首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signals that are perceived over long distances or leave extended spatial traces are subject to eavesdropping. Eavesdropping has therefore acted as a selective pressure in the evolution of diverse animal communication systems, perhaps even in the evolution of functionally referential communication. Early work suggested that some species of stingless bees (Hymenoptera, Apidae, Meliponini) may use interceptive olfactory eavesdropping to discover food sources being exploited by competitors, but it is not clear if any stingless bee can be attracted to the odour marks deposited by an interspecific competitor. We show that foragers of the aggressive meliponine bee, Trigona spinipes, can detect and orient towards odour marks deposited by a competitor, Melipona rufiventris, and then rapidly take over the food source, driving away or killing their competitors. When searching for food sources at new locations that they are not already exploiting, T. spinipes foragers strongly prefer M. rufiventris odour marks to odour marks deposited by their own nest-mates, whereas they prefer nest-mate odour marks over M. rufiventris odour marks at a location already occupied by T. spinipes nest-mates. Melipona rufiventris foragers flee from T. spinipes odour marks. This olfactory eavesdropping may have played a role in the evolution of potentially cryptic communication mechanisms such as shortened odour trails, point-source only odour marking and functionally referential communication concealed at the nest.  相似文献   

2.
Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing – among other taxa – host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4–5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association.  相似文献   

3.
Social insects have evolved highly developed communication systems, enabling them to coordinate complex interactions in their colonies. Pheromones play a major role in the coordination of many tasks. In Trigona corvina, a stingless bee that occurs in Central America, foragers use pheromones produced in their labial glands to scent mark solid substrates between a food source and their nest. Newly recruited bees subsequently follow these scent marks until they reach the food source. A recent study has revealed nest-specific differences in the composition of these trail pheromones in colonies of T.?corvina, suggesting that pheromone specificity may serve to avoid competition between foragers from different nests. However, the nests used in this study came from different populations and their foragers certainly never met in the field (Jarau et al., 2010). The aim of the present study was to investigate whether differences in the trail pheromones of foragers from different nests can also be found between neighbouring colonies within populations. We analysed the composition of trail pheromones from labial gland secretions extracted from workers from nine colonies collected at three different populations in Costa Rica. The differences in pheromone composition were even more distinct between neighbouring nests within a population than between nests of different populations. This finding corroborates the hypothesis that nest specificity of trail pheromones serves to communicate the location of a food source exclusively to nestmates, thereby avoiding intraspecific competition at resources. Resource partitioning by avoiding conspecific non-nestmates is particularly adaptive for aggressive bee species, such as T. corvina.  相似文献   

4.
Since the seminal work of Lindauer and Kerr (1958), many stingless bees have been known to effectively recruit nestmates to food sources. Recent research clarified properties of several signals and cues used by stingless bees when exploiting food sources. Thus, the main source of the trail pheromone in Trigona are the labial, not however the mandibular glands. In T. recursa and T. spinipes, the first stingless bee trail pheromones were identified as hexyl decanoate and octyl decanoate, respectively. The attractant footprints left by foragers at the food source are secreted by glandular epithelia of the claw retractor tendon, not however by the tarsal gland. Regarding intranidal communication, the correlation between a forager’s jostling rate and recruitment success stresses the importance of agitated running and jostling. There is no evidence for a “dance” indicating food source location, however, whereas the jostling rate depends on food quality. Thoracic vibrations, another intranidal signal well known in Melipona, were analyzed using modern technology and distinguishing substrate vibrations from airborne sound. Quantitative data now permit estimates of signal and potential communication ranges. Airflow jets as described for the honeybee were not found, and thoracic vibrations do not “symbolically” encode visually measured distance in M. seminigra. We dedicate this review to Martin Lindauer and Warwick Kerr who pioneered research on the communication and recruitment in stingless bees by studies reported in a seminal paper published in this Journal half a century ago in 1958.  相似文献   

5.
Colour vision was first demonstrated with behavioural experiments in honeybees 100 years ago. Since that time a wealth of quality physiological data has shown a highly conserved set of trichromatic colour receptors in most bee species. Despite the subsequent wealth of behavioural research on honeybees and bumblebees, there currently is a relative dearth of data on stingless bees, which are the largest tribe of the eusocial bees comprising of more than 600 species. In our first experiment we tested Trigona cf. fuscipennis, a stingless bee species from Costa Rica in a field setting using the von Frisch method and show functional colour vision. In a second experiment with these bees, we use a simultaneous colour discrimination test designed for honeybees to enable a comparative analysis of relative colour discrimination. In a third experiment, we test in laboratory conditions Tetragonula carbonaria, an Australian stingless bee species using a similar simultaneous colour discrimination test. Both stingless bee species show relatively poorer colour discrimination compared to honeybees and bumblebees; and we discuss the value of being able to use these behavioural methods to efficiently extend our current knowledge of colour vision and discrimination in different bee species.  相似文献   

