpha1 (collagen alpha1 (I)), rlk (larval keratin) and rak (adult keratin). We identified four types of epidermal basal cells: (i) basal skein cells that have keratin bundles and express colalpha1 and rlk; (ii) rak+-basal skein cells that have keratin bundles and express colalpha1, rlk, and rak; (iii) larval basal cells that express rlk and rak; and (iv) adult basal cells that express rak. These traits suggested that these basal cells are on the same lineage in which basal skein cells are the original progenitor cells that consecutively differentiate into rak+-basal skein cells into larval basal cells, and finally into adult basal cells. To directly verify the differentiation potential of larval basal cells into adult ones, the mono-layered epidermis composed of larval basal cells was cultured in the presence of aldosterone and thyroid hormone. In this culture, larval basal cells differentiated into adult basal cells that reconstituted the adult epidermis. Thus, it was concluded that larval basal cells are the direct progenitor cells of the adult epidermal stem cells.  相似文献   

13.
The eye imaginal disc of Manduca sexta is created early in the final larval instar from the adult eye primordium, which is composed of fully differentiated cells of the larval head capsule epidermis. Concomitant with the down-regulation of the larval epidermal program, expression of broad, a marker of pupal commitment, is activated in the primordium. The cells then detach from the cuticle, fold inward, and begin to proliferate at high levels to produce the inverted, eye imaginal disc. These and other events that begin on the first day of the final larval instar appear to mark the initiation of metamorphosis. Little is known about the endocrine control of the initiation of metamorphosis in any insect. The hemolymph titer of juvenile hormone (JH) declines to low levels during this period and the presence of JH is sufficient to repress development in cultured eye primordia. However, maintenance of JH at high levels in vivo by treatment with long-lasting JH mimics has no apparent effect on early steps in eye imaginal disc development. We discuss our findings in the context of the endocrine control of metamorphosis. The initiation of metamorphosis in Manduca, and perhaps a wide range of insect species, appears to involve the overcoming of JH repression by an unidentified, nutrient-dependent, hormonal factor.  相似文献   

14.
Cell proliferation was examined in the back and tail epidermis of larval Xenopus laevis using bromodeoxyuridine (BrdU). The BrdU labeling index of the back epidermis increased temporally at stage 59, followed by a rapid decrease to the same level as at stage 51. The temporal increase in cell proliferation of the back epidermis produced a new epidermal layer composed of basal cells. In vitro analysis showed that tri-iodothyronine (T3) promotes cell proliferation of basal cells but suppresses that of skein cells. Immunohistochemical studies showed that the newly formed basal cell layer functions as adult precursor cells which produce the adult epidermal cells. In contrast to the back epidermis, the labeling index of the tail epidermis decreased from stage 57. However, when the tail skin was transplanted to the back area, cell proliferation in the tail epidermis increased to the same level as that of the normal back epidermis. Cell proliferation of the back epidermis was not suppressed by transplanting the skin to the tail area. These results suggest that some promoting factors are produced in the body region and regulate the number of adult precursor cells, which determine the developmental fate of the larval skin.  相似文献   

15.
Morphology and ultrastructure of the skin of Lissotriton italicus (previously named Triturus italicus) have been described in different phases of its biological cycle: larval stage, metamorphic stage and adult stage with emphasis on modifications occurring between aquatic and terrestrial adults. In the present study, light microscopy and both scanning and transmission electron microscopy were employed to analyze the histological and cytological remodelling that occurs in the skin of L. italicus during metamorphosis. The ultrastructure of the larval epidermis is arranged into three principal layers comprising an external layer of pavement cells, a basal layer and 1-3 intermediate layers consisting of Leydig cells along with accessory cells and mitochondria-rich cells. By the onset of metamorphosis, morphological changes of the skin include stratification and flattening of epidermal layers and disappearance of typical larval cells. In both aquatic and terrestrial adult phases the thin, cornified epidermis shows the same general arrangement as found in other vertebrates with an external stratum corneum and a variable number of intermediate cell layers. During the terrestrial adult phase, the skin is characterized by the presence of numerous tubercles; moreover, the lower epithelium is thicker than in the aquatic phase. Ultrastructural analysis revealed no substantial differences in the cellular composition of the skin between aquatic and terrestrial phases.  相似文献   

