首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isomaltodextranase (EC 3.2.1.94) from Arthrobacter globiformis T6 hydrolysed thirteen dextrans to various extents (11?64% after 13 days) at initially large but gradually decreasing rates. Dextran B-1355 fraction S was, unlike the other dextrans, hydrolysed by the dextranase initially at the lowest rate among the dextrans used, but the rate was maintained for a long period with little decrease, so that the hydrolysis reached as high as 85% after 13 days. Paper chromatography of these dextran digests revealed that this dextranase produces in addition to isomaltose, one or two trisaccharides [isomaltose residues substituted by (1 →2)-, (1→3)-, or (1→4)-α-D-glucopyranosyl groups at the non-reducing D-glucopyranosyl residues] from every dextran used. It is evident that the non-(1→6)-linkages of these trisaccharide products constitute the “anomalous” linkages of the corresponding dextrans. The relative amounts of these trisaccharide products appear to indicate the approxima te relative amounts of a particular linkage among the dextrans, or the relative amounts of two kinds of linkages of each dextran. The kinds and the relative amounts of “anomalous” linkages of some dextrans were established on the basis of the trisaccharides produced by isomaltodextranase.  相似文献   

2.
An extracellular endo-dextranase has been isolated from Streptococcus mutans K1-R. Incubation of cell-free culture fluid with sucrose permitted the removal of a large proportion of the extracellular d-glucosyltransferases by irreversible adsorption onto the insoluble glucans that these enzymes synthesize from sucrose. The remaining d-glucosyltransferases were separated from dextranase by precipitation with ammonium sulphate, chromatography on hydroxylapatite and DEAE-cellulose, followed by filtration on Ultrogel. The major products of action of the purified dextranase on (1→6)-α-d-glucans were isomaltotriose (IM3), isomaltotetraose (IM4), and isomaltopentaose (IM5). Further hydrolysis of IM4 and IM5 occurred after prolonged incubation with excess of enzyme, to give d-glucose, IM2, and IM3. The relative rate of hydrolysis of isomaltose saccharides fell sharply with decreasing chainlength from IM12 to IM5. The hydrolysis of dextrans containing 96% or more of (1→6)-α-d-glucosidic linkages, expressed as apparent conversion into IM3, was virtually complete, and substrates such as Streptococcus sanguis glucan, containing sequences of (1→6)-α-d-glucosidic linkages, were also effectively hydrolyzed. Dextranase activity towards the soluble glucan of Streptococcus mutans was limited, and there was no action on the insoluble glucan synthesized by S. mutans sucrose 3-d-glucosyltransferase.  相似文献   

3.
Herein, we investigated enzymatic properties and reaction specificities of Streptococcus mutans dextranase, which hydrolyzes α-(1→6)-glucosidic linkages in dextran to produce isomaltooligosaccharides. Reaction specificities of wild-type dextranase and its mutant derivatives were examined using dextran and a series of enzymatically prepared p-nitrophenyl α-isomaltooligosaccharides. In experiments with 4-mg·mL?1 dextran, isomaltooligosaccharides with degrees of polymerization (DP) of 3 and 4 were present at the beginning of the reaction, and glucose and isomaltose were produced by the end of the reaction. Increased concentrations of the substrate dextran (40 mg·mL?1) yielded isomaltooligosaccharides with higher DP, and the mutations T558H, W279A/T563N, and W279F/T563N at the ?3 and ?4 subsites affected hydrolytic activities of the enzyme, likely reflecting decreases in substrate affinity at the ?4 subsite. In particular, T558H increased the proportion of isomaltooligosaccharide with DP of 5 in hydrolysates following reactions with 4-mg·mL?1 dextran.Abbreviations CI: cycloisomaltooligosaccharide; CITase: CI glucanotransferase; CITase-Bc: CITase from Bacillus circulans T-3040; DP: degree of polymerization of glucose unit; GH: glycoside hydrolase family; GTF: glucansucrase; HPAEC-PAD: high performance anion-exchange chromatography-pulsed amperometric detection; IG: isomaltooligosaccharide; IGn: IG with DP of n (n, 2?5); PNP: p-nitrophenol; PNP-Glc: p-nitrophenyl α-glucoside; PNP-IG: p-nitrophenyl isomaltooligosaccharide; PNP-IGn: PNP-IG with DP of n (n, 2?6); SmDex: dextranase from Streptococcus mutans; SmDexTM: S. mutans ATCC25175 SmDex bearing Gln100?Ile732  相似文献   