6.
A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives.  相似文献   

7.
In contrast to marking of the location of resources or sexual partners using single-spot pheromone sources, pheromone paths attached to the substrate and assisting orientation are rarely found among flying organisms. However, they do exist in meliponine bees (Apidae, Apinae, Meliponini), commonly known as stingless bees, which represent a group of important pollinators in tropical forests. Worker bees of several Neotropical meliponine species, especially in the genus Scaptotrigona Moure 1942, deposit pheromone paths on substrates between highly profitable resources and their nest. In contrast to past results and claims, we find that these pheromone paths are not an indispensable condition for successful recruitment but rather a means to increase the success of recruiters in persuading their nestmates to forage food at a particular location. Our results are relevant to a speciation theory in scent path-laying meliponine bees, such as Scaptotrigona. In addition, the finding that pheromone path-laying bees are able to recruit to food locations even across barriers such as large bodies of water affects tropical pollination ecology and theories on the evolution of resource communication in insect societies with a flying worker caste.  相似文献   

8.
The theft of food items and building materials from nests of stingless bees (Hymenoptera: Apidae: Meliponini) is most commonly carried out by other Meliponini bee species, especially by those related to genus Lestrimelitta Friese, 1903. In this note, we recorded the theft of cerumen and propolis made by a species of the orchid bee, Euglossa annectans Dressler, 1982 (Apidae: Euglossini) from the nest of the stingless bee Tetragonisca angustula (Latreille, 1811). We noticed that the guard workers of T. angustula did not attack the thief bee even though it did not come sufficiently close to the entrance tube of the nest.  相似文献   

9.
The highly eusocial bee community of the neotropical Atlantic Rainforest was studied at Boracéia Biological Station in the state of São Paulo, Brazil. In this reserve, 17 species of stingless bees and the introduced Africanized honey bee were found, the latter being the most abundant flower visitor. Of all flowering plants, Asteraceae and Myrtaceae were particularly important as resources for bees. Trophic niche overlap between the various species of stingless bees is evident, and it was generally larger within the tribes Meliponini and Trigonini than between members of different tribes. Nevertheless, in the stingless bee community the competitive pressure is rather uniformly spread. The trophic niche of the Africanized honey bee can be positioned between those of Meliponini and Trigonini. Today this introduced species represents the main competitor in this bee community. However, its impact on native stingless bee populations is apparently buffered by mass-flowering trees which are the most important food plants of the indigenous highly eusocial bees.  相似文献   

10.
Microsatellite genotyping of workers from 13 species (ten genera) of stingless bees shows that genetic relatedness is very high. Workers are usually daughters of a single, singly mated queen. This observation, coupled with the multiple mating of honeybee queens, permits kin selection theory to account for many differences in the social biology of the two taxa. First, in contrast to honeybees, where workers are predicted to and do police each other''s male production, stingless bee workers are predicted to compete directly with the queen for rights to produce males. This leads to behavioural and reproductive conflict during oviposition. Second, the risk that a daughter queen will attack the mother queen is higher in honeybees, as is the cost of such an attack to workers. This explains why stingless bees commonly have virgin queens in the nest, but honeybees do not. It also explains why in honeybees the mother queen leaves to found a new nest, while in stingless bees it is the daughter queen who leaves.  相似文献   

11.
Foragers of a stingless bee, Melipona seminigra, are able to use the optic flow experienced en route to estimate flight distance. After training the bees to collect food inside a flight tunnel with black-and-white stripes covering the side walls and the floor, their search behavior was observed in tunnels lacking a reward. Like honeybees, the bees accurately estimated the distance to the previously offered food source as seen from the sections of the tunnel where they turned around in search of the food. Changing the visual flow by decreasing the width of the flight tunnel resulted in the underestimation of the distance flown. The removal of image motion cues either in the ventral or lateral field of view reduced the bees' ability to gauge distances. When the feeder inside the tunnel was displaced together with the bees feeding on it while preventing the bee from seeing any image motion during the displacement the bees experienced different distances on their way to the food source and during their return to the nest. In the subsequent test the bees searched for the food predominantly at the distance associated with their return flight.  相似文献   

