首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Viral abundance, burst sizes, lytic production and temperate phage were investigated in land-fast ice at two sites in Prydz Bay Antarctica (68°S, 77°E) between April and November 2008. Both ice cores and brine were collected. There was no seasonal pattern in viral or bacterial numbers. Across the two sites virus abundances ranged between 0.5 × 105 and 5.1 × 105 viruses ml−1 in melted ice cores and 0.6 × 105–3.5 × 105 viruses ml−1 in brine, and bacterial abundances between 2.7 × 104 and 17.3 × 104 cells ml−1 in melted ice cores and 3.9 × 104–32.5 × 104 cells ml−1 in brine. Virus to bacterium ratios (VBR) showed a clear seasonal pattern in ice cores with lowest values in winter (range 1.2–20.8), while VBRs in brine were lower (0.2–4.9). Lytic viral production range from undetectable to 2.0 × 104 viruses ml−1 h−1 in ice cores with maximum rates in September and November. In brine maximum, lytic viral production occurred in November (1.18 × 104 viruses ml−1 h−1). Low burst sizes were typical (3.94–4.03 viruses per bacterium in ice cores and 3.16–4.0 viruses per bacterium in brine) with unusually high levels of visibly infected cells—range 40–50%. This long-term investigation revealed that viral activity was apparent within the sea ice throughout its annual cycle. The findings are discussed within the context of limited data available on viruses in sea ice.  相似文献   

2.
Viruses play a significant role in nutrient cycling within the world’s oceans and are important agents of horizontal gene transfer, but little is know about their entrainment into sea ice or their temporal dynamics once entrained. Nilas, grease ice, pancake ice, first-year sea ice floes up to 78 cm in thickness, and under-ice seawater were sampled widely across Amundsen Gulf (ca. 71° N, 125° W71^\circ \hbox{N}, 125^\circ \hbox{W}) for concentrations of viruses and bacteria. Here, we report exceptionally high virus-to-bacteria ratios in seawater (45–340) and sea ice (93–2,820) during the autumn freeze-up. Virus concentrations ranged from 4.8 to 27 × 106  ml−1 in seawater and, scaled to brine volume, 5.5 to 170 × 107 ml−1 in sea ice. Large enrichment indices indicated processes of active entrainment from source seawater, or viral production within the ice, which was observed in 2 of 3 bottle incubations of sea ice brine at a temperature (-7°C-7^\circ\hbox{C}) and salinity ( 110 \permille110 \permille) approximating that in situ. Median predicted virus-to-bacteria contact rates (relative to underlying seawater) were greatest in the top of thick sea ice (66–78 cm: 130×) and lowest in the bottom of medium-thickness ice (33–37 cm: 23×). The great abundance of viruses and more frequent interactions between bacteria and viruses predicted in sea ice relative to underlying seawater suggest that sea ice may be a hot spot for virally mediated horizontal gene transfer in the polar marine environment.  相似文献   

3.
Abstract Bacterial abundance and bacterivorous protist abundance and activity were examined in ice-brine and water column communities of a cold temperate Japanese lagoon (Saroma-Ko Lagoon, Hokkaido, 44°N, 144°E), during the late winter phase of ice community development (February–March 1992). Bacterial abundance averaged 6 and 1 × 105 cells ml−1 in the ice-brine and plankton samples, respectively, and generally decreased during the sampling period. Bacterivorous protists, identified based on direct observation of short-term (<1 h) ingested fluorescently labeled bacteria (FLB) in their food vacuoles, were largely dominated by flagellates, mainly cryothecomonad-type and chrysomonad-like cells and small dinoflagellates of the genus Gymnodinium. Bacterivorous ciliates included mainly the prostomatid Urotricha sp., the scuticociliates Uronema and Cyclidium, the choreotrichs Lohmaniella oviformis and Strobilidium, and the hypotrich Euplotes sp. Protist abundance averaged 4 × 103 and 8.1 cells ml−1 in the ice-brine and 0.3 × 103 and 1.2 cells ml−1 in the plankton, for flagellates and ciliates, respectively. In contrast to bacteria, the abundance of protists generally increased throughout the sampling period, indicating predator–prey interactions. Protistan bacterivory, measured from the rate of FLB disappearance over 24 h, averaged 36% (ice) and 24% (plankton) of bacterial standing stock and exhibited the same seasonal pattern as for protist abundance. The calculated specific clearance (range, 2–67 nl protozoa−1 h−1) and ingestion (<1–26 particles protozoa−1 h−1) rates were likely to be minimal estimates and grazing impact may have been higher on occasion. Indications for the dependence of ``bacterivorous protists' on nonbacterial food items were also provided. Although alternative sources of bacterial loss are likely to be of importance, this study provides evidence for the potential of protozoan assemblages as bacterial grazers in both sea ice-brine biota and water column at the southern limit of sea ice in the northern hemisphere. Received: 30 July 1998; Accepted: 18 November 1998  相似文献   