4.
Mesalamine (5-aminosalicylic acid) is the drug of choice for the treatment of Crohn's disease. A scheme for the synthesis of 5-aminosalicylic acid (5-ASA) conjugates of dextrans was developed with a focus on Crohn's disease applications. Dextrans were oxidised using sodium periodate (NaIO(4)), where the aldehyde groups formed were coupled with the alpha-amino (-NH(2)) group of 5-ASA. The resulting imine bonds were unstable in water and were consequently reduced to secondary amine groups. The effects of different aspects of the conjugation reaction were studied. These included the following: the molecular weight of the dextrans, the molar proportion of NaIO(4) to the dextrans (for periodate oxidation), the pH of the conjugation solutions, the ratio 5-ASA to oxidised polysaccharide and the relationship between the degree of conjugation and the amount of enzyme hydrolysis. Conjugates incubated in HCl were stable in 0.5 and 1.0M HCl, but they underwent degradation in 2.0 and 4.0M HCl. Dextrans (MW 20,000) with various degrees of oxidation (12%, 26%, 46%, 65%, 90% and 93%) were also prepared. Each oxidised dextran sample was conjugated with 5-ASA, and the product was quantified by high-performance liquid chromatography (HPLC). Dextrans with a maximum degree of oxidation (93%) unsurprisingly gave maximum conjugation of 5-ASA (49.1mg per 100mg of product) but were resistant to dextranase hydrolysis. Less oxidised dextrans (12%) conjugated proportionally less 5-ASA (15.1mg per 100mg of product) but were successfully hydrolysed by dextranase, suggesting their potential applications for the treatment of Crohn's disease in the distal ileum and proximal colon.  相似文献   

5.
The action of α-1,6-glucan glucohydrolase on α-(1→6)-D-glucosidic linkages in oligosaccharides that also contain an α-(1→2)-, α-(1→3)-, or α-(1→4)-D-glucosidic linkage has been investigated. The enzyme could hydrolyse α-(1→6)-D-glucosidic linkages from the non-reducing end, including those adjacent to an anomalous linkage. α-(1→6)-D-Glucosidic linkages at branch points were not hydrolysed, and the enzyme could neither hydrolyse nor by-pass the anomalous linkages. These properties of α-1,6-glucan glucohydrolase explain the limited hydrolysis of dextrans by the exo-enzyme. Hydrolysis of the main chain of α-(1→6)-D-glucans will always stop one D-glucose residue away from a branch point. The extent of hydrolysis by α-1,6-glucan glucohydrolase of some oligosaccharide products of the action on dextran of Penicillium funiculosum and P. lilacinum dextranase, respectively, has been compared. Differences in the specificity of the two endo-dextranases were revealed. The Penicillium enzymes may hydrolyse dextran B-512 to produce branched oligosaccharides that retain the same 1-unit and 2-unit side-chains that occur in dextran.  相似文献   

6.
An extracellular dextranase (EC 3.2.1.11) was purified approximately 75-fold from cell-free culture filtrates of Fusarium moniliforme. The purified dextranase was of the endo type, and isomaltose was identified as the primary end product of dextran hydrolysis. The molecular weight of the dextranase was determined to be 39,000 by gel permeation chromatography. The enzyme was most active at pH 5.5, and the temperature optimum was near 55 C. Activity was not inhibited by either ethylenediaminetetraacetic acid or iodoacetate. The Km for dextran with an average molecular weight of 10,000 was estimated to be 1.1 X 10(-4) M. The electrophoretic mobility of the dextranase was distinctly different from that of a Penicillium-derived commercial dextranase. The F. moniliforme dextranase was also found to differ from the commercial preparation by its greater relative activity against glucans isolated from Streptococcus mutans.  相似文献   

