首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In lymphoid tissues coinfected with Mycobacterium avium complex (MAC) and HIV-1, increased viral replication has been observed. This study investigates the role of MAC in perpetuating both infections through the recruitment of monocytes as potential new hosts for bacteria and HIV-1. Increased numbers of macrophages were present in the lymph nodes of patients with dual infection as compared with lymph nodes from HIV(+) patients with no known opportunistic pathogens. In a coculture system, monocyte-derived macrophages were treated with HIV-1 or M. avium and its constituents to further define the mechanism whereby MAC infection of macrophages initiates monocyte migration. Monocyte-derived macrophages treated with bacteria or bacterial products, but not HIV-1, induced a rapid 2- to 3-fold increase in recruitment of monocytes. Pretreatment of the monocytes with pertussis toxin inhibited the migration of these cells, indicating a G protein-linked pathway is necessary for induction of chemotaxis and thus suggesting the involvement of chemokines. Analysis of chemokine mRNA and protein levels from M. avium-treated cultures revealed MAC-induced increases in the expression of IL-8, macrophage-inflammatory protein (MIP)-1alpha, and MIP-1beta with donor-dependent changes in monocyte chemotactic protein-1. Pyrrolidine dithiocarbamate, an antioxidant, inhibited the activation of NF-kappaB and significantly diminished the MAC-induced chemotaxis, concurrently lowering the levels of monocyte chemotactic protein-1 and MIP-1beta. These data demonstrate that MAC induces macrophage production of multiple chemotactic factors via NF-kappaB to promote monocyte migration to sites of MAC infection. In vivo, opportunistic infection may act as a recruitment mechanism in which newly arrived monocytes serve as naive hosts for both MAC and HIV-1, thus perpetuating both infections.  相似文献   

2.
Macrophages infected with HIV-1 produce high levels of M-CSF and macrophage-inflammatory protein-1alpha (MIP-1alpha). M-CSF facilitates the growth and differentiation of macrophages, while the chemotactic properties of MIP-1alpha attract both T lymphocytes and macrophages to the site of HIV infection. Studies described in this work indicate M-CSF may function in an autocrine/paracrine manner to sustain HIV replication, and data suggest possible therapeutic strategies for decreasing viral load following HIV infection. We show that macrophage infection with measles virus or respiratory syncytial virus, in contrast to HIV-1, results in production of MIP-1alpha, but not M-CSF. Thus, M-CSF appears to be specifically produced upon infection of macrophages with HIV-1. Furthermore, addition of M-CSF antagonists to HIV-1-infected macrophages, including anti-M-CSF monoclonal or polyclonal Abs or soluble M-CSF receptors, dramatically inhibited HIV-1 replication and reduced production of MIP-1alpha. Our results suggest that biologic antagonists for M-CSF may represent novel strategies for inhibiting the spread of HIV-1 by 1) blocking virus replication in macrophages, 2) reducing recruitment of HIV-susceptible T cells and macrophages by MIP-1alpha, and 3) preventing the establishment and maintenance of infected macrophages as a reservoir for HIV.  相似文献   

3.
4.
Activated lymphocytes synthesize and secrete substantial amounts of the beta-chemokines macrophage inflammatory protein (MIP)-1 alpha/CCL3 and MIP-1 beta/CCL4, both of which inhibit infection of cells with human immunodeficiency virus type 1 (HIV-1). The native form of MIP-1 beta secreted by activated human peripheral blood lymphocytes (MIP-1 beta(3-69)) lacks the two NH(2)-terminal amino acids of the full-length protein. This truncated form of MIP-1 beta has now been affinity-purified from the culture supernatant of such cells, and its structure has been confirmed by mass spectrometry. Functional studies of the purified protein revealed that MIP-1 beta(3-69) retains the abilities to induce down-modulation of surface expression of the chemokine receptor CCR5 and to inhibit the CCR5-mediated entry of HIV-1 in T cells. Characterization of the chemokine receptor specificity of MIP-1 beta(3-69) showed that the truncated protein not only shares the ability of intact MIP-1 beta to induce Ca(2+) signaling through CCR5, but unlike the full-length protein, it also triggers a Ca(2+) response via CCR1 and CCR2b. These results demonstrate that NH(2)-terminally truncated MIP-1 beta functions as a chemokine agonist with expanded receptor reactivity, which may represent an important mechanism for regulation of immune cell recruitment during inflammatory and antiviral responses.  相似文献   