4.
Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.  相似文献   

5.
Zhang XF  Yao TD  Tian LD  Xu SJ  An LZ 《Microbial ecology》2008,55(3):476-488
The microbial abundance, the percentage of viable bacteria, and the diversity of bacterial isolates from different regions of a 83.45-m ice core from the Puruogangri glacier on the Tibetan Plateau (China) have been investigated. Small subunit 16S rRNA sequences and phylogenetic relationships have been studied for 108 bacterial isolates recovered under aerobic growth conditions from different regions of the ice core. The genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-polymerase chain reaction and physiological heterogeneity of the closely evolutionary related bacterial strains isolated from different ice core depths were analyzed as well. The results showed that the total microbial cell, percentages of live cells, and the bacterial CFU ranged from 104 to 105 cell ml−1 (Mean, 9.47 × 104; SD, 5.7 × 104, n = 20), 25–81%, and 0–760 cfu ml−1, respectively. The majority of the isolates had 16S rRNA sequences similar to previously determined sequences, ranging from 92 to 99% identical to database sequences. Based on their 16S rRNA sequences, 42.6% of the isolates were high-G + C-content (HGC) gram-positive bacteria, 35.2% were low-G + C (LGC) gram-positive bacteria, 16.6% were Proteobacteria, and 5.6% were CFB group. There were clear differences in the depth distribution of the bacterial isolates. The isolates tested exhibited unique phenotypic properties and high genetic heterogeneity, which showed no clear correlation with depths of bacterial isolation. This layered distribution and high heterogeneity of bacterial isolates presumably reflect the diverse bacterial sources and the differences in bacteria inhabiting the glacier’s surface under different past climate conditions.  相似文献   

6.
D. Delille 《Polar Biology》1992,12(2):205-210
Summary In the eastern Weddell Sea on several transects from ice-covered, through ice melt, to open-ocean stations, total and heterotrophic bacteria were estimated to document an enhanced bacteriological biomass expected near the ice edge. The highest numbers of bacteria were found in melted ice cores, with 4.2·103 CFUml–1 and 1.1·107 Cells ml–1. Although brine from pore water samples average more than one order of magnitude less cells per ml, the highest bacterial production, 2.2·107 cells l–1 day–1, was recorded in brine samples. All quantitatively studied bacterial parameters were lower under the ice than in the ice samples but there were no clear vertical gradients in the water column. In the studied spring situation, sea ice occurrence seems to play only a minor role in the general distribution of the seawater bacterioplankton. The bacterial community structure was investigated by carrying out 29 morphological and biochemical tests on 118 isolated strains. The bacterial communities inhabiting Antarctic pack ice differ from those found in underlying seawater. Although non fermentative Gram-negative rods were always dominant in seawater, Vibrio sp. represented more than 25% of the strains isolated from some ice samples. The results clearly indicated that a large majority of the bacteria isolated from seawater must be considered psychrotrophic but that truly psychrophilic strains occurred in melted ice and brine samples.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

7.
In a preliminary survey, conducted between August 28 and October 9, 1990, the concentration of bacteriophages in seawater sampled at intervals of 1 to 4 days near Helgoland (station Kabeltonne) was determined by using indicator bacteria which had been isolated from seawater sampled only some weeks before. With a number of bacterial strains, phage concentrations ranging between 2 and 7×102ml−1 were found. However, during the course of this investigation maximal concentrations lasted for a few days only. With most indicator bacteria employed, the concentration of plaque-forming units (PFU) varied in the range of <1 and 20–30 PFU ml−1.  相似文献   

8.
Antarctic lakes are extreme ecosystems with microbially dominated food webs, in which viruses may be important in controlling community dynamics. A year long investigation of two Antarctic saline lakes (Ace and Pendant Lakes) revealed high concentrations of virus like particles (VLP) (0.20–1.26 × 108 ml−1), high VLP: bacteria ratios (maximum 70.6) and a seasonal pattern of lysogeny differing from that seen at lower latitudes. Highest rates of lysogeny (up to 32% in Pendant Lake and 71% in Ace Lake) occurred in winter and spring, with low or no lysogeny in summer. Rates of virus production (range 0.176–0.823 × 106 viruses ml−1 h−1) were comparable to lower latitude freshwater lakes. In Ace Lake VLP did not correlate with bacterial cell concentration or bacterial production but correlated positively with primary production, while in Pendant Lake VLP abundance correlated positively with both bacterial cell numbers and bacterial production but not with primary production. In terms of virus and bacterial dynamics the two saline Antarctic lakes studied appear distinct from other aquatic ecosystems investigated so far, in having very high viral to bacterial ratios (VBR) and a very high occurrence of lysogeny in winter.  相似文献   

