首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP) as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP) accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.  相似文献   

2.
The involvement of P2Y receptors, which are activated by extracellular nucleotides, in proliferative regulation of human lung epithelial cells is unclear. Here we show that extracellular ATP and UTP stimulate bromodeoxyuridine (BrdU) incorporation into epithelial cell lines. The nucleotide efficacy profile [ATP = ADP > UDP >or= UTP > adenosine >or= 2-methylthioadenosine-5'-diphosphate, with alpha,beta-methylene adenosine 5'-triphosphate, 2',3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, AMP, UMP, and ATPalphaS inactive] and PCR analysis indicate involvement of P2Y2 and P2Y6 receptors. The signal transduction pathway, which, via the P2Y2 receptor, transmits the proliferative activity of ATP or UTP in A549 cells downstream of phospholipase C, depends on Ca2+/calmodulin-dependent protein kinase II and nuclear factor-kappaB, but not on protein kinase C. Signaling does not involve the mitogen-activated protein kinases extracellular signal-regulated kinases-1 and -2, the phosphatidylinositol 3-kinase pathway, or Src kinases. Thus nucleotides regulate proliferation of human lung epithelial cells by a novel pathway. The stimulatory effect of UTP, but not ATP, in A549 cells is attenuated by preincubation with interleukin-1beta and interleukin-6, but not tumor necrosis factor-alpha. This indicates an important role for the pyrimidine-activated P2Y receptor in the inflammatory response of lung epithelia. ATP antagonizes the antiproliferative effect of the anticancer drugs paclitaxel and etoposide, whereas it enhances the activity of cisplatin about fourfold. Thus pathways activated by extracellular nucleotides differentially control proliferation of lung epithelial tumor cells.  相似文献   

3.
Gliomas are the most common and devastating type of primary brain tumor. Many non-neoplastic cells, including immune cells, comprise the tumor microenvironment where they create a milieu that appears to dictate cancer development. ATP and the phosphohydrolytic products ADP and adenosine by activating P2 and P1 receptors may participate in these interactions among malignant and immune cells. Purinergic receptor-mediated cell communication is closely regulated by ectonucleotidases, such as by members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, which hydrolyze extracellular nucleotides. We have shown that gliomas, unlike astrocytes, exhibit low NTPDase activity. Furthermore, ATP induces glioma cell proliferation and the co-administration of apyrase decreases progression of injected cells in vivo. We have previously shown that NTPDase2 reconstitution dramatically increases tumor growth in vivo. Here we evaluated whether NTPDase2 reconstitution to gliomas modulates systemic inflammatory responses. We observed that NTPDase2 overexpression modulated pro-inflammatory cytokine production and platelet reactivity. Additionally, pathological alterations in the lungs were observed in rats bearing these tumors. Our results suggest that disruption of purinergic signaling via ADP accumulation creates an inflammatory state that may promote tumor spread and dictate clinical progression.  相似文献   

4.
Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) is the dominant ecto-nucleotidase of vascular and placental trophoblastic tissues and appears to modulate the functional expression of type-2 purinergic (P2) G-protein coupled receptors (GPCRs). Hence, this ectoenzyme could regulate nucleotide-mediated signalling events in placental tissue. This immunohistochemical and immuno-electron microscopic study demonstrates the expression of NTPDase1/CD39, P2Y1 and P2Y2 receptors in different cell types of human placenta. Specifically P2Y1 has an exclusive vascular distribution whereas P2Y2 is localized on trophoblastic villi. Co-localization of P2Y1 and NTPDase1/CD39 are observed in caveolae, membrane microdomains of endothelial cells. The differential localization of these P2 receptors might indicate their unique roles in the regulation of extracellular nucleotide concentrations in human placental tissues and consequent effects on vascular tone and blood fluidity.  相似文献   