5.
Choe W  Volsky DJ  Potash MJ 《Journal of virology》2001,75(22):10738-10745
Human immunodeficiency virus type 1 (HIV-1) interacts with its target cells through CD4 and a coreceptor, generally CCR5 or CXCR4. Macrophages display CD4, CCR5, and CXCR4 that are competent for binding and entry of virus. Virus binding also induces several responses by lymphocytes and macrophages that can be dissociated from productive infection. We investigated the responses of macrophages to exposure to a series of HIV-1 species, R5 species that productively infect and X4 species that do not infect macrophages. We chose to monitor production of several physiologically relevant factors within hours of treatment to resolve virally induced effects that may be unlinked to HIV-1 production. Our novel findings indicate that independently of their coreceptor phenotype and independently of virus replication, exposure to certain R5 and X4 HIV-1 species induced secretion of high levels of macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, RANTES, and tumor necrosis factor alpha. However two of the six R5 species tested, despite efficient infection, were unable to induce rapid chemokine production. The acute effects of virus on macrophages could be mimicked by exposure to purified R5 or the X4 HIV-1 envelope glycoprotein gp120. Depletion of intracellular Ca(2+) or inhibition of protein synthesis blocked the chemokine induction, implicating Ca(2+)-mediated signal transduction and new protein synthesis in the response. The group of viruses able to induce this chemokine response was not consistent with coreceptor usage. We conclude that human macrophages respond rapidly to R5 and X4 envelope binding by production of high levels of physiologically active proteins that are implicated in HIV-1 pathogenesis.  相似文献   

6.
The macrophage occupies a central role in the host response to invasion, exerting its control over the developing inflammatory response largely through the elaboration of an assortment of endogenous mediators including many cytokines. The beta chemokine peptides, macrophage inflammatory protein [MIP]-1 alpha and MIP-1 beta, are two such effectors markedly up-regulated in macrophages following exposure to bacterial lipopolysaccharide (LPS). These highly homologous peptides, like the other members of the beta chemokine family, exhibit diverse but partially overlapping biological activity profiles, suggesting that the cellular participants and intensity of an inflammatory response may in part be regulated by selective expression of these chemokines. Studies reported here demonstrate that, in contrast to the "balanced" MIP-1 alpha/MIP-1 beta chemokine responses of LPS-stimulated macrophage cultures in vitro, circulating levels of MIP-1 beta are significantly higher than those of MIP-1 alpha following LPS administration in vivo. Further studies have revealed that several immunomodulatory cytokines known to be up-regulated in vivo as a consequence of exposure to an invasive stimulus (gamma-IFN, IL-10, IL-4, and transforming growth factor [TGF]-beta) down-regulated the LPS-induced release of MIP-1 alpha by macrophages in vitro, but spared the MIP-1 beta response. This altered pattern of secretion may explain, at least in part, the high circulating levels of MIP-1 beta relative to MIP-1 alpha observed in vivo in response to LPS challenge.  相似文献   