9.
Between April 3 and September 24, 1991, the concentrations of bacteriophages infecting bacterial strains, isolated in 1990 and during this investigations, were determined in 35 samples of seawater taken at station ‘Kabeltonne’ adjacent to Helgoland. Similar to the findings of 1990, phage concentrations of several hundred plaque forming units (PFU) ml−1 were observed with a number of indicator strains, the maximum concentration being at least 1.5×103 PFU ml−1. These high concentrations lasted for only a few days, generally decreasing at rates between 0.6 and 0.9 day−1. Phage concentrations of 0 to 2 PFU ml−1 were found to be predominant until the end of June, occasionally attaining 5 PFU ml−1. From July through September, when high phage concentrations were observed with some indicator strains, between 0 and 10 PFU ml−1 were found in the majority of tests. As revealed by a final phage-host cross-reaction test, the greater part of 138 indicator bacteria is genetically related, and almost half of the 200 phage strains tested are propagated only by their original indicator bacterium. The possible importance of mutational events for the maintenance of phage-host systems in nature is discussed.  相似文献   

10.
Denitrification activity and oxygen dynamics in Arctic sea ice   总被引:1,自引:0,他引:1  
Denitrification and oxygen dynamics were investigated in the sea ice of Franklin Bay (70°N), Canada. These investigations were complemented with measurements of denitrification rates in sea ice from different parts of the Arctic (69°N–85°N). Potential for bacterial denitrification activity (5–194 μmol N m−2 day−1) and anammox activity (3–5 μmol N m−2 day−1) in melt water from both first-year and multi-year sea ice was found. These values correspond to 27 and 7%, respectively, of the benthic denitrification and anammox activities in Arctic sediments. Although we report only potential denitrification and anammox rates, we present several indications that active denitrification in sea ice may occur in Franklin Bay (and elsewhere): (1) despite sea ice-algal primary production in the lower sea ice layers, heterotrophic activity resulted in net oxygen consumption in the sea ice of 1–3 μmol l−1 sea ice per day at in situ light conditions, suggesting that O2 depletion may occur prior to the spring bloom. (2) The ample organic carbon (DOC) and NO3 present in sea ice may support an active denitrification population. (3) Measurements of O2 conditions in melted sea ice cores showed very low bulk concentrations, and in some cases anoxic conditions prevailed. (4) Laboratory studies using planar optodes for measuring the high-resolution two-dimensional O2 distributions in sea ice confirmed the very dynamic and heterogeneous O2 distribution in sea ice, displaying a mosaic of microsites of high and low O2 concentrations. Brine enclosures and channels were strongly O2 depleted in actively melting sea ice, and anoxic conditions in parts of the brine system would favour anaerobic processes.  相似文献   

11.
Microscale photographs were taken of the ice bottom to examine linkages of algal chlorophyll a (chl a) biomass distribution with bottom ice features in thick Arctic first-year sea ice during a spring field program which took place from May 5 to 21, 2003. The photographic technique developed in this paper has resulted in the first in situ observations of microscale variability in bottom ice algae distribution in Arctic first-year sea ice in relation to ice morphology. Observations of brine channel diameter (1.65–2.68 mm) and number density (5.33–10.35 per 100 cm2) showed that the number of these channels at the bottom of thick first-year sea ice may be greater than previously measured on extracted ice samples. A variogram analysis showed that over areas of low chl a biomass (≤20.7 mg chl a m−2), patchiness in bottom ice chl a biomass was at the scale of brine layer spacing and small brine channels (∼1–3 mm). Over areas of high chl a biomass (≥34.6 mg chl a m−2), patchiness in biomass was related to the spacing of larger brine channels on the ice bottom (∼10–26 mm). Brine layers and channels are thought to provide microscale maxima of light, nutrient replenishment and space availability which would explain the small scale patchiness over areas of low algal biomass. However, ice melt and erosion near brine channels may play a more important role in areas with high algal biomass and low snow cover.  相似文献   

