首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Fusarium head blight (FHB) is a disease of cereal crops, which has a severe impact on wheat and barley production worldwide. Apart from reducing the yield and impairing grain quality, FHB leads to contamination of grain with toxic secondary metabolites (mycotoxins), which pose a health risk to humans and livestock. The Fusarium species primarily involved in FHB are F. graminearum and F. culmorum. A key prerequisite for a reduction in the incidence of FHB is an understanding of its epidemiology.  相似文献   

2.
Fusarium head blight (FHB) is an important disease throughout many of the world wheat-growing areas that have humid to semi-humid climate. The infection happens mainly during the anthesis of the wheat, when there have been favorable conditions of moisture and temperature. The direct relation of the infection to environmental factors makes possible the formulation of mathematical models that predict the disease. The causal agent of the FHB of the spike of wheat is attributed principally to Fusarium graminearum. High economic losses due yield decrease have been recorded in Argentina. In the present work, 67 isolates of Fusarium spp. were obtained from samples of wheat grains from Pampas region from 15 locations distributed in Buenos Aires, Entre Ríos, Santa Fe and Córboba provinces during 2006 and 2007 wheat-growing seasons. The identification of species from monosporic isolates was carried out by morphological characterization and use of species-specific PCR-based assays. Both identification criteria were necessary and complementary for the species determination, since in some cases the molecular identification was not specific. Scanty presence of F. graminearum was observed in 2006 wheat-growing season coinciding with the lack of favorable meteorological conditions for producing FHB infection events. High presence of F. graminearum isolates was observed in 2007 wheat-growing season, in accordance with moderate incidence of the disease according to spatial distribution of FHB incidence values. The aim of this report was to identify the causal agent of the FHB disease by different taxonomic criteria and to relate its occurrence with disease incidence values predicted by a weather-based model in Argentina.  相似文献   

3.
An isolated occurrence of Fusarium head blight (FHB) of wheat was detected in the south-west region of Western Australia during the 2003 harvest season. The molecular identity of 23 isolates of Fusarium spp. collected from this region during the FHB outbreak confirmed the associated pathogens to be F. graminearum, F. acuminatum or F. tricinctum. Moreover, the toxicity of their crude extracts from Czapek-Dox liquid broth and millet seed cultures to brine shrimp (Artemia franciscana) was associated with high mortality levels. The main mycotoxins detected were type B trichothecenes (deoxynivalenol and 3-acetyldeoxynivalenol), enniatins, chlamydosporol and zearalenone. This study is the first report on the mycotoxin profiles of Fusarium spp. associated with FHB of wheat in Western Australia. This study highlights the need for monitoring not just for the presence of the specific Fusarium spp. present in any affected grain but also for their potential mycotoxin and other toxic secondary metabolites.  相似文献   

4.
Fusarium head blight (FHB), also called scab, is a devastating and insidious disease of cereals including wheat (Triticum spp.) and barley (Hordeum vulgare L.) worldwide. Apart from direct yield losses, the most serious concern about FHB is the contamination of the crop with mycotoxins, which pose a health risk to human and livestock. Recent research reported that phylogenetic species F. asiaticum (Fa) and F. graminearum (Fg) were the major causal agents of FHB from infected wheat heads in China. To investigate the population structure of Fusarium species in China by species‐specific as well as the chemotype‐specific markers, sequence‐related amplified polymorphism (SRAP) markers were screened on representative isolates of F. asiaticum‐NIV, F. asiaticum‐ 3ADON and F. graminearum‐15ADON to find amplification products characteristic of either species or chemotypes. Selected amplified fragments were cloned and sequenced so that sequence‐characterized amplified region (SCAR) primer pairs could be developed which permit specific detection of Fusarium species using conventional PCR. Primer pairs SCAR‐Fa1 and SCAR‐Fg1 were confirmed to be able to amplify specific products only in F. asiaticum and F. graminearum isolates, respectively. These species‐specific primers were applied to determine genetic division of F. asiaticum and F. graminearum isolates collected in Yangtze–Huaihe valley. The results indicated that F. asiaticum was the predominant species causing FHB in this wheat production area. It is the first report that SRAP markers were adapted for species characterization in Fusarium isolates.  相似文献   

5.
Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes α-1-purothionin, thaumatin-like protein 1 (tlp-1), and β-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the α-1-purothionin, tlp-1, and β-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A β-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions.  相似文献   