7.
BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) infection leads to a general exhaustion of the immune system. Prior to this widespread decline of immune functions, however, there is an evident hyperactivation of the monocyte/macrophage arm. Increased levels of cytokines and other biologically active molecules produced by activated monocytes may contribute to the pathogenesis of HIV disease both by activating expression of HIV-1 provirus and by direct effects on cytokine-sensitive tissues, such as lung or brain. In this article, we investigate mechanisms of hyperresponsiveness of HIV-infected monocytes. MATERIALS AND METHODS: The study was performed on monocyte cultures infected in vitro with a monocytetropic strain HIV-1ADA. Cytokine production was induced by stimulation of cultures with lipopolysaccharides (LPS) and measured by ELISA. To study involvement of nitric oxide (NO) in the regulation of cytokine expression, inhibitors of nitric oxide synthase (NOS) or chemical donors of NO were used. RESULTS: We demonstrate that infection with HIV-1 in vitro primes human monocytes for subsequent activation with LPS, resulting in increased production of pro-inflammatory cytokines tumor necrosis factor (TNF) and interleukin 6 (IL-6). This priming effect can be blocked by Ca(2+)-chelating agents and by the NOS inhibitor L-NMMA, but not by hemoglobin. It could be reproduced on uninfected monocyte cultures by using donors of NO, but not cGMP, together with LPS. CONCLUSIONS: NO, which is expressed in HIV-1-infected monocyte cultures, induces hyperresponsiveness of monocytes by synergizing with calcium signals activated in response to LPS stimulation. This activation is cGMP independent. Our findings demonstrate the critical role of NO in HIV-1-specific hyperactivation of monocytes.  相似文献   

8.
9.
Primary isolates of human immunodeficiency virus type 1 (HIV-1) predominantly use chemokine receptor CCR5 to enter target cells. The natural ligands of CCR5, the beta-chemokines macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES, interfere with HIV-1 binding to CCR5 receptors and decrease the amount of virions entering cells. Although the inhibition of HIV-1 entry by beta-chemokines is well documented, their effects on postentry steps of the viral life cycle and on host cell components that control the outcome of infection after viral entry are not well defined. Here, we show that all three beta-chemokines, and MIP-1alpha in particular, inhibit postentry steps of the HIV-1 life cycle in primary lymphocytes, presumably via suppression of intracellular levels of cyclic AMP (cAMP). Productive HIV-1 infection of primary lymphocytes requires cellular activation. Cell activation increases intracellular cAMP, which is required for efficient synthesis of proviral DNA during early steps of viral infection. Binding of MIP-1alpha to cognate receptors decreases activation-induced intracellular cAMP levels through the activation of inhibitory G proteins. Furthermore, inhibition of one of the downstream targets of cAMP, cAMP-dependent PKA, significantly inhibits synthesis of HIV-1-specific DNA without affecting virus entry. These data reveal that beta-chemokine-mediated inhibition of virus replication in primary lymphocytes combines inhibitory effects at the entry and postentry levels and imply the involvement of beta-chemokine-induced signaling in postentry inhibition of HIV-1 infection.  相似文献   

10.
IFN-alpha/beta-mediated functions promote production of MIP-1alpha (or CCL3) by mediating the recruitment of MIP-1alpha-producing macrophages to the liver during early infection with murine CMV. These responses are essential for induction of NK cell inflammation and IFN-gamma delivery to support effective control of local infection. Nevertheless, it remains to be established if additional chemokine functions are regulated by IFN-alpha/beta and/or play intermediary roles in supporting macrophage trafficking. The chemokine MCP-1 (or CCL2) plays a distinctive role in the recruitment of macrophages by predominantly stimulating the CCR2 chemokine receptor. Here, we examine the roles of MCP-1 and CCR2 during murine CMV infection in liver. MCP-1 production preceded that of MIP-1alpha during infection and was dependent on IFN-alpha/beta effects for induction. Resident F4/80(+) liver leukocytes were identified as primary IFN-alpha/beta responders and major producers of MCP-1. Moreover, MCP-1 deficiency was associated with a dramatic reduction in the accumulation of macrophages and NK cells, as well as decreased production of MIP-1alpha and IFN-gamma in liver. These responses were also markedly impaired in mice with a targeted disruption of CCR2. Furthermore, MCP-1- and CCR2-deficient mice exhibited increased viral titers and elevated expression of the liver enzyme alanine aminotransferase in serum. These mice also had widespread virus-induced liver pathology and succumbed to infection. Collectively, these results establish MCP-1 and CCR2 interactions as factors promoting early liver inflammatory responses and define a mechanism for innate cytokines in regulation of chemokine functions critical for effective localized antiviral defenses.  相似文献   