12.
The vertical distribution of bacterial abundance and biomass was investigated in relation to algal biomass in ice cores taken from drifting ice floes in two Arctic shelf areas: the Barents Sea and the Laptev Sea. Bacteria were not homogeneously distributed throughout the cores but occurred in dense layers. Different types of distribution patterns were found: either a single maximum occurred inside or at the bottom of the ice floe or maxima were found in different parts of the floes. Bacterial concentrations ranged from 0.4 to 36.7 · 105 cells ml−1. The size spectra of sea-ice bacteria were determined by image analysis. Cell sizes showed considerable variation between the ice floes. In multi-year sea ice, the largest bacteria were observed in the area of an internal chlorophyll a maximum. No specific vertical distribution patterns were found in first-year ice floes. Bacterial biomass for the ice cores ranged from 19.2 to 79.2 mg C m−2, and the ratio of bacterial:ice algal biomass ranged from 0.43 to 10.42. A comparison with data collected from fast ice revealed large differences in terms of cell size, abundance and biomass. Received: 7 September 1995 / Accepted: 10 September 1996  相似文献   

13.
The porous medium of sea ice, a surface-rich environment characterized by low temperature and high salinity, has been proposed as a favorable site for horizontal gene transfer, but few measurements are available to assess the possibility of this mode of evolution in ice. Here, we report the first measurements of dissolved DNA in sea ice, measured by fluorescent dye staining of centrifugal-filter-concentrated samples of melted ice. Newly formed landfast and pack ice on the Canadian Arctic Shelf (ca. 71°N, 125°W) contained higher concentrations (scaled to volume of brine) of the major components of dissolved DNA—extracellular DNA and viruses—than the underlying seawater. Dissolved DNA was dominated by extracellular DNA in surface seawater (up to 95%), with viruses making up relatively larger fractions at depths below 100 m (up to 27%) and in thick sea ice (66–78 cm; up to 100%). Extracellular DNA was heterogeneously distributed, with concentrations up to 135 μg DNA L−1 brine detected in landfast sea ice, higher than previously reported from any marine environment. Additionally, extracellular DNA was significantly highly enriched at the base of ice of medium thickness (33–37 cm), suggestive of in situ production. Relative to underlying seawater, higher concentrations of extracellular DNA, viruses, and bacteria, and the availability of numerous surfaces for attachment within the ice matrix suggest that sea ice may be a hotspot for HGT in the marine environment.  相似文献   

14.
The use of clove oil as a potential anaesthetic for freshwater amphipods was examined at 20 °C. Individuals of Gammarus minus, a common species in southern Illinois, USA, spanning the entire body size range (4.3–14.3 mm), were used to test four anaesthetic concentrations varying from 1.48 × 10−4 ml ml−1 to 5.9 × 10−4 ml ml−1. Small-bodied individuals (mean size = 5.4 mm ± 0.27SE) were used to test additional concentrations, up to 14.7 × 10−4 ml ml−1, a 10-fold span, to identify potential lethal concentrations. At the lowest concentration, time to anaesthesia and recovery was constant at all body sizes. For the three next higher concentrations, time to anaesthesia decreased with increasing concentration while recovery time increased. Activity of amphipods was not affected by the ethanol carrier. In addition, activity did not differ between amphipods that had recovered from anaesthesia and unexposed amphipods. At clove oil concentrations of 8.84 × 10−4 ml ml−1 and 14.7 × 10−4 ml ml−1, mortality was 7 and 40%, respectively, indicating, that 5.9 × 10−4 ml ml−1 was a safe working concentration. No mortality was observed with Gammarus acherondytes, a federally endangered cave amphipod on which the protocol with 80 μl of stock was used in the field. The method enabled us to obtain information on the endangered amphipod which normally would have required the sacrifice of individuals. Thus, research can continue on species for which population numbers are low and for which basic information is needed to formulate meaningful recovery plans.  相似文献   

15.
Summary Three laboratory-scale water pipe systems were set up to study the effects of adding two levels of acetic acid (10 and 50 μg acetate eq-C l−1) on the bacterial regrowth in water pipes. The results of the water pipe test showed that nearly all carbon in the acetic acid could be readily utilized by bacteria and resulted in an increase in biomass concentration. The maximum heterotrophic plate counts in biofilm were equal to 3.5 × 104, 8.9 × 105 and 2.9 × 107 c.f.u. cm−2 while the maximum heterotrophic plate counts of free bacteria were equal to 1.2 × 103, 5.0 × 103 and 6.8 × 104 c.f.u. ml−1 for the blank and with addition of 10 and 50 μg acetate eq-C l−1. These results showed that addition of acetic acid to drinking water has a positive effect on the assimilable organic carbon content of drinking water and bacterial regrowth in the distribution system. This effect is enhanced with addition of high-level acetic acid. Batch tests were also conducted using water samples collected from a Taiwanese drinking water distribution system. The bacterial regrowth potentials of the blank were equal to 4.3 × 103, 1.5 × 104, 4.9 × 104 and 7.5 × 104 c.f.u. ml−1 for water samples collected from treatment plant effluent, commercial area, mixed area, and residential area, respectively. These results showed that the biological stability of drinking water is the highest in treatment plant effluent, followed by distributed water of the commercial area, distributed water of the mixed area, and then the distributed water of residential area.  相似文献   