12.
Bees are known to collect pollen and nectar to provide their larvae and themselves with food. That bees, especially the tropical stingless bees (Apidae: Meliponini), also collect plant resins has, however, been barely addressed in scientific studies on resource use in bees. Resins are used for nest construction, nest maintenance and nest defence. Furthermore, some South‐East Asian species transfer resin‐derived terpenes to their cuticular profiles. The resin requirement of bees is in turn used by certain plant species, which attract bees either for pollination by providing resin in their inflorescences, or for seed dispersal by providing resin in their seed capsules (mellitochory). Mellitochory is found in the eucalypt tree Corymbia torelliana, the resin of which is collected by Australian stingless bees. We investigated how the interaction between C. torelliana and resin‐collecting bees affects the chemical ecology of two Australian stingless bee genera by comparing the chemical profiles of eight bee species with resin from C. torelliana fruits. The two bee genera differed significantly in their chemical profiles. Similar to South‐East Asian stingless bees, 51% of all compounds on the body surfaces of the five Tetragonula species were most likely derived from plant resins. Up to 32 compounds were identical with compounds from C. torelliana resin, suggesting that Tetragonula species include C. torelliana compounds in their chemical profiles. By contrast, few or none resinous compounds were found on the body surfaces of the three Austroplebeia species sampled. However, one prominent but as yet unknown substance was found in both C. torelliana resin and the chemical profiles of all Tetragonula and four Austroplebeia colonies sampled, suggesting that most colonies (76%) gathered resin from C. torelliana. Hence, C. torelliana resin may be commonly collected by Australian stingless bees and, along with resins from other plant species, shape their chemical ecology.  相似文献   

13.
Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 μg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their susceptibility to insecticides and the vulnerability of their larvae to insecticide exposure emphasize the importance of studying these species.  相似文献   

14.
Priority effects occur when the order of species arrival affects subsequent ecological processes. The order that pollinator species visit flowers may affect pollination through a priority effect, whereby the first visitor reduces or modifies the contribution of subsequent visits. We observed floral visitation to blueberry flowers from honeybees, stingless bees or a mixture of both species and investigated how (i) initial visits differed in duration to later visits; and (ii) how visit sequences from different pollinator taxa influenced fruit weight. Stingless bees visited blueberry flowers for significantly longer than honeybees and maintained their floral visit duration, irrespective of the number of preceding visits. In contrast, honeybee visit duration declined significantly with an increasing number of preceding visits. Fruit weight was positively associated with longer floral visit duration by honeybees but not from stingless bee or mixed species visitation. Fruit from mixed species visits were heavier overall than single species visits, because of a strong priority effect. An initial visit by a stingless bee fully pollinated the flower, limiting the pollination contribution of future visitors. However, after an initial honeybee visit, flowers were not fully pollinated and additional visitation had an additive effect upon fruit weight. Blueberries from flowers visited first by stingless bees were 60% heavier than those visited first by honeybees when total floral visitation was short (∼1 min). However, when total visitation time was long (∼ 8 min), blueberry fruit were 24% heavier when initial visits were from honeybees. Our findings highlight that the initial floral visit can have a disproportionate effect on pollination outcomes. Considering priority effects alongside traditional measures of pollinator effectiveness will provide a greater mechanistic understanding of how pollinator communities influence plant reproductive success.  相似文献   

15.
  1. The tropical stingless bees have evolved intricate communication systems to recruit nestmates to food locations. Some species are able to accurately communicate the location of food, whereas others simply announce the presence of food in the environment.
  2. Plebeia droryana is a tiny Neotropical stingless bee that, until recently, was thought to use a solitary foraging strategy, that is without the use of a recruitment communication system. However, recent research has indicated that P. droryana might be able to recruit nestmates to specific food source locations.
  3. We tested this by studying whether foragers can guide nestmates in the direction and the distance of artificial feeders placed in the vicinity of the colony. We trained bees to a scented sucrose solution feeder at 10 m and placed different feeders either in different directions (experiment 1) or in different distances (experiment 2). We found that P. droryana directs newcomers in the right direction, but distance information does not seem to be communicated.
  4. Moreover, we then tested whether newcomers use chemical and visual cues originating from nestmates foraging at the food source, but found no evidence for the use of these social cues provided by conspecifics.
  5. The potential mechanism that P. droryana may use to orient recruits toward the food source, however, remains unknown and requires further study.
  相似文献   

16.
Solitary bees often form specialised mutualisms with particular plant species, while honeybees are considered to be relatively opportunistic foragers. Thus, it may be expected that solitary bees are more effective pollinators than honeybees when foraging on the same floral resource. To test this, we studied two Wahlenbergia species (Campanulaceae) in South Africa that are visited by both social honeybees and solitary bees, and which are shown here to be genetically self-incompatible and thus reliant on pollinator visits for seed production. Contrary to expectation, the solitary bee Lipotriches sp. (Halictidae) and social bee Apis mellifera (Apidae), which were the two most frequent visitors to flowers of the study species, were equally effective pollinators in terms of the consequences of single visits for fruit and seed set. Both bee species preferentially visited female phase flowers, which contain more nectar than male phase flowers. Male solitary bees of several genera frequently shelter overnight in flowers of both Wahlenbergia species, but temporal exclusion experiments showed that this behaviour makes little contribution to either seed production or pollen dispersal (estimated using a dye particle analogue). Manipulation of flower colour using a sunscreen that removed UV reflectance strongly reduced visits by both bee groups, while neither group responded to Wahlenbergia floral odour cues in choice tests. This study indicates that while flowers of Wahlenbergia cuspidata and W. krebsii are pollinated exclusively by bees, they are not under strong selection to specialise for pollination by any particular group of bees.  相似文献   