11.
Recent studies have shown that progesterone, a sex steroid hormone, enhances the sexual transmission of various pathogens, including SIV. The goal of this study was to determine whether progesterone affects mechanisms underlying the sexual transmission of HIV-1. We first studied the effects of various physiologic concentrations of progesterone on the expression of chemokines and chemokine receptors by T cells and macrophages. Chemokines are involved in leukocyte recruitment to peripheral sites; in addition, the chemokine receptors CCR5 and CXCR4 are HIV-1 coreceptors, and their ligands can block HIV-1 infection. Progesterone treatment had no effect on constitutive expression of CCR5 and CXCR4 by nonactivated T cells and macrophages, but significantly inhibited IL-2-induced up-regulation of CCR5 and CXCR4 on activated T cells (p < 0.05). Progesterone also inhibited both mitogen-induced proliferation and chemokine secretion (macrophage inflammatory protein-1alpha, macrophage inflammatory protein-1beta, RANTES) by CD8+ T lymphocytes. Control and progesterone-treated PBMC cultures were also tested for susceptibility to infection by T cell-tropic (HIV-1MN) and macrophage-tropic (HIV-1JR-CSF) viral strains in vitro. Infection with low titers of HIV-1MN was consistently inhibited in progesterone-treated cultures; progesterone effects on infection with the HIV-1JR-CSF strain were more variable, but correlated with progesterone-induced reductions in CCR5 levels. These results indicate that progesterone treatment can inhibit mechanisms underlying HIV-1 transmission, including infection of CD4+ target cells via CXCR4/CCR5 coreceptors and effects on chemokine-mediated recruitment of lymphocytes and monocytes to mucosal epithelia.  相似文献   

12.
Infection of macrophage lineage cells is a feature of primate lentivirus replication, and several properties of primate lentiviruses seem to have evolved to promote the infection of macrophages. Here we demonstrate that the accessory gene product Nef induces the production of two CC-chemokines, macrophage inflammatory proteins 1alpha and 1beta, by HIV-1-infected macrophages. Adenovirus-mediated expression of Nef in primary macrophages was sufficient for chemokine induction. Supernatants from Nef-expressing macrophages induced both the chemotaxis and activation of resting T lymphocytes, permitting productive HIV-1 infection. These results indicate a role for Nef in lymphocyte recruitment and activation at sites of virus replication.  相似文献   

13.
Neutrophils dominate acute inflammatory responses that generally evolve into chronic inflammatory reactions mediated by monocyte/macrophages and lymphocytes. The latter cell types also serve as major targets for human immunodeficiency virus type 1 (HIV-1). In this study we have investigated the role of neutrophil products, particularly cathepsin G, in HIV infection. Cathepsin G induced chemotaxis and production of proinflammatory cytokines by macrophages but not CD4(+) T cells. Pretreatment with cathepsin G markedly increased susceptibility of macrophages but not CD4(+) T cells to acute HIV-1 infection. When macrophages were exposed to pertussis toxin prior to cathepsin G treatment, the cathepsin G-mediated effect was almost abrogated, suggesting that enhancement of HIV-1 replication by cathepsin G requires Gi protein-mediated signal transduction. Although prolonged exposure to cathepsin G suppressed HIV infection of macrophages, serine protease inhibitors, which are exuded from the bloodstream later during inflammatory processes, neutralized the inhibitory effect. Neutrophil extracts or supernatants from neutrophil cultures, which contain cathepsin G, had effects similar to purified cathepsin G. Thus, cathepsin G, and possibly other neutrophil-derived serine proteases, may have multiple activities in HIV-1 infection of macrophages, including chemoattraction of monocyte/macrophages (HIV-1 targets) to inflamed tissue, activation of target cells, and increase in their susceptibility to acute HIV-1 infection.  相似文献   

