首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of mesenchymal stem cells (MSCs) on proliferation and cell fate determination of neural stem cells (NSCs) have been investigated. NSCs were co-cultured with MSCs or NIH3T3 cells using an in vitro transwell system. After 4 days, immunofluorescence staining showed that the number of cells positive for the cell proliferation antigen, ki-67, in neurospheres in MSCs was greater than in NIH3T3 cells. In some experiments, the top-layers of MSCs and NIH3T3 cells were removed to induce NSCs differentiation. Seven days after initiating differentiation, the levels of the neuronal marker, NSE, were higher in NSCs in MSCs co-culture group, and those of glial fibrillary acidic protein (GFAP) were lower, compared with NIH3T3 cells co-culture group. These were confirmed by immunofluorescence. The role of the Notch signaling pathway analyzed with the specific inhibitor, DAPT, and by examining the expression of Notch-related genes using RT-PCR showed that after co-culturing with MSCs for 24 h, NSCs expressed much higher levels of ki-67, Notch1, and Hes1 than did NSCs co-cultured with NIH3T3 cells. Treatment with DAPT decreased ki-67, Notch1 and Hes1 expression in NCSs, and increased Mash1 expression. The data indicate that the interactions between MSCs and NSCs promote NSCs proliferation and are involved in specifying neuronal fate, mediated in part by Notch signaling.  相似文献   

3.
The impact of inflammation is crucial for the regulation of the biology of neural stem cells (NSCs). Interleukin-15 (IL-15) appears as a likely candidate for regulating neurogenesis, based on its well-known mitogenic properties. We show here that NSCs of the subventricular zone (SVZ) express IL-15, which regulates NSC proliferation, as evidenced by the study of IL-15-/- mice and the effects of acute IL-15 administration, coupled to 5-bromo-2'-deoxyuridine/5-ethynyl-2'-deoxyuridine dual-pulse labeling. Moreover, IL-15 regulates NSC differentiation, its deficiency leading to an impaired generation of neuroblasts in the SVZ-rostral migratory stream axis, recoverable through the action of exogenous IL-15. IL-15 expressed in cultured NSCs is linked to self-renewal, proliferation, and differentiation. IL-15-/- NSCs presented deficient proliferation and self-renewal, as evidenced in proliferation and colony-forming assays and the analysis of cell cycle-regulatory proteins. Moreover, IL-15-deficient NSCs were more prone to differentiate than wild-type NSCs, not affecting the cell population balance. Lack of IL-15 led to a defective activation of the JAK/STAT and ERK pathways, key for the regulation of proliferation and differentiation of NSCs. The results show that IL-15 is a key regulator of neurogenesis in the adult and is essential to understanding diseases with an inflammatory component.  相似文献   

4.
Disguising adult neural stem cells   总被引:2,自引:0,他引:2  
  相似文献   

5.
Stem cells remain in specialized niches over the lifespan of the organism in many organs to ensure tissue homeostasis and enable regeneration. How the niche is maintained is not understood, but is probably as important as intrinsic stem cell self-renewal capacity for tissue integrity. We here demonstrate a high degree of phenotypic plasticity of the two main niche cell types, ependymal cells and astrocytes, in the neurogenic lateral ventricle walls in the adult mouse brain. In response to a lesion, astrocytes give rise to ependymal cells and ependymal cells give rise to niche astrocytes. We identify EphB2 forward signaling as a key pathway regulating niche cell plasticity. EphB2 acts downstream of Notch and is required for the maintenance of ependymal cell characteristics, thereby inhibiting the transition from ependymal cell to astrocyte. Our results show that niche cell identity is actively maintained and that niche cells retain a high level of plasticity.  相似文献   

6.
Stem cells may be a novel treatment modality for organ ischemia, possibly through beneficial paracrine mechanisms. Stem cells from older hosts have been shown to exhibit decreased function during stress. We therefore hypothesized that 1) neonatal bone marrow mesenchymal stem cells (nBMSCs) would produce different levels of IL-6, VEGF, and IGF-1 compared with adults (aBMSCs) when stimulated with TNF or LPS; 2) differences in cytokines would be due to distinct cellular characteristics, such as proliferation or pluripotent potential; and 3) differences in cytokines would be associated with differences in p38 MAPK and ERK signaling within nBMSCs. BMSCs were isolated from adult and neonatal mice. Cells were exposed to TNF or LPS with or without p38 or ERK inhibition. Growth factors were measured via ELISA, proliferation via daily cell counts, cell surface markers via flow cytometry, and pluripotent potential via alkaline phosphatase activity. nBMSCs produced lower levels of IL-6 and VEGF, but higher levels of IGF-1 under basal conditions, as well as after stimulation with TNF, but not LPS. Neonatal and adult BMSCs had similar pluripotent potentials and cell surface markers, but nBMSCs proliferated faster. Furthermore, p38 and ERK appeared to play a more substantial role in nBMSC cytokine and growth factor production. Neonatal stem cells may aid in decreasing the local inflammatory response during ischemia, and could possibly be expanded more rapidly than adult cells prior to therapeutic use.  相似文献   