5.
Degradation of extracellular ATP by the retinal pigment epithelium   总被引:6,自引:0,他引:6  
Stimulation of ATP or adenosine receptors causes important physiological changes in retinal pigment epithelial (RPE) cells that may influence their relationship to the adjacent photoreceptors. While RPE cells have been shown to release ATP, the regulation of extracellular ATP levels and the production of dephosphorylated purines is not clear. This study examined the degradation of ATP by RPE cells and the physiological effects of the adenosine diphosphate (ADP) that result. ATP was readily broken down by both cultured human ARPE-19 cells and the apical membrane of fresh bovine RPE cells. The compounds ARL67156and -mATP inhibited this degradation in both cell types. RT-PCR analysis of ARPE-19 cells found mRNA message for multiple extracellular degradative enzymes; ectonucleotide pyrophosphatase/phosphodiesterase eNPP1, eNPP2, and eNPP3; the ectoATPase ectonucleoside triphosphate diphosphohydrolase NTPDase2, NTPDase3, and some message for NTPDase1. Considerable levels of ADP bathed RPE cells, consistent with a role for NTPDase2. ADP and ATP increased levels of intracellular Ca2+. Both responses were inhibited by thapsigargin and P2Y1 receptor inhibitor MRS 2179. Message for both P2Y1 and P2Y12 receptors was detected in ARPE-19 cells. These results suggest that extracellular degradation of ATP in subretinal space can result in the production of ADP. This ADP can stimulate P2Y receptors and augment Ca2+ signaling in the RPE. ectoapyrase; PC-1; CD39; CD39L1; P2Y1; P2Y12; ADP; ATP release; photoreceptors; retinal detachment  相似文献   

6.
Regeneration and growth that occur in the adult teleost retina by neurogenesis have been helpful in identifying molecular and cellular mechanisms underlying cell proliferation and differentiation. In this report, we demonstrate that endogenous purinergic signals regulate cell proliferation induced by a cytotoxic injury of the adult zebrafish retina which mainly damages inner retinal layers. Particularly, we found that ADP but not ATP or adenosine significantly enhanced cell division as assessed by 5-bromo-2'-deoxyuridine incorporation following injury, during the degenerative and proliferative phase of the regeneration process. This effect of ADP occurs via P2Y1 metabotropic receptors as shown by intra-ocular injection of selective antagonists. Additionally, we describe a role for purinergic signals in regulating cell death induced by injury. Scavenging of extracellular nucleotides significantly increased cell death principally seen in the inner retinal layers. This effect is partially reproduced by blocking P2Y1 receptors suggesting a neuroprotective function for ADP, which is derived from extracellular ATP probably released by dying cells as a consequence of the ouabain treatment. This study demonstrates a crucial role for ADP as a paracrine signal in the repair of retinal tissue following injury.  相似文献   

7.
8.
Molecular determinants of P2Y2 nucleotide receptor function   总被引:5,自引:0,他引:5  
In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to alphavbeta3/beta5 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.  相似文献   

9.
Membrane-bound NTPDase2 is a member of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family involved in the regulation of P2 receptor signaling. NTPDase2 has broad substrate specificity for extracellular nucleotides, but hydrolyses nucleoside 5'-triphosphates with high preference over nucleoside 5'-diphosphates. In this study, we have sought to determine how enzyme substrates acting on P2 receptors affect intracellular NTPDase2 trafficking. To achieve this, Chinese hamster ovary (CHO) cells were transiently transfected with rat-specific NTPDase2 cDNA tagged with green fluorescent protein (GFP), to allow direct visualisation of subcellular localisation and trafficking of NTPDase2. Cells were superfused with NTPDase2 substrates (ATP and UTP) and synthetic nucleotide analogues (ATPgammaS and ADPbetaS), and confocal image stacks were acquired at regular time intervals. NTPDase2 incorporation into the plasma membrane was determined by comparative analysis of fluorescence intensity in the cytosolic and membrane compartments. GFP-tagged NTPDase2 was fully functional and ATP and ATPgammaS induced membrane incorporation of GFP-NTPDase2 from putative intracellular stores, whilst UTP and ADPbetaS were ineffective. The increased ATP hydrolysis rate correlated with increased NTPDase2 trafficking to the plasma membrane. ATP-induced NTPDase2 trafficking was mediated by activation of endogenous P2X receptors involving Ca2+ entry rather than by P2Y receptor-induced release of Ca2+ from intracellular stores. Our results suggest that P2X receptor activation stimulates insertion of latent NTPDase2 into the plasma membrane. The increase in surface-located NTPDase2 may reflect a regulatory mechanism counteracting excessive stimulation and desensitisation of P2 receptors.  相似文献   