7.
The product distributions resulting from the action of Penicillium lilacinum dextranase on end-labelled oligosaccharides of the isomaltose series have been determined. The initial rates of formation of labelled products were measured for isomaltotriose up to isomalto-octaose, and the molar proportions and radioactivity of the final products from isomaltotriose up to isomaltohexaose were determined. D-Glucose was released only from isomaltotriose and isomaltotetraose, by hydrolysis of the first linkage from the reducing end (linkage 1); the terminal bonds of higher members of the series were not attacked. All oligosaccharides except isomaltotriose were hydrolyzed at more than one linkage. The main points of attack on isomaltotetraose up to isomalto-octaose were at linkage 2, and at the third linkage from the non-reducing end; these two positions coincide for isomaltopentaose. The degradation of isomaltotriose up to isomalto-octaose was entirely hydrolytic. The enzyme also catalyzed an extremely slow, concentration-dependent degradation of isomaltose, and this may have occurred via a condensation to isomaltotetraose, followed by hydrolysis of linkage 1 to give D-glucose and isomaltotriose.  相似文献   

8.
A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non-ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50-200 mg/mL(-1) and 10-30 U/mL(-1), respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity.  相似文献   

9.
A derepressed and partially constitutive mutant for dextranase of Lipomyces starkeyi was selected after ethyl methane sulphonate mutagenesis by zone clearance on blue dextran agar plates. The mutant produced dextranase when grown on glucose, fructose and sucrose as well as on dextran, and more enzyme was produced by the mutant than by the parental strain when grown on 1% dextran. The pH and temperature optima for the mutant dextranase were 5.5 and 55°C, respectively. Dextranase produced on sucrose produced more isomaltose and less glucose after dextran hydrolysis than the equivalent enzyme produced on dextran. The clinical size dextran (average mol. wt of 75000 ± 25000) yield of mixed culture fermentation with the mutant and Leuconostoc mesenteroides was 94% of the total dextran produced.  相似文献   

10.
Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity.  相似文献   

11.
A dextranase (EC 3.2.1.11) was purified and characterized from the IP-29 strain of Sporothrix schenckii, a dimorphic pathogenic fungus. Growing cells secreted the enzyme into a standard culture medium (20 °C) that supports the mycelial phase. Soluble bacterial dextrans substituted for glucose as substrate with a small decrease in cellular yield but a tenfold increase in the production of dextranase. This enzyme is a monomeric protein with a molecular mass of 79 kDa, a pH optimum of 5.0, and an action pattern against a soluble 170-kDa bacterial dextran that leads to a final mixture of glucose (38%), isomaltose (38%), and branched oligosaccharides (24%). In the presence of 200 mM sodium acetate buffer (pH 5.0), the K m for soluble dextran was 0.067 ± 0.003% (w/v). Salts of Hg2+, (UO2)2+, Pb2+, Cu2+, and Zn2+ inhibited by affecting both V max and K m. The enzyme was most stable between pH values of 4.50 and 4.75, where the half-life at 55 °C was 18 min and the energy of activation for heat denaturation was 99 kcal/mol. S. schenckii dextranase catalyzed the degradation of cross-linked dextran chains in Sephadex G-50 to G-200, and the latter was a good substrate for cell growth at 20 °C. Highly cross-linked grades (i.e., G-10 and G-25) were refractory to hydrolysis. Most strains of S. schenckii from Europe and North America tested positive for dextranase when grown at 20 °C. All of these isolates grew on glucose at 35 °C, a condition that is typically associated with the yeast phase, but they did not express dextranase and were incapable of using dextran as a carbon source at the higher temperature. Received: 29 December 1997 / Accepted: 4 March 1998  相似文献   