17.
Social learning of floral odours inside the honeybee hive   总被引:11,自引:0,他引:11  
A honeybee hive serves as an information centre in which communication among bees allows the colony to exploit the most profitable resources in a continuously changing environment. The best-studied communication behaviour in this context is the waggle dance performed by returning foragers, which encodes information about the distance and direction to the food source. It has been suggested that another information cue, floral scents transferred within the hive, is also important for recruitment to food sources, as bee recruits are more strongly attracted to odours previously brought back by foragers in both honeybees and bumble-bees. These observations suggested that honeybees learn the odour from successful foragers before leaving the hive. However, this has never been shown directly and the mechanisms and properties of the learning process remain obscure. We tested the learning and memory of recruited bees in the laboratory using the proboscis extension response (PER) paradigm, and show that recruits indeed learn the nectar odours brought back by foragers by associative learning and retrieve this memory in the PER paradigm. The associative nature of this learning reveals that information was gained during mouth-to-mouth contacts among bees (trophallaxis). Results further suggest that the information is transferred to long-term memory. Associative learning of food odours in a social context may help recruits to find a particular food source faster.  相似文献   

18.
The pheromones used by several species of stingless bees for scent trail communication are generally assumed to be produced by the mandibular glands. Here we present strong evidence that in Trigona recursa these pheromones originate from the labial glands, which are well developed in the heads of foragers. Analysis of the behavior involved in scent marking shows that a bee extends her proboscis and rubs it over the substrate. A single scent marking event lasts for 0.59±0.21 s while the bee runs a stretch of 1.04±0.37 cm on a leaf. According to choice experiments the bees are attracted by a feeder baited with labial gland extract (84.2±6% of the bees choose this feeder) but repelled from a feeder baited with mandibular gland extract (only 27.5±13.1% of the bees choose this feeder). They do not discriminate between two clean feeders (49.6±3% of the bees at a feeder). 87±5.1% of bees already feeding leave the feeder after the application of mandibular gland extract whereas only 6.2±4.9% and 2.6±4% do so when labial gland extract or pure solvent was applied.  相似文献   

19.
Insects may be unique in having a cuticle with a species-specific chemical profile. In social insects, colony survival depends not only on species-specific but also on colony-specific cuticular compounds with hydrocarbons playing an important role in the communication systems of ants, termites, wasps and bees. We investigated inter- and intraspecific differences in the composition of compounds found on the body surface of seven paleotropical stingless bee species (Apidae: Meliponini) at two different sites in Borneo (Sabah, Malaysia). Besides hydrocarbons, the body surface of all seven stingless bee species comprised terpenoid compounds, a substance class that has not been reported for chemical profiles of any social insect so far. Moreover, the chemical profile of some species differed fundamentally in the composition of terpenoids with one group (e.g. sesquiterpenes) being present in one species, but missing in another. Chemical profiles of different colonies from the same species showed the same hydrocarbon- and terpenoid compounds over different regions, as tested for Tetragonilla collina and Tetragonula melanocephala. However, chemical profiles differed quantitatively between the different colonies especially in T. melanocephala. It is likely that the terpenoids are derived from plant resins because stingless bees are known to collect and use large amounts of resins for nest construction and defence, suggesting an environmental origin of the terpenoids in the chemical profile of paleotropical stingless bees.  相似文献   

20.
《Animal behaviour》2003,66(6):1129-1139
We evaluated the ability of two Brazilian stingless bee species, Melipona mandacaia andM. bicolor , to recruit nestmates to a specific three-dimensional location. We used experimental feeder arrays and provide the first detailed evidence demonstrating that recruitment communication in Melipona can lead to large, rapid and highly significant increases in the number of nestmates visiting a specific location. Melipona bicolor andM. mandacaia foragers both recruited nestmates to the correct distance and direction, but differed in their ability to recruit nestmates to the correct height. These differences may relate to their respective habitats. Melipona mandacaia inhabits semi-arid areas of Caatinga where most food sources occur close to the ground, and its foragers evidently cannot recruit nestmates to the correct height. Melipona bicolor, an Atlantic rainforest species, evidently does not communicate height when the food source is at ground level, but can communicate height when the food source is at the forest canopy level (12 m high), where major food sources occur. Species-specific variation in three-dimensional location communication is intriguing because it suggests that Melipona may be a good model for studying the evolution of recruitment communication systems in highly social bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号