10.
Extracellular nucleotides have a profound role in the regulation of the proliferation of diseased tissue. We studied how extracellular nucleotides regulate the proliferation of LXF-289 cells, the adenocarcinoma-derived cell line from human lung bronchial tumor. ATP and ADP strongly inhibited LXF-289 cell proliferation. The nucleotide potency profile was ATP = ADP = ATPgammaS > > UTP, UDP, whereas alpha,beta-methylene-ATP, beta,gamma-methylene-ATP, 2',3'-O-(4-benzoylbenzoyl)-ATP, AMP and UMP were inactive. The nucleotide potency profile and the total blockade of the ATP-mediated inhibitory effect by the phospholipase C inhibitor U-73122 clearly show that P2Y receptors, but not P2X receptors, control LXF-289 cell proliferation. Treatment of proliferating LXF-289 cells with 100 microm ATP or ADP induced significant reduction of cell number and massive accumulation of cells in the S phase. Arrest in S phase is also indicated by the enhancement of the antiproliferative effect of ATP by coapplication of the cytostatic drugs cisplatin, paclitaxel and etoposide. Inhibition of LXF-289 cell proliferation by ATP was completely reversed by inhibitors of extracellular signal related kinase-activating kinase/extracellular signal related kinase 1/2 (PD98059, U0126), p38 mitogen-activated protein kinase (SB203508), phosphatidylinositol-3-kinase (wortmannin), and nuclear factor kappaB1 (SN50). Western blot analysis revealed transient activation of p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, and nuclear factor kappaB1 and possibly new formation of p50 from its precursor p105. ATP-induced attenuation of LXF-289 cell proliferation was accompanied by transient translocation of p50 nuclear factor kappaB1 and extracellular signal-related kinase 1/2 to the nucleus in a similar time period. In summary, inhibition of LXF-289 cell proliferation is mediated via P2Y receptors by activation of multiple mitogen-activated protein kinase pathways and nuclear factor kappaB1, arresting the cells in the S phase.  相似文献   

11.
12.
Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate complex extracellular P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from this family (NTPDase1-8) are expressed in the adult rat cochlea. This study reports the changes in expression of NTPDase5 and NTPDase6 in the developing rat cochlea. These two intracellular members of the E-NTPDase family can be released in a soluble form and show preference for nucleoside 5′-diphosphates, such as UDP and GDP. Here, we demonstrate differential spatial and temporal patterns for NTPDase5 and NTPDase6 expression during cochlear development, which are indicative of both cytosolic and extracellular action via pyrimidines. NTPDase5 is noted during the early postnatal period in developing sensory hair cells and supporting Deiters’ cells of the organ of Corti, and primary auditory neurons located in the spiral ganglion. In contrast, NTPDase6 is confined to the embryonic and early postnatal hair cell bundles. NTPDase6 immunolocalisation in the developing cochlea underpins its putative role in hair cell bundle development, probably via cytosolic action, whilst NTPDase5 may have a broader extracellular role in the development of sensory and neural tissues in the rat cochlea. Both NTPDase5 and NTPDase6 colocalize with UDP-preferring P2Y4, P2Y6 and P2Y14 receptors during cochlear development, but this strong association was lost in the adult cochlea. Spatiotemporal topographic expression of NTPDase5 and NTPDase6 and P2Y receptors in adult and developing cochlear tissues provide strong support for the role of pyrimidinergic signalling in cochlear development.  相似文献   

13.
14.
Regeneration and growth that occur in the adult teleost retina have been helpful in identifying molecular and cellular mechanisms underlying cell proliferation and differentiation. Here, it is reported that S-phase cell number, in the ciliary marginal zone (CMZ) of the adult zebrafish retina, exhibits day-night variations with a mid-light phase peak. Oscillations persist for 24 h in constant darkness (DD), suggesting control by a circadian component. However, variations in the S-phase nuclei number were rapidly dampened and not present during and after a second day in DD. An ADPβS treatment significantly enhanced S-phase activity at night to mid-light levels, as assessed by in vivo BrdU incorporation in a 2-h interval. Moreover, daylight increase in S-phase cell number was completely abolished when extracellular nucleotide levels or their extracellular hydrolysis by ectonucleoside triphosphate diphosphohydrolases (NTPDases) were significantly disrupted or when a selective antagonist of purinergic P2Y1 receptors was intraocularly injected before BrdU exposure. Extracellular nucleotides and NTPDase action were also important for maintaining nocturnal low levels of S-phase activity in the CMZ. Finally, we showed that mRNAs of NTPDases 1, 2 (3 isoforms), and 3 as well as of P2Y1 receptor are present in the neural retina of zebrafish. NTPDase mRNA expression exhibited a 2-fold increment in light versus dark conditions as assessed by quantitative RT-PCR, whereas P2Y1 receptor mRNA levels did not show significant day-night variations. This study demonstrates a key role for nucleotides, principally ADP as a paracrine signal, as well as for NTPDases, the plasma membrane-bound enzymes that control extracellular nucleotide concentration, for inducing S-phase cell entry in the CMZ-normally associated with retinal growth-throughout the light-dark cycle.  相似文献   