12.
《Process Biochemistry》2010,45(10):1645-1651
Dextransucrase from Leuconostoc mesenteroides and dextranase from Penicillium lilacinum were co-immobilized and used to produce isomaltooligosaccharides from sucrose. The enzymes were co-immobilized by encapsulating soluble dextransucrase and dextranase covalently attached to Eupergit C in alginate (beads, fibers, and capsules). The alginate capsule co-immobilization was done in the presence of soluble starch and resulted in a high immobilization yield (71%), and the enzymes retained their activities during 20 repeated batch reactions and for a month in storage at 4 °C. The presence of starch was essential for the stability of dextransucrase in alginate capsules. Furthermore, it is important that the dextranase be pre-immobilized prior to alginate capsule co-immobilization to prevent dextranase leakage and inactivation of dextransucrase. The co-immobilized enzymes formed oligosaccharides from sucrose, which can be used as prebiotics. In addition, the oligosaccharides that were produced after the addition of sucrose reacted with the alginate fiber-encapsulted dextransucrase, thus increasing the amount of prebiotics. Co-immobilization in alginate fiber and beads also resulted in high yields (70 and 64%), but enzymatic activities decreased by 74 and 99%, respectively, after a month in storage at 4 °C. The newly developed alginate capsule method for co-immobilization of dextransucrase and dextranase is simple yet effective and has the potential for industrial-scale production of isomaltooligosaccharides.  相似文献   

13.
Fungi were isolated from natural soil samples and screened for extracellular dextranase synthesis. The strain F1002 was identified as Hypocrea lixii using a standard internal transcribed spacer ribosomal DNA analysis and was selected for extracellular dextranase synthesis. The enzyme was purified via ammonium sulfate precipitation and Sepharose 6B chromatography, which resulted in an 8.3-fold increase in the specific activity and a 10.73% recovery. This enzyme is a monomeric protein with a molecular mass of 62 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme, which was identified as an endodextranase, had an optimum pH of 5.0 and an optimum temperature of 25 °C. The dextranase activity was enhanced by Mg2+, Al3+, and especially Zn2+ at a low concentration, which improved its activity to 124.22%. The enzyme has a very high hydrolytic affinity toward high-molecular weight dextrans. Setting the concentrations of the H. lixii F1002 dextranase (2.31 U/mL) and dextrans (6%), as well as the reaction time (45 min), allowed the dextranase to hydrolyze dextrans of controlled molecular weights (20–70 kDa). Three types of oligodextrans with different molecular weights (namely, 69,376, 38,251, and 21,364 Da) were obtained, with a total yield of 80.32%.  相似文献   

14.
A kinetic model was devised for the hydrolysis and synthesis of maltose and isomaltose by two glucoamylases from Rhizopus niveus and Aspergillus niger, and the validity of the model was verified experimentally at 313 K and pH 5.0. For both enzymes, the formations of maltose and isomaltose from glucose were parallel reversible reactions, and glucosyl transfer between maltose and isomaltose was not observed. The enzymes catalyzed rapid hydrolysis and synthesis of maltose. Isomaltose was hydrolyzed and synthesized more slowly, but the level produced from glucose was much higher than that of maltose. These hydrolysis and condensation reactions were expressed well by the model.  相似文献   

15.
Kinetic results on the glucomylase-catalysed hydrolysis of maltose and maltotriose, and glucose polymerization into maltose and isomaltose up to 450 g/L total sugar concentration are presented. Whereas the enzyme has a faster hydrolytic and synthetic activity on alpha-(1-->4) than on alpha-(1-->6) linkages, at equilibrium, on the contrary, the isomaltose level which represents 15% (w/w) of the total sugar concentration at the highest investigated concentrations is much higher than the corresponding maltose level. Under a wide range of initial conditions, experimental results are adequately described by a new kinetic model with simple first- and second-order, or Michaelian-type, rate expressions for the reversible hydrolysis of maltotriose, maltose, and isomaltose. The model also accounts for the inhibition of hydrolysis by glucose, but does not consider the concentration of water which, under the present conditions, was not found kinetically limiting.  相似文献   