14.
Host-derived chemoattractant factors are suggested to play crucial roles in leukocyte recruitment elicited by inflammatory stimuli in vitro and in vivo. However, in the case of acute bacterial infections, pathogen-derived chemoattractant factors are also present, and it has not yet been clarified how cross-talk between chemoattractant receptors orchestrates diapedesis of leukocytes in this context of complex chemoattractant arrays. To investigate the role of chemokine (host-derived) and formyl peptide (pathogen-derived) chemoattractants in leukocyte extravasation in life-threatening infectious diseases, we used a mouse model of pneumococcal pneumonia. We found an increase in mRNA expression of eight chemokines (RANTES, macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, MIP-2, IP-10, monocyte chemoattractant protein (MCP)-1, T cell activation 3, and KC) within the lungs during the course of infection. KC and MIP-2 protein expression closely preceded pulmonary neutrophil recruitment, whereas MCP-1 protein production coincided more closely than MIP-1alpha with the kinetics of macrophage infiltration. In situ hybridization of MCP-1 mRNA suggested that MCP-1 expression started at peribronchovascular regions and expanded to alveoli-facing epithelial cells and infiltrated macrophages. Interestingly, administration of a neutralizing Ab against MCP-1, RANTES, or MIP-1alpha alone did not prevent macrophage infiltration into infected alveoli, whereas combination of the three Abs significantly reduced macrophage infiltration without affecting neutrophil recruitment. The use of an antagonist to N-formyl peptides, N-t-Boc-Phe-D-Leu-Phe-D-Leu-Phe, reduced both macrophages and neutrophils significantly. These data demonstrate that a complex chemokine network is activated in response to pulmonary pneumococcal infection, and also suggest an important role for fMLP receptor in monocyte/macrophage recruitment in that model.  相似文献   

15.
To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1alpha-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1alpha (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat-beta-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1beta (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1alpha. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1alpha, MIP-1beta, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors.  相似文献   

16.
Extravascular fibrin deposition is an early and persistent hallmark of inflammatory responses. Fibrin is generated from plasma-derived fibrinogen, which escapes the vasculature in response to endothelial cell retraction at sites of inflammation. Our ongoing efforts to define the physiologic functions of extravasated fibrin(ogen) have led to the discovery, reported here, that fibrinogen stimulates macrophage chemokine secretion. Differential mRNA expression analysis and RNase protection assays revealed that macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, MIP-2, and monocyte chemoattractant protein-1 are fibrinogen inducible in the RAW264.7 mouse macrophage-like cell line, and ELISA confirmed that both RAW264.7 cells and primary murine thioglycolate-elicited peritoneal macrophages up-regulate the secretion of monocyte chemoattractant protein-1 >100-fold upon exposure to fibrinogen. Human U937 and THP-1 precursor-1 (THP-1) monocytic cell lines also secreted chemokines in response to fibrinogen, upon activation with IFN-gamma and differentiation with vitamin D(3), respectively. LPS contamination could not account for our observations, as fibrinogen-induced chemokine secretion was sensitive to heat denaturation and was unaffected by the pharmacologic LPS antagonist polymyxin B. Nevertheless, fibrinogen- and LPS-induced chemokine secretion both apparently required expression of functional Toll-like receptor 4, as each was diminished in macrophages derived from C3H/HeJ mice. Thus, innate responses to fibrinogen and bacterial endotoxin may converge at the evolutionarily conserved Toll-like recognition molecules. Our data suggest that extravascular fibrin(ogen) induces macrophage chemokine expression, thereby promoting immune surveillance at sites of inflammation.  相似文献   