7.
8.
Extracellular nucleotide signaling in the inner ear   总被引:3,自引:0,他引:3  
Extracellular nucleotides, particularly adenosine 5′-triphosphate (ATP), act as signaling molecules in the inner ear. Roles as neurotransmitters, neuromodulators, and as autocrine or paracrine humoral factors are evident. The diversity of the signaling pathways for nucleotides, which include a variety of ATP-gated ion channels (assembled from different subtypes of P2X-receptor subunit) and also different subtypes of G protein-coupled nucleotide receptors (P2Y receptors) supports a major physiological role for ATP in the regulation of hearing and balance. Almost invariably both P2X and P2Y receptor expression is apparent in the complex tissue structures associated with the inner-ear labyrinth. However P2X-receptor expression, commonly associated with fast neurotransmission, is apparent not only with the cochlear and vestibular primary afferent neurons, but also appears to mediate humoral signaling via ATP-gated ion channel localization to the endolymphatic surface of the cochlear sensory epithelium (organ of Corti). This is the site of the sound-transduction process and recent data, including both electrophysiological, imaging, and immunocytochemistry, has shown that the ATP-gated ion channels are colocalized here with the mechano-electrical transduction channels of the cochlear hair cells. In contrast to this direct action of extracellular ATP on the sound-transduction process, an indirect effect is apparent via P2Y-receptor expression, prevalent on the marginal cells of the stria vascularis, a tissue that generates the standing ionic and electrical gradients across the cochlear partition. The site of generation of these gradients, including the dark-cell epithelium of the vestibular labyrinth, may be under autocrine or paracrine regulation mediated by P2Y receptors sensitive to both purines (ATP) and pyrimidines such as UTP. There is also emerging evidence that the nucleoside adenosine, formed as a breakdown product of ATP by the action of ectonucleotidases and acting via P1 receptors, is also physiologically significant in the inner ear. P1-receptor expression (including A1, A2, and A3 subtypes) appear to have roles associated with stress, acting alongside P2Y receptors to enhance cochlear blood flow and to protect against the action of free radicals and to modulate the activity of membrane conductances. Given the positioning of a diverse range of purinergic-signaling pathways within the inner ear, elevations of nucleotides and nucleosides are clearly positioned to affect hearing and balance. Recent data clearly supports endogenous ATP- and adenosine-mediated changes in sensory transduction via a regulation of the electrochemical gradients in the cochlea, alterations in the active and passive mechanical properties of the cells of the sensory epithelium, effects on primary afferent neurons, and control of the blood supply. The field now awaits conclusive evidence linking a physiologically-induced modulation of extracellular nucleotide and nucleoside levels to altered inner ear function.  相似文献   

9.
Wnt信号通路与神经干细胞   总被引:2,自引:0,他引:2  
Zhang H  Yin ZS 《生理科学进展》2005,36(3):249-252
神经干细胞增殖、分化机制的研究为神经系统疾病治疗提供了新的途径,具有巨大的潜在应用价值和理论研究意义。业已发现,Wnt信号通路对神经干细胞的增殖发挥着决定性作用,但新近的研究却表明Wnt信号能够明显促进神经干细胞向神经元分化,这种不同的表现可能与神经干细胞的内在特点、周围环境及靶基因的不同有关。本文试从Wnt信号通路及其在调控神经干细胞的增殖、分化中的作用加以综述。  相似文献   

10.
Aging refers to the physical and functional decline of the tissues over time that often leads to age-related degenerative diseases. Accumulating evidence implicates that the senescence of neural stem cells (NSCs) is of paramount importance to the aging of central neural system (CNS). However, exploration of the underlying molecular mechanisms has been hindered by the lack of proper aging models to allow the mechanistic examination within a reasonable time window. In the present study, we have utilized a hydroxyurea (HU) treatment protocol and effectively induced postnatal subventricle NSCs to undergo cellular senescence as determined by augmented senescence-associated-β-galactosidase (SA-β-gal) staining, decreased proliferation and differentiation capacity, increased G0/G1 cell cycle arrest, elevated reactive oxygen species (ROS) level and diminished apoptosis. These phenotypic changes were accompanied by a significant increase in p16, p21 and p53 expression, as well as a decreased expression of key proteins in various DNA repair pathways such as xrcc2, xrcc3 and ku70. Further proteomic analysis suggests that multiple pathways are involved in the HU-induced NSC senescence, including genes related to DNA damage and repair, mitochondrial dysfunction and the increase of ROS level. Intriguingly, compensatory mechanisms may have also been initiated to interfere with apoptotic signaling pathways and to minimize the cell death by downregulating Bcl2-associated X protein (BAX) expression. Taken together, we have successfully established a cellular model that will be of broad utilities to the molecular exploration of NSC senescence and aging.  相似文献   