16.
Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice–water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 μg C l−1 d−1. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 μg C l−1 d−1. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r = 0.97, < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.  相似文献   

17.
Arctic Sea ice biota: design and evaluation of a mesocosm experiment   总被引:1,自引:0,他引:1  
A mesocosm experiment (enclosure volume 220 l) was designed such that sea ice inhabited by Arctic Sea ice organisms was formed and maintained under natural conditions at 66°N in Rovaniemi, Finland. The experiment was run from natural freezing in December 1994 to melting in April 1995. The ice was inhabited by diatoms, chlorophyceae, heterotrophic flagellates, ciliates, nematodes and turbellarians. Biomass in the ice, expressed as Chlorophyll a concentration, was 20–110 μg l−1; total cell densities varied from 5 × 106 to 35 × 106 cells l−1. Amongst phototrophic organisms, a succession from a flagellate-dominated community (Chlamydomonas sp.) to a multi-species diatom-dominated community was observed. Typical Arctic species such as Nitzschia frigida and Melosira arctica were present in the ice. Bacterial concentration varied between 2 × 108 and 7 × 108 cells l−1. At least two trophic levels were present in the ice. Received: 3 April 1997 / Accepted: 9 September 1997  相似文献   

18.
The numbers, biomass, and production of bacterioplankton were determined in the Russian Sector of the Gdansk Basin (Baltic Sea) in 2007–2009. Significant spatial and temporal variations were determined. During the year, bacterial activity increased with increasing water temperature and higher availability of organic substrates. The lowest bacterial production (0.01–31.63 mg C m−3 day−1) was observed in late winter and late autumn, while the highest (0.17–341.70 mg C m−3 day−1) occurred in spring and summer. Since bacterial numbers and biomass were found to depend on the weather conditions and the terrigenous inflow, significant variations were observed from year to year. The highest and lowest numbers and biomass of bacterioplankton determined in summer were 0.09–1.10 × 106 cells mL−1 and 2–22 mg C m−3 for July 2007 and 1.96–11.23 × 106 cells mL−1 and 23–123 mg C m–3 for July 2009. The values of these parameters were the highest along the coast and decreased towards the open sea.  相似文献   

19.
Nutrient concentrations, chlorophyll-a, bacterial biomass and relative activity of denitrifying organisms were investigated from ice-core, brine and underlying water samples in February 1998 in the Gulf of Bothnia, Baltic Sea. Examined sea ice was typical for the Baltic Sea; ice bulk salinity varied from 0.1 to 1.6 psu, and in underlying water salinity was from 4.2 to 4.7 psu. In 2- to 3-months-old sea ice (thickness 0.4–0.6 m), sea-ice communities were at the winter stage; chl-a concentrations were generally below 1 mg m−3 and heterotrophic organisms composed 7–20% of organism assemblage. In 1-month-old ice (thickness 0.2–0.25 m), an ice spring bloom was already developing and chl-a concentrations were up to 5.6 mg m−3. In relation to low salinity, high concentrations of NH+ 4, NO 2, PO3+ 4 and SiOH4 were found in the ice column. The results suggest that the upper part of ice accumulates atmospheric nutrient load during the ice season, and nutrients in the upper 10–20 cm of ice are mainly of atmospheric origin. The most important biological processes controlling the sea-ice nutrient status are nutrient regeneration, nutrient uptake and nitrogen transformations. Nutrient regeneration is specially active in the middle parts of the 50- to 60-cm-thick ice and subsequent accumulation of nutrients probably enhances the ice spring bloom. Nitrite accumulation and denitrifying activity were located in the same ice layers with nutrient regeneration, which together with the observed significant correlation between the concentrations of nitrogenous nutrients points to active nitrogen transformations occurring in the interior layers of sea ice in the Baltic Sea. Accepted: 12 June 2000  相似文献   

20.
Summary An insertional mutant of Metarhizium anisopliae is described with enhanced submerged conidiation. In a 500 ml submerged culture, this mutant produces a mean of 4.05 × 108 propagules ml−1 from an inoculum of 1 × 106 conidia, where the parental strain accumulates only 3.75 × 104 propagules ml−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号