15.
Extracellular nucleotides mediate glia-to-neuron signalling in the retina and are implicated in the volume regulation of retinal glial (Müller) cells under osmotic stress conditions. We investigated the expression and functional role of ectonucleotidases in Müller cells of the rodent retina by cell-swelling experiments, calcium imaging, and immuno- and enzyme histochemistry. The swelling of Müller cells under hypoosmotic stress was inhibited by activation of an autocrine purinergic signalling cascade. This cascade is initiated by exogenous glutamate and involves the consecutive activation of P2Y1 and adenosine A1 receptors, the action of ectoadenosine 5′-triphosphate (ATP)ases, and a nucleoside-transporter-mediated release of adenosine. Inhibition of ectoapyrases increased the ATP-evoked calcium responses in Müller cell endfeet. Müller cells were immunoreactive for nucleoside triphosphate diphosphohydrolases (NTPDase)2 (but not NTPDase1), ecto-5′-nucleotidase, P2Y1, and A1 receptors. Enzyme histochemistry revealed that ATP but not adenosine 5′-diphosphate (ADP) is extracellularly metabolised in retinal slices of NTPDase1 knockout mice. NTPDase1 activity and protein is restricted to blood vessels, whereas activity of alkaline phosphatase is essentially absent at physiological pH. The data suggest that NTPDase2 is the major ATP-degrading ectonucleotidase of the retinal parenchyma. NTPDase2 expressed by Müller cells can be implicated in the regulation of purinergic calcium responses and cellular volume.  相似文献   

16.
17.
Xiao Z  Yang M  Lv Q  Wang W  Deng M  Liu X  He Q  Chen X  Chen M  Fang L  Xie X  Hu J 《Journal of cellular biochemistry》2011,112(9):2257-2265
Extracellular ATP mediates a wide range of physiological effects, including cell proliferation, differentiation, maturation, and migration. However, the effect of ATP on cell proliferation has been contradictory, and the mechanism is not fully understood. In the current study, we found that extracellular ATP significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). Treatment with ATP did not induce cell apoptosis but instead induced cell cycle arrest in S phase. ATP induced the phosphorylation of ERK1/2, but the ERK inhibitors, U0126 and PD9809, did not regulate the inhibition of cell proliferation induced by ATP. However, ATP-induced inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2Y receptors, and endothelial cells expressed P2Y11, a P2Y receptor that specifically binds ATP. Moreover, the down-regulation of P2Y11 by RNA interference not only reversed the inhibition of cell proliferation but also ameliorated cell cycle arrest in S phase. In addition, P2Y11 sensitized endothelial cells to cisplatin-induced cell death by down-regulation of the expression of Bcl-2. Taken together, these results suggest that extracellular ATP impairs cell proliferation by triggering signaling to induce cell cycle arrest and sensitizes cell to death via P2Y11 in endothelial cells.  相似文献   