6.
【背景】由禾谷镰刀菌(Fusarium graminearum)引起的小麦赤霉病严重威胁我国的小麦生产。【目的】筛选对禾谷镰刀菌具有拮抗能力的链霉菌菌株,为生防菌剂开发提供理论基础。【方法】利用平板对峙法筛选对禾谷镰刀菌具有拮抗能力的链霉菌;通过形态特征、生理生化特征和16S rRNA基因序列分析对其进行鉴定;通过病原菌菌丝生长、孢子产生及萌发抑制试验分析其发酵液的抑菌活性;利用人工接种试验测定该菌株发酵液的防病效果。【结果】筛选到一株对禾谷镰刀菌具有较强拮抗活性的链霉菌21-1,抑菌率为59.5%。依据形态特征、生理生化特性和16S rRNA基因序列分析,将该菌株鉴定为黄三素链霉菌(Streptomycesflavotricini)。菌株21-1发酵液能够抑制禾谷镰刀菌的菌丝生长、孢子产生及萌发过程,而且可以降低禾谷镰刀菌菌丝中可溶性蛋白质的含量,并增加丙二醛的含量。菌株21-1可以产生蛋白酶及纤维素酶。菌株21-1菌液10倍稀释液对小麦赤霉病的防效最佳,为70.1%。此外,菌株21-1发酵液对其他8种植物病原菌均有较好的抑制作用。【结论】菌株21-1对禾谷镰刀菌有较好的抑菌活性,具...  相似文献   

7.
由禾谷镰刀菌(Fusarium graminearum, Fg)引起的赤霉病是限制小麦生产的主要病害之一。生物防治是一种高效且可持续的防治方法。【目的】从小麦种子内筛选具有抑制禾谷镰刀菌的菌株并对其生防潜力进行评估,为小麦赤霉病生防制剂的开发与利用提供菌种资源及理论支撑。【方法】采用平板对峙、孢子萌发法和无菌上清液抑菌试验筛选小麦种子内对禾谷镰刀菌具有拮抗活性的内生菌株;利用扫描电镜(scanning electron microscope, SEM)和共聚焦扫描电镜(confocal laser scanning microscope, CLSM)观察并分析无菌上清液对Fg的分生孢子形态、膜完整性以及胞内活性氧的影响;通过盆栽试验验证内生菌对小麦赤霉病的生防效果;应用二代Illumina HiSeq测序平台进行全基因组测序。【结果】从小麦种子中分离出一株高效抑制Fg生长的内生菌株JB7,其衰亡期无菌上清液对Fg孢子萌发抑制率高达85.23%。菌株JB7的无菌上清液使Fg孢子表面凹陷,破坏其细胞膜,造成核酸和蛋白质的渗漏,诱导Fg菌丝活性氧的累积,引起Fg菌丝可溶性蛋白和丙二醛含量的显著升高。该菌株具有分泌蛋白酶、纤维素酶、葡聚糖酶和产铁载体的能力。盆栽试验表明菌株JB7能显著降低小麦赤霉病的病情指数(P<0.05)。经全基因组学鉴定为甲基营养型芽孢杆菌(Bacillus methylotrophicus) JB7,该菌株基因组中含有12个抑菌功能的次级代谢产物合成基因簇。【结论】菌株JB7能抑制禾谷镰刀菌的生长,对小麦赤霉病有较强的防效,可作为生物防治小麦赤霉病的候选菌株。  相似文献   

8.
The interactions between barley yellow dwarf virus (BYDV) and Fusarium head blight (FHB), caused by Fusarium graminearum, were studied in the two winter wheat cultivars (cvs.), Agent (susceptible to FHB) and Petrus (moderately resistant to FHB), using ultrastructural and immunocytochemical methods. Infections of wheat plants of both cvs. by BYDV increased susceptibility to FHB. BYDV infection caused numerous cytological changes in lemma tissue of both cvs. such as formation of vesicles in the cytoplasm, degradation of fine structures of chloroplasts of both cvs. and accumulation of large starch grains in the chloroplasts. Electron microscopical studies showed that the development of F. graminearum on spike surfaces was not affected in BYDV‐infected plants. After penetration and intercellular growth in lemma tissue, defence responses to Fusarium infections were markedly reduced in BYDV‐diseased plants compared to the tissue of virus‐free plants. At sites of contact of fungal cells with host tissue, depositions of cell wall material were distinctly less pronounced than in tissues of virus‐free plants of cv. Petrus. Detection of β‐1,3‐glucanases and chitinases in lemma tissue of cv. Agent revealed no appreciably increased accumulation of both defence enzymes in F. graminearum‐infected virus‐free and BYDV‐infected tissues compared to the non‐infected control tissue. On the other hand, in cv. Petrus, infection with F. graminearum induced a markedly enhanced activity of both enzymes 3 days after inoculation. The increase of both enzyme activities was less pronounced in BYDV‐infected plants than in tissue exclusively infected with F. graminearum. Cytological studies suggest that in contrast to the susceptible cv. Agent postinfectional defence responses may play still an important role in the resistance of the moderately resistant cv. Petrus to FHB.  相似文献   