17.
The CC-chemokines RANTES, macrophage inflammatory protein 1alpha (MIP-1alpha), and MIP-1beta are natural ligands for the CC-chemokine receptor CCR5. MIP-1alpha, also known as LD78alpha, has an isoform, LD78beta, which was identified as the product of a nonallelic gene. The two isoforms differ in only 3 amino acids. LD78beta was recently reported to be a much more potent CCR5 agonist than LD78alpha and RANTES in inducing intracellular Ca2+ signaling and chemotaxis. CCR5 is expressed by human monocytes/macrophages (M/M) and represents an important coreceptor for macrophage-tropic, CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) strains to infect the cells. We compared the antiviral activities of LD78beta and the other CC-chemokines in M/M. LD78beta at 100 ng/ml almost completely blocked HIV-1 replication, while at the same concentration LD78alpha had only weak antiviral activity. Moreover, when HIV-1 infection in M/M was monitored by a flow cytometric analysis using p24 antigen intracellular staining, LD78beta proved to be the most antivirally active of the chemokines. RANTES, once described as the most potent chemokine in inhibiting R5 HIV-1 infection, was found to be considerably less active than LD78beta. LD78beta strongly downregulated CCR5 expression in M/M, thereby explaining its potent antiviral activity.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) requires, in addition to CD4, coreceptors of the CC or CXC chemokine families for productive infection of T cells and cells of the monocyte-macrophage lineage. Based on the hypothesis that coreceptor expression on alveolar macrophages (AM) may influence HIV-1 infection of AM in the lung, this study analyzes the expression and utilization of HIV-1 coreceptors on AM of healthy individuals. AM were productively infected with five different primary isolates of HIV-1. Levels of surface expression of CCR5, CXCR4, and CD4 were low compared to those of blood monocytes, but CCR3 was not detectable. mRNA for CCR5, CXCR4, CCR2, and CCR3 were all detectable, but to varying degrees and with variability among donors. Expression of CCR5, CXCR4, and CCR2 mRNA was downregulated following stimulation with lipopolysaccharide (LPS). In contrast, secretion of the chemokines RANTES, MIP-1alpha, and MIP-1beta was upregulated with LPS stimulation. Interestingly, HIV-1 replication was diminished following LPS stimulation. Infection of AM with HIV-1 in the presence of the CC chemokines demonstrated blocking of infection. Together, these studies demonstrate that AM can be infected by a variety of primary HIV-1 isolates, AM express a variety of chemokine receptors, the dominant coreceptor used for HIV entry into AM is CCR5, the expression of these receptors is dependent on the state of activation of AM, and the ability of HIV-1 to infect AM may be modulated by expression of the chemokine receptors and by chemokines per se.  相似文献   

19.
20.
Chemokines are important mediators in immune responses and inflammatory processes of neuroimmunologic and infectious diseases. Although chemokines are expressed predominantly by cells of the immune system, neurons also express chemokines and chemokine receptors. We report herein that human neuronal cells (NT2-N) produce macrophage inflammatory protein-1alpha and -1beta (MIP-1alpha and MIP-1beta), which could be enhanced by interleukin (IL)-1beta at both mRNA and protein levels. The addition of supernatants from human peripheral blood monocyte-derived macrophage (MDM) cultures induced MIP-1beta mRNA expression in NT2-N cells. Anti-IL-1beta antibody removed most, but not all, of the MDM culture supernatant-induced MIP-1beta mRNA expression in NT2-N cells, suggesting that IL-1beta in the MDM culture supernatants is a major factor in the induction of MIP-1beta expression. Investigation of the mechanism(s) responsible for IL-1beta-induced MIP-1alpha and -1beta expression demonstrated that IL-1beta activated nuclear factor kappa B (NF-kappaB) promoter-directed luciferase activity in NT2-N cells. Caffeic acid phenethyl ester, a potent and specific inhibitor of activation of NF-kappaB, not only blocked IL-1beta-induced activation of the NF-kappaB promoter but also decreased IL-1beta-induced MIP-1alpha and -1beta expression in NT2-N cells. These data suggest that NF-kappaB is at least partially involved in the IL-1beta-mediated action on MIP-1alpha and -1beta in NT2-N cells. IL-1beta-mediated up-regulation of beta-chemokine expression may have important implications in the immunopathogenesis of inflammatory diseases in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号