16.
Pan-cadherin antibodies recognize the conserved C-terminal region of the family of cell-cell adhesion molecules, cadherins, and have a broad spectrum of reactivity to the molecules. In the present study, by immunohistochemistry using an anti-pan cadherin monoclonal antibody (mAb), expression dynamics of cadherins in epidermal tissues were analyzed during metamorphosis of Xenopus laevis. At early stages of development, the anti-pan cadherin mAb detected signals at cell-cell boundaries and in the cytoplasm of both trunk and tail epidermal cells. During metamorphosis, the immunoreactivity decreased in the trunk skin tissue but remained in the tail. At the climax stage, immunoreactivity was observed only in the regressing tail epidermis. The signals disappeared completely from the trunk epidermis, which had already transformed into adult-type tissue. This observation was confirmed by western blot analysis. A specific band was detected in the larval skin, but not in the adult lysate, at approximately 135 kDa in molecular size, corresponding to the molecular mass of cadherins. This different immunoreactivity in larvae and adults was observed in the epidermis of the skin, but not in any other tissues examined, that is, brain, kidney and liver. The immunoreactivity seen in larval epidermal cells was drastically downregulated by thyroid hormone treatment in vitro. These changes of immunoreactivity were specific for the C-terminal region of cadherins, suggesting intracellular alteration of the molecules during metamorphosis, and the anti-pan cadherin mAb can be a marker for larval-type epidermal cells that is applicable to analysis of Xenopus metamorphosis.  相似文献   

17.
The sphingid moth, Manduca sexta, typically passes through five larval instars, a pupal, and an adult stage. The larval labial glands secrete silk in the first instar and a viscous lubricant in the fifth. During metamorphosis the glands develop into salivary organs which produce an invertase-rich secretion. In normal development, the uniform population of cells in the duct of the larval gland transforms into the four sequentially arranged regions of secretory and conductive cells of the adult gland. In order to determine when competence to form the adult gland is established, fragments of labial gland ducts from first through fifth instar larvae were implanted into pupae. These gland fragments underwent metamorphosis with their hosts, passing through the same developmental phases. Glands from as early as the first instar were competent to form histologically and functionally normal adult regions. In later instars, transplants of measured fragments demonstrated that larval cells were programmed in situ to develop into the four adult cell types.  相似文献   

18.
The skin of an adult frog of Xenopus laevis was characterized by the reactivity of 20 lectins. The lectins were classified into six groups in their binding to the epidermal cells: Lycopersicon esculentum lectin (LEL)-type which was positive for all epidermal cells; Pisum sativum agglutinin (PSA)-type for stratum germinativum; succinylated wheat germ agglutinin (sWGA)-type for strata spinosum, granulosum and corneum; Dolichos biflorus agglutinin (DBA)-type for strata germinativum and spinosum; peanut agglutinin (PNA)-type for stratum spinosum; and Ulex europaeus agglutinin (UEA-I)-type for strata granulosum and corneum. PSA and sWGA were utilized as markers of mitotically active germinative cells and the differentiated cells of the epidermis, respectively, to describe the metamorphic conversion of larval epidermal cells to adult type. PSA stained all epidermal cells of tadpoles before metamorphic climax. At the end of metamorphosis, PSA-positive cells were restricted to cells in the basal layer of body epidermis while all the tail epidermis remained PSA-positive. The other cell marker, sWGA, only stained apical cells in tadpole epidermis. During the metamorphic climax, sWGA-positive cells appeared in the cells beneath the stratum corneum of the body region, but not in the tail region. The present study demonstrates that PSA and sWGA are useful to investigate metamorphic changes in tadpole epidermal cells.  相似文献   

19.
In holometabolus insects, morphology of the larval fat body is remodeled during metamorphosis. In higher Diptera, remodeling of the fat body is achieved by cell death of larval fat body cells and differentiation of the adult fat body from primordial cells. However, little is known about remodeling of the fat body at pupal metamorphosis in Lepidoptera. In this study, we found that cell death of the larval fat body in Bombyx mori occurs at shortly after pupation. About 30% of the fat body cells underwent cell death on days 1 and 2 after pupation. The cell death involved genomic DNA fragmentation, a characteristic of apoptosis. Surgical manipulation and in vitro culture of fat body cells revealed that 20-hydroxyecdysone and juvenile hormone had no effect on either initiation or progression of cell death. During cell death, a large increase in activity of caspase-3, a key enzyme of cell death, was observed. Western blot analysis of the active form of caspase-3-like protein revealed that the length of caspase-3 of B. mori was much larger than that of caspase-3 in other species. The results suggest that larval fat body cells of B. mori are removed through cell death, which is mediated by a caspase probably categorized in a novel family.  相似文献   

20.
In adult cnidarians, symbiotic dinoflagellate Symbiodinium are usually located in the gastrodermis. However, the onset of this endosymbiotic association and its regulation during larval development are unclear. This study examined the distribution of the Symbiodinium population in tissue layers of planula larvae released from the stony coral Euphyllia glabrescens. Symbiodinium were redistributed from the epidermis to the gastrodermis, at a rate that was fastest during early planulation and then decreased prior to metamorphosis. This process indicates that the endosymbiotic activity of coral tissues is developmentally regulated. During the early larval stage, both the epidermis and gastrodermis contained Symbiodinium; then, as the larvae developed toward metamorphosis, the numbers in the epidermis gradually diminished until they were only found in the gastrodermis. The mechanism of redistribution remains unknown, but may be due to a direct translocation and/or change in the proliferation of symbionts in different tissue layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号