9.
Fusarium head blight (FHB) is a disease of the floral tissues of wheat and barley for which highly resistant varieties are not available. Thus, there is a need to identify genes/mechanisms that can be targeted for the control of this devastating disease. Fusarium graminearum is the primary causal agent of FHB in North America. In addition, it also causes Fusarium seedling blight. Fusarium graminearum can also cause disease in the model plant Arabidopsis thaliana. The Arabidopsis–F. graminearum pathosystem has facilitated the identification of targets for the control of disease caused by this fungus. Here, we show that resistance against F. graminearum can be enhanced by flg22, a bacterial microbe-associated molecular pattern (MAMP). flg22-induced resistance in Arabidopsis requires its cognate pattern recognition receptor (PRR) FLS2, and is accompanied by the up-regulation of WRKY29. The expression of WRKY29, which is associated with pattern-triggered immunity (PTI), is also induced in response to F. graminearum infection. Furthermore, WRKY29 is required for basal resistance as well as flg22-induced resistance to F. graminearum. Moreover, constitutive expression of WRKY29 in Arabidopsis enhances disease resistance. The PTI pathway is also activated in response to F. graminearum infection of wheat. Furthermore, flg22 application and ectopic expression of WRKY29 enhance FHB resistance in wheat. Thus, we conclude that the PTI pathway provides a target for the control of FHB in wheat. We further show that the ectopic expression of WRKY29 in wheat results in shorter stature and early heading time, traits that are important to wheat breeding.  相似文献   

10.
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease in wheat (Triticum aestivum) that results in substantial yield losses and mycotoxin contamination. Reliable genetic resources for FHB resistance in wheat are lacking. In this study, we characterized glycoside hydrolase 12 (GH12) family proteins secreted by F. graminearum. We established that two GH12 proteins, Fg05851 and Fg11037, have functionally redundant roles in F. graminearum colonization of wheat. Furthermore, we determined that the GH12 proteins Fg05851 and Fg11037 are recognized by the leucine-rich-repeat receptor-like protein RXEG1 in the dicot Nicotiana benthamiana. Heterologous expression of RXEG1 conferred wheat responsiveness to Fg05851 and Fg11037, enhanced wheat resistance to F. graminearum and reduced levels of the mycotoxin deoxynivalenol in wheat grains in an Fg05851/Fg11037-dependent manner. In the RXEG1 transgenic lines, genes related to pattern-triggered plant immunity, salicylic acid, jasmonic acid, and anti-oxidative homeostasis signalling pathways were upregulated during F. graminearum infection. However, the expression of these genes was not significantly changed during infection by the deletion mutant ΔFg05851/Fg11037, suggesting that the recognition of Fg05851/Fg11037 by RXEG1 triggered plant resistance against FHB. Moreover, introducing RXEG1 into three other different wheat cultivars via crossing also conferred resistance to F. graminearum. Expression of RXEG1 did not have obvious deleterious effects on plant growth and development in wheat. Our study reveals that N. benthamiana RXEG1 remains effective when transferred into wheat, a monocot, which in turn suggests that engineering wheat with interfamily plant immune receptor transgenes is a viable strategy for increasing resistance to FHB.  相似文献   