16.
Leuconostoc mesenteroides B-1299 dextrans are separated into two kinds: fraction L, which is precipitated by an ethanol concentration of 38%, and fraction S, which is precipitated at an ethanol concentration of 40%. Fraction S dextran contained 35% of -1,2 branch linkages, and fraction L contained 27% -1,2 branch linkage with 1% -1,3 branch linkages. We have isolated mutants constitutive for dextransucrase from L. mesenteroides NRRL B-1299 using ethyl methane sulfonate. The mutants produced extracellular as well as cell-associated dextransucrases on glucose media with higher activities (2.5–4.5 times) than what the parental strain produced on sucrose. Based on Penicillium endo-dextranase hydrolysis, mutant B-1299C dextransucrases produced slightly different dextrans when they were elaborated on a glucose medium and on a sucrose medium. Mutant B-1299CA dextransucrase elaborated on a glucose medium and on a sucrose medium synthesized the same dextran, although the dextran was different from those of other mutants and the parental strain. Mutant B-1299CB dextransucrase, elaborated on a glucose medium and on a sucrose medium, formed different dextrans. Differences in water solubility, susceptibility to endo-dextranase hydrolysis, and the physical appearance of the ethanol precipitated dextrans elaborated by different mutants grown on glucose media and sucrose media were found. All mutant dextransucrases elaborated on a glucose medium bound to Sephadex G-200. After activity staining of nondenaturing sodium dodecyl sulfate—polyacrylamide gel electrophoresis activity bands, 184 and 240 Kd for each enzyme preparation, although each dextransucrase formed different dextran(s).  相似文献   

17.
A series of end-labelled isomaltose oligosaccharides was prepared by the reaction of dextran-sucrase with sucrose-14C in the presence of excess of unlabelled isomaltose saccharides as alternative acceptor. The main product of each reaction contained one more D-glucose residue than the acceptor substrate, and the label was located at the non-reducing end. The end-labelled saccharides were used to determine the specificity of a bacterial dextranase that required five or more consecutive α-(1→6)-D-glucosidic linkages in the substrate. The third linkage from the reducing end of isomaltohexaose (IM6) and of other substrates with longer chains (IM7 and IM8) was the most susceptible to attack, and the products from higher oligosaccharides were IM3, IM4, and IM5. Isomaltopentaose (IM5) was further hydrolysed to IM3 and IM2 when a 35-fold excess of enzyme was added, but there was no action on IM4, IM3, or IM2 under these conditions. It was concluded that the dextranase hydrolysed linkages penultimate to either end of the chain only with difficulty, and that end linkages were completely resistant to attack.  相似文献   

18.
A homogeneous glucan has been isolated from the fruiting bodies of Cyttaria harioti Fischer. Partial acid hydrolysis produced major amounts of isomaltose, whereas acetolysis gave maltose and maltotriose. Enzymic hydrolysis with amylo-glucosidase and pullulanase indicated a structure based on maltotriose residues connected by (1→6)-α-D linkages. This conclusion was supported by periodate-oxidation data which also showed that 3–7% of the glucose resisted oxidation. Methylation analysis confirmed the presence of (1→6) and (1→4) linkages in the ratio 1:2.4.  相似文献   

19.
A sugar mixture containing fructooligosaccharides and isomaltooligo-saccharides was produced. Sucrose was converted to fructooligosaccharides by a commercial enzyme preparation. The sugar mixture contained kestose (33.5%), nystose (13.3%), fructofuranosyl nystose (5.7%), glucose (20.9%), and unreacted sucrose (26.6%). The unreacted sucrose was converted to isomaltooligosaccharides by reacting the sugar mixture with Leuconostoc mesenteroides B-512FM dextransucrase. The final product comprised fructooligosaccharides (kestose, nystose, fructofuranosyl nystose), isomaltooligosaccharides (isomaltose through isomaltodecaose), glucose, and fructose.  相似文献   

20.
An exo-l,6-α-glucosidase (EC 3.2.1.70) (glucodextranase) produced extraceUularly by Arthrobacter globiformis I42 was found to invert the configuration of glucose released from dextran, and to require calcium for protection against warming. Among isomaltodextrins used as substrates for this enzyme, the rate of hydrolysis for isomaltose was the lowest and increased with the degree of polymerization (d. p.) of the saccharides up to d. p. 7. The minor activities accompanying purified glucodextranase preparations (release of glucose from starch, splitting of maltose, nigerose and kojibiose) were ascribed to the glucodextranase itself. Fourteen native dextrans and soluble potato starch were subjected to digestion by this glucodextranase and the rate, process and extent of hydrolysis of these substrates were studied relative to the composition of non-l,6-α-linkages of these polysaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号