18.
Respiratory failure is a serious consequence of lung cell injury caused by treatment with high inhaled oxygen concentrations. Human lung microvascular endothelial cells (HLMVEC) are a principal target of hyperoxic injury (hyperoxia). Cell stress can cause release of ATP, and this extracellular nucleotide can activate purinoreceptors and mediate responses essential for survival. In this investigation, exposure of endothelial cells to an oxidative stress, hyperoxia, caused rapid but transient ATP release (20.03 +/- 2.00 nm/10(6) cells in 95% O(2) versus 0.08 +/- 0.01 nm/10(6) cells in 21% O2 at 30 min) into the extracellular milieu without a concomitant change in intracellular ATP. Endogenously produced extracellular ATP-enhanced mTOR-dependent uptake of glucose (3467 +/- 102 cpm/mg protein in 95% oxygen versus 2100 +/- 112 cpm/mg protein in control). Extracellular addition of ATP-activated important cell survival proteins like PI 3-kinase and extracellular-regulated kinase (ERK-1/2). These events were mediated primarily by P2Y receptors, specifically the P2Y2 and/or P2Y6 subclass of receptors. Extracellular ATP was required for the survival of HLMVEC in hyperoxia (55 +/- 10% surviving cells with extracellular ATP scavengers [apyrase + adenosine deaminase] versus 95 +/- 12% surviving cells without ATP scavengers at 4 d of hyperoxia). Incubation with ATP scavengers abolished ATP-dependent ERK phosphorylation stimulated by hyperoxia. Further, ERK activation also was found to be important for cell survival in hyperoxia, as treatment with PD98059 enhanced hyperoxia-mediated cell death. These findings demonstrate that ATP release and subsequent ATP-mediated signaling events are vital for survival of HLMVEC in hyperoxia.  相似文献   

19.
Extracellular ATP and its hydrolysis product adenosine modulate various reproductive functions such as those requiring contraction, steroidogenesis, and maintenance of fluid composition. Interestingly, adenosine might act as a key capacitative effector for mammalian spermatozoa to acquire the capacity for fertilisation. Extracellular nucleotide levels are affected by cell surface ectonucleotidases, amongst which the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family regroups the most abundant and effective enzymes to hydrolyse ATP and ADP to AMP in physiological conditions. In the male reproductive tract three members of this family have been indentified: NTPDase1, NTPDase2 and NTPDase3 (Martín-Satué et al. in Histochem Cell Biol 131:615–628, 2009). The purpose of the present study was to characterize in the male reproductive tract the expression profile of the main enzyme responsible for the generation of adenosine from AMP, namely the ecto-5′-nucleotidase (CD73). The enzyme was identified by immunological techniques and by in situ enzymatic assays, including inhibition experiments with α,β-methylene-ADP, a specific CD73 inhibitor. High levels of ecto-5′-nucleotidase were detected in testes in association with both germinal and somatic cells, in smooth muscle cells throughout the tract, in secretory epithelia from exocrine glands, and remarkably, in principal cells of epididymis, where co-localization with NTPDase3 was found. The relevance of this co-expression on nucleotide hydrolysis in these cells directly involved in the control of sperm fluid composition was addressed biochemically. This study suggests close regulation of extracellular nucleoside and nucleotide levels in the genital tract by ecto-5′-nucleotidase that, in concurrence with NTPDases, may impact male fertility.  相似文献   

20.
Dysregulation of urinary sodium chloride (NaCl) excretion can result in extracellular fluid (ECF) volume expansion and hypertension. Recent studies demonstrated that urinary nucleotide excretion increases in mice ingesting a high-salt diet and that these increases in extracellular nucleotides can signal through P2Y(2) receptors in the kidney collecting duct to inhibit epithelial Na(+) channels (ENaC). However, under conditions of ECF volume expansion brought about by high-dietary salt intake, ENaC activity should already be suppressed. We hypothesized that alternative pathways exist by which extracellular nucleotides control renal NaCl excretion. We used an inner medullary collecting duct (mIMCD-K2) cell line in an Ussing chamber system as a model to study additional ion transport pathways that are regulated by extracellular nucleotides. When ENaC was inhibited, the addition of adenosine triphosphate (ATP) to the basal side of cell sheets activated both P2Y(1) and P2Y(2) receptors, inducing a transient increase in short-circuit current (I(sc)); addition of ATP to the apical side activated only P2Y(2) receptors, inducing first a transient and then a sustained increase in I(sc). The ATP-induced increases in I(sc) were blocked by pretreatment with a phospholipase C (PLC) inhibitor, a calcium (Ca(2+)) chelator, or Ca(2+)-activated Cl(-) channel (CACC) inhibitors, suggesting that ATP signals through both PLC and intracellular Ca(2+) to activate CACC. We propose that P2Y(1) and P2Y(2) receptors operate in tandem in IMCD cells to provide an adaptive mechanism for enhancing urinary NaCl excretion in the setting of high-dietary NaCl intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号