11.
Wu AB  Li HP  Zhao CS  Liao YC 《Mycopathologia》2005,160(1):75-83
Fusarium head blight (FHB) or scab caused by Fusarium species is an economically important disease on small grain cereal crops worldwide. Accurate assessments of the pathogenicity of fungal isolates is a key obstacle toward a better understanding of the Fusarium-wheat scab system. In this study, a new laboratory method for inoculation of wheat coleoptiles was developed, which consists of cutting off the coleoptile apex, covering the cut apex with a piece of filter paper soaked in conidial suspension, and measuring the lengths of brown lesions 7 days post inoculation. After coleoptile inoculation, distinct brown lesions in the diseased stems were observed, in which the presence of the fungus was verified by PCR amplification with F.␣graminearum Schwable-specific primers. Coleoptile inoculation of six wheat varieties indicated that a highly susceptible wheat variety was more suitable as a differentiating host for the pathogenicity assay. Analysis of the coleoptiles inoculated with a set of 58 different isolates of F. graminearum showed a significant difference in the lengths of the lesions, forming the basis by which pathogenicity of the isolates was assessed. Field inoculation of florets of three wheat varieties over 2 years revealed significant differences in pathogenicity among the 58 isolates, and that the highly resistant and highly susceptible wheat varieties were more appropriate and stable for pathogenicity assessment in field trials. Comparative analyses of eight inoculation experiments of wheat with 58 F. graminearum isolates showed significant direct linear correlations (P<0.001) between coleoptile and floret inoculations. These results indicate that the wheat coleoptile inoculation is a simple, rapid and reliable method for pathogenicity studies of F.␣graminearum in wheat.  相似文献   

12.
Fusarium head blight (FHB) is a destructive disease of wheat and barley. In wheat it is mainly caused by the fungal pathogens Fusarium graminearum and Fusarium culmorum. We report the identification and evaluation of candidate genes for quantitative FHB resistance. These genes showed altered expression levels in the moderately resistant winter wheat genotypes Capo and SVP72017 after inoculation with F. graminearum. Amongst others, a NPR1-like gene was identified. Sequence analysis of this gene fragment revealed a high level of variation between the parents of a doubled haploid population. Single nucleotide polymorphism and polymerase chain reaction markers were developed and two homoeologous genes were mapped on the long arms of chromosomes 2A and 2D, respectively. Markers for both genes had significant effects on FHB resistance in a diverse collection of 178 European winter wheat cultivars evaluated in multi-environmental field trials after spray inoculation with F. culmorum. These results revealed that allelic variation in two homoeologous NPR1-like genes is associated with FHB resistance in European winter wheat. Markers for these genes might therefore be used for marker-assisted breeding programs.  相似文献   

13.
Fusarium head blight (FHB) caused by Gibberella zeae (anamorph = Fusarium graminearum) is a devastating disease that causes extensive yield and quality losses to wheat in humid and semi-humid regions of the world. Biological control has been demonstrated to be effective under laboratory conditions but a few biocontrol products have been effective under field conditions. The improvement in the physiological quality of biocontrol agents may improve survival under field conditions, and therefore, enhance biocontrol activity. Bacillus subtilis RC 218 and Brevibacillus sp. RC 263 were isolated from wheat anthers and showed significant effect on control of FHB under greenhouse assays. This study showed the effect of water availability measured as water activity (aW) using a growth medium modified with NaCl, glycerol and glucose on: (i) osmotic stress tolerance, (ii) viability in modified liquid medium, (iii) quantitative intracellular accumulation of betaine and ectoine and (iv) the biocontrol efficacy of the physiologically improved agents. Viability of B. subtilis RC 218 in NaCl modified media was similar to the control. Brevibacillus sp. RC 263 showed a limited adaptation to growth in osmotic stress. Betaine was detected in high levels in modified cells but ectoine accumulation was similar to the control cells. Biocontrol activity was studied in greenhouse assays on wheat inoculated at anthesis period with F. graminearum RC 276. Treatments with modified bacteria reduced disease severity from 60% for the control to below 20%. The physiological improvement of biocontrol agents could be an effective strategy to enhance stress tolerance and biocontrol activity under fluctuating environmental conditions.  相似文献   

14.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum, is a major disease problem in wheat (Triticum aestivum). Genetic engineering holds significant potential to enhance FHB resistance in wheat. Due to the requirement of screening for FHB resistance on flowers at anthesis, the number of screens carried out in a year is limited. Our objective was to evaluate the feasibility of using the rapid-maturing dwarf wheat cultivar Apogee as an alternative genotype for transgenic FHB resistance research. Our transformation efficiency (number of transgenic plants/number of embryos) for Apogee was 1.33%. Apogee was also found to exhibit high FHB susceptibility and reached anthesis within 4 weeks. Interestingly, microsatellite marker haplotype analysis of the chromosome 3BS FHB resistant quantitative trait locus (QTL) region indicated that this region maybe deleted in Apogee. Our results indicate that Apogee is particularly well suited for accelerating transgenic FHB resistance research and transgenic wheat research in general. C.A. Mackintosh and D.F. Garvin contributed equally to the article and should be considered co-first authors  相似文献   