11.
The role of stem cells has long been known in reproductive organs and various tissues including the haematopoietic system and skin. During the last decade, stem cells have also been identified in other organs, including the nervous system, both during development and in post-natal life. More recently, evidence has been presented that stem cells thought to be responsible for the generation of mature differentiated cells of one organ, such as haematopoietic stem cells, may have the ability to also differentiate across lineages and contribute to tissues other than haematopoietic cells, including neuronal tissue, suggesting that easily accessible stem cells sources may one day be useful in the therapy of ischaemic (stroke) and also degenerative diseases of the nervous system. Here, we will evaluate the validity of such claims based on a number of criteria we believe need to be fulfilled to definitively conclude that certain stem cells can give rise to functional neural cells that might be suitable for therapy of neural disorders.  相似文献   

12.
A niche for adult neural stem cells   总被引:34,自引:0,他引:34  
The adult mammalian brain harbors multipotent stem cells, which reside and participate in specialized niches that support self-renewal and differentiation. The first cellular and molecular elements of the stem cell niche in the adult brain have been identified and include cell-cell interactions and somatic cell signaling, the vasculature, the extracellular matrix and basal lamina. Furthermore, regulation at the epigenetic level via chromatin modification and remodeling is an integral aspect of stem cell biology. Understanding the in vivo stem cell niche will provide a framework for the elucidation of stem cell function in the adult brain.  相似文献   

13.
Gene delivery to adult neural stem cells   总被引:15,自引:0,他引:15  
Neural stem cells may present an ideal route for gene therapy as well as offer new possibilities for the replacement of neurons lost to injury or disease. However, it has proved difficult to express ectopic genes in stem cells. We report methods to introduce genes into adult neural stem cells using viral and nonviral vectors in vitro and in vivo. Adenoviral and VSV-G-pseudotyped retroviral vectors are more efficient than plasmid transfection or VSV-G lentiviral transduction in vitro. We further show that adult neural stem cells can be directed to a neuronal fate by ectopic expression of neurogenin 2 in vitro. Plasmids can be delivered in vivo when complexed with linear polyethyleneimine, and gene expression can be targeted specifically to neural stem or progenitor cells by the use of specific promoters. These techniques may be utilized both to study the function of various genes in the differentiation of neural stem cells to specific cell fates and, ultimately, for gene therapy or to generate specific differentiated progeny for cell transplantation.  相似文献   

14.
Members of the epidermal growth factor (EGF) family bind to ErbB (EGFR) family receptors which play an important role in the regulation of various fundamental cell processes including cell proliferation and differentiation. The normal rodent kidney has been shown to express at least three members of the ErbB receptor family and is a major site of EGF ligand synthesis. Polycystic kidney disease (PKD) is a group of diseases caused by mutations in single genes and is characterized by enlarged kidneys due to the formation of multiple cysts in both kidneys. Tubule cells proliferate, causing segmental dilation, in association with the abnormal deposition of several proteins. One of the first abnormalities described in cell biological studies of PKD pathogenesis was the abnormal mislocalization of the EGFR in cyst lining epithelial cells. The kidney collecting duct (CD) is predominantly an absorptive epithelium where electrogenic Na+ entry is mediated by the epithelial Na+ channel (ENaC). ENaC-mediated sodium absorption represents an important ion transport pathway in the CD that might be involved in the development of PKD. A role for EGF in the regulation of ENaC-mediated sodium absorption has been proposed. However, several investigations have reported contradictory results indicating opposite effects of EGF and its related factors on ENaC activity and sodium transport. Recent advances in understanding how proteins in the EGF family regulate the proliferation and sodium transport in normal and PKD epithelial cells are discussed here. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

15.
Neural stem cells (NSC) capable of differentiating into neurons, astrocytes and oligodendrocytes are a promising source of cells for the treatment of central nervous system diseases. Access to signaling proteins present in such cells in low copies and with specific regulatory functions has been very restrictive until now as judged by classical proteomic approaches and limitations due to scarcity of stem cell populations. Hence, we utilized the Kinex Antibody Microarray analysis where profiles of the proliferating porcine NSC and differentiated counterparts were compared and selected changes were verified by immunoblotting. Differentiated neural cells exhibited an increased level of RafB proto-oncogene-encoded protein-serine kinase, MAP kinase protein-serine kinase 3, heme oxygenase 2 (HO2) and protein phosphatase 4 catalytical subunit. On the other hand, relatively high level of G protein-coupled receptor-serine kinase 2 and enhanced phosphorylations of alphaB-crystallin (S45), protein-serine kinase C gamma (T655), protein-serine kinase D (PKCmu; S738+S742) together with eukaryotic translation initiation factor 2 alpha (eIF2alpha) (S51) raised intriguing questions as regards their potential functionality within stem cells. In-depth study of HO2 and phospho-S45 alphaB-crystallin confirmed expression profiles and intense cytoplasmic localization of HO2 in neurons but a weaker signal in glial cells. Phospho-S45 alphaB-crystallin was localized in nuclei of differentiated neural cells. Computer simulation of possible interaction network connecting regulated proteins, exposed additional relationships including direct interactions of HO2 with amyloid precursor protein or huntingtin-associated protein 1.  相似文献   

