首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
T7 lysozyme inhibits transcription by T7 RNA polymerase   总被引:40,自引:0,他引:40  
B A Moffatt  F W Studier 《Cell》1987,49(2):221-227
  相似文献   

12.
13.
14.
15.
16.
Selected and counterselected oligodeoxynucleotide sequences were identified in the total sequence of bacteriophage T7 DNA using a statistical criterion derived for a probability model of the Markov chain type. All extremely rare tetra- and pentadeoxynucleotides are (or contain) recognition sequences for the Escherichia coli DNA methylases dam or dcm. Most of the 37 hexadeoxynucleotides absent from T7 DNA are recognition sequences for type II modification/restriction enzymes of E. coli or related species. In contrast to most restriction sites counterselected during evolution, the EcoP1 site GGTCT occurs 126 times in the T7 genome, and phage T7 replication is severely repressed in P1-lysogenic host cells. We demonstrate that the frequency of the EcoP1 site is determined by that of the overlapping recognition sites for T7 primase, an essential phage enzyme. The recognition site of a type III enzyme, EcoP15, is also not counterselected. In T7 DNA all 36 EcoP15 sites are arranged in such a manner that the sequence CAGCAG is confined to the H strand, the complementary sequence CTGCTG to the L strand. This "strand bias" is highly significant and, therefore, very probably selected. A functional relation between this strand bias and the refractive behaviour of phage T7 to EcoP15 restriction is suspected.  相似文献   

17.
18.
In this paper we compare the effect of single-stranded DNA-binding proteins of bacteriophage T7 (gene 2.5 protein) and of Escherichia coli (SSB) at the T7 replication fork. The T7 gene 4 protein acts processively as helicase to promote leading strand synthesis and distributively as primase to initiate lagging strand synthesis by T7 DNA polymerase. On a nicked double-stranded template, the formation of a replication fork requires partial strand displacement so that gene 4 protein may bind to the displaced strand and unwind the helix catalytically. Both the T7 gene 2.5 protein and E. coli SSB act stoichiometrically to promote this initial strand displacement step. Once initiated, processive leading strand synthesis is not greatly stimulated by the single-stranded DNA-binding proteins. However, the T7 gene 2.5 protein, but not E. coli SSB, increases the frequency of initiation of lagging strand synthesis by greater than 10-fold. The results suggest a specific interaction of the T7 gene 2.5 protein with the T7 replication apparatus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号