15.
A large number of isolates from the Fusarium graminearum clade representing all regions in China with a known history of Fusarium head blight (FHB) epidemics in wheat were assayed using PCR to ascertain their trichothecene mycotoxin chemotypes and associated phylogenetic species and geographical distribution. Of the 299 isolates assayed, 231 are from F. asiaticum species lineage 6, which produce deoxynivalenol and 3-acetyldeoxynivalenol (3-AcDON); deoxynivalenol and 15-acetyldeoxynivalenol (15-AcDON); and nivalenol and 4-acetylnivalenol (NIV) mycotoxins, with 3-AcDON being the predominant chemotype. Ninety-five percent of this species originated from the warmer regions where the annual average temperatures were above 15 °C, based on the climate data of 30 y during 1970–1999. However, 68 isolates within F. graminearum species lineage 7 consisted only of 15-AcDON producers, 59 % of which were from the cooler regions where the annual average temperatures were 15 °C or lower. Identification of a new subpopulation of 15-AcDON producers revealed a molecular distinction between F. graminearum and F. asiaticum that produce 15-AcDON. An 11-bp repeat is present in F. graminearum within their Tri7 gene sequences but is absent in F. asiaticum, which could be directly used for differentiating the two phylogenetic species of the F. graminearum clade.  相似文献   

16.
A two-year trial was conducted to determine the effects of green manures and crop sequences on plant disease, streptomycete and bacterial densities, and inhibitory activity of indigenous streptomycetes against four target pathogens. Green manure treatments, buckwheat (Fagopyrum esculentum L.), canola (Brassica napus L.), sorghum-sudangrass (Sorghum bicolor) (L.) Moench × Sorghum sudanense (Piper) Stapf.), and fallow control were tested in conjunction with three crop sequences in a Phytophthora-infested soil placed in containers. Alfalfa (Medicago sativa L.), potato (Solanum tubersoum L.), or corn (Zea mays L.) was grown in the first year, and alfalfa was grown in all containers in the second year. Compared to fallow controls, alfalfa grown in sorghum-sudangrass- or buckwheat-treated soil had significantly greater stand counts and total biomass, respectively. In addition, alfalfa grown in fallow-treated soils had the greatest Phytophthora root rot as a function of stand count. Crop rotation also had a significant effect on alfalfa root rot and yield. Potato scab disease intensity was greatest on tubers grown in fallow-treated soils, while tubers grown in canola-treated soils had the highest yields (total tuber weight). Green-manure-treated soils tended to have greater streptomycete and bacterial densities than fallow-treated soils. In addition, buckwheat- or sorghum-sudangrass-treated soils had greater proportions of streptomycetes that were antagonistic against the target pathogens than fallow-treated soils. The proportion of antagonists in soil was negatively correlated with alfalfa root rot, and positively correlated with alfalfa stand counts. Inhibitory activity of the streptomycetes was also negatively correlated with potato scab and positively correlated with potato yield. These data suggest that green manures may provide a strategy for increasing pathogen inhibitory activity within the streptomycete community in soil, and, in conjunction with crop rotation, may contribute to the control of a diverse collection of soil-borne plant pathogens on multiple crop species.  相似文献   

17.
18.
Substances produced by Bacillus subtilis D1/2, a bacterium isolated from cultivated soil, were found to inhibit Fusarium graminearum. The antifungal activity of the bacterium was attributable to major extracellular lipopeptides isolated and identified as fengycins. Their synthesis was enhanced by casamino acids added to the culture medium. The unpurified cell-free spent medium elicited hemolysis with increasing concentration. Its application to field-cultivated maize and chamber-grown wheat suppressed gibberella ear rot and Fusarium head blight, respectively, when the plants were inoculated with F. graminearum macroconidia. The treatment of maize ears consistently arrested ear-rot development, while the treatment of wheat spikes retarded the progress of Fusarium head blight. Although the deoxynivalenol and ergosterol contents of treated maize kernels were halved, they remained high because of the experimental requirement to inoculate with a high number (1.5 × 104) of macroconidia. As a potential antifungal agent for controlling Fusarium diseases, B. subtilis D1/2 can be further developed as a useful component of integrated pest management. Handling Editor: Reijo Karjalainen.  相似文献   

19.
20.
Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.‐specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea‐specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea‐specific in transgenic wheat. Single‐floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography–mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB‐susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real‐time PCR analysis revealed that the tissue‐specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue‐specific and pathogen‐inducible expression of this Fusarium‐specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号