16.
The Hedgehog-Gli (Hh-Gli) signaling pathway is essential for numerous events during the development of many animal cell types and organs. In particular, it controls neural cell precursor proliferation in dorsal brain structures and regulates the number of neural stem cells in distinct embryonic, perinatal, and adult niches, such as the developing neocortex, the subventricular zone of the lateral ventricle of the forebrain, and the hippocampus. We have proposed that Hh-Gli signaling regulates dorsal brain growth during ontogeny and that its differential regulation underlays evolutionary change in the morphology (size and shape) of dorsal brain structures. It is also critically involved in sporadic brain tumorigenesis--as well as several other human cancer--suggesting that tumors derive from stem cells or progenitors maintaining an inappropriate active Hh-Gli pathway. Importantly, we and others have demonstrated that human sporadic tumors from the brain and other organs require sustained HH-GLI signaling for sustained growth and survival. Modulating HH-GLI signaling thus represents a novel rational avenue to treat, on one hand, brain degeneration and injury by inducing controlled HH-GLI-mediated regeneration and growth, and on the other hand, to combat cancer by blocking its abnormal activity in tumor cells.  相似文献   

17.
Neural stem cells are present in specific regions of the adult central nervous system (CNS). Recent evidence suggests that the ciliary epithelium (CE), a CNS derivative, in the adult mammalian eye, harbors a quiescent population of neural stem cells. Here, we report the identification of c-Kit signaling as one of the regulators of adult CE neural stem cells in vitro. c-Kit receptors are expressed in proliferating adult CE neural stem cells and colocalized with neural progenitor markers. Perturbation of c-Kit signaling influences the self-renewal and differentiation of CE neural stem cells, thus demonstrating the role of c-Kit signaling in the maintenance of these cells. In addition, we observed an influence of c-Kit-mediated signaling on the expression of Notch1, another critical regulator of neural stem cells. Our observations suggest that, given the importance of preservation of a stem cell pool for generating different cell types at different times, multiple signaling pathways act in concert for the maintenance of neural stem cells.  相似文献   

18.
《Cellular signalling》2014,26(3):570-579
Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer.The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum.  相似文献   

19.
Chromosome integrity is essential for cell viability and, therefore, highly proliferative cell types require active telomere elongation mechanisms to grow indefinitely. Consistently, deletion of telomerase activity in a genetically modified mouse strain results in growth impairments in all highly proliferative cell populations analyzed so far. We show that telomere attrition dramatically impairs the in vitro proliferation of adult neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of telomerase-deficient adult mice. Reduced proliferation of postnatal neurogenic progenitors was also observed in vivo, in the absence of exogenous mitogenic stimulation. Strikingly, severe telomere erosion resulting in chromosomal abnormalities and nuclear accumulation of p53 did not affect the in vitro proliferative potential of embryonic NSCs. These results suggest that intrinsic differences exist between embryonic and adult neural progenitor cells in their response to telomere shortening, and that some populations of tissue-specific stem cells can bypass DNA damage check points.  相似文献   

20.
We investigated the expression of a novel glycophospholipid, phosphatidylglucoside (PtdGlc), in adult mouse brains. Immunohistochemical analysis with DIM21 antibody, a monoclonal anti-PtdGlc antibody, revealed robust PtdGlc staining in the two primary neurogenic regions of the adult rodent brain, the subventricular zone (SVZ) lining the lateral ventricle and the subgranular zone of the dentate gyrus. Intriguingly, the staining pattern of PtdGlc appeared to overlap that of glial fibrillary acidic protein, an adult neural stem cell marker in these regions. Further immunohistochemical analysis revealed that PtdGlc expression on the cell membranes of adult SVZ neural stem cells significantly overlapped with other proposed adult neural stem cell markers. Moreover, PtdGlc(+) cells isolated from adult mouse SVZs by fluorescence-activated cell sorting with anti-PtdGlc antibody efficiently generated neurospheres in cell culture. These cells differentiated into neurons, astrocytes, and oligodendrocytes in vitro, directly demonstrating that PtdGlc-expressing cells possessed multipotency. Our data suggest that PtdGlc could be a useful adult stem cell marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号