共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis 总被引:2,自引:0,他引:2
Masa-aki Ohto Sandra K. Floyd Robert L. Fischer Robert B. Goldberg John J. Harada 《Sexual plant reproduction》2009,22(4):277-289
Arabidopsis APETALA2 (AP2) controls seed mass maternally, with ap2 mutants producing larger seeds than wild type. Here, we show that AP2 influences development of the three major seed compartments:
embryo, endosperm, and seed coat. AP2 appears to have a significant effect on endosperm development. ap2 mutant seeds undergo an extended period of rapid endosperm growth early in development relative to wild type. This early
expanded growth period in ap2 seeds is associated with delayed endosperm cellularization and overgrowth of the endosperm central vacuole. The subsequent
period of moderate endosperm growth is also extended in ap2 seeds largely due to persistent cell divisions at the endosperm periphery. The effect of AP2 on endosperm development is
mediated by different mechanisms than parent-of-origin effects on seed size observed in interploidy crosses. Seed coat development
is affected; integument cells of ap2 mutants are more elongated than wild type. We conclude that endosperm overgrowth and/or integument cell elongation create
a larger postfertilization embryo sac into which the ap2 embryo can grow. Morphological development of the embryo is initially delayed in ap2 compared with wild-type seeds, but ap2 embryos become larger than wild type after the bent-cotyledon stage of development. ap2 embryos are able to fill the enlarged postfertilization embryo sac, because they undergo extended periods of cell proliferation
and seed filling. We discuss potential mechanisms by which maternally acting AP2 influences development of the zygotic embryo
and endosperm to repress seed size. 相似文献
2.
Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis 总被引:6,自引:0,他引:6
Bentsink L Alonso-Blanco C Vreugdenhil D Tesnier K Groot SP Koornneef M 《Plant physiology》2000,124(4):1595-1604
Seed oligosaccharides (OSs) and especially raffinose series OSs (RSOs) are hypothesized to play an important role in the acquisition of desiccation tolerance and consequently in seed storability. In the present work we analyzed the seed-soluble OS (sucrose, raffinose, and stachyose) content of several Arabidopsis accessions and thus identified the genotype Cape Verde Islands having a very low RSO content. By performing quantitative trait loci (QTL) mapping in a recombinant inbred line population, we found one major QTL responsible for the practically monogenic segregation of seed stachyose content. This locus also affected the content of the two other OSs, sucrose, and raffinose. Two candidate genes encoding respectively for galactinol synthase and raffinose synthase were located within the genomic region around this major QTL. In addition, three smaller-effect QTL were identified, each one specifically affecting the content of an individual OS. Seed storability was analyzed in the same recombinant inbred line population by measuring viability (germination) under two different seed aging assays: after natural aging during 4 years of dry storage at room temperature and after artificial aging induced by a controlled deterioration test. Thus, four QTL responsible for the variation of this trait were mapped. Comparison of the QTL genetic positions showed that the genomic region containing the major OS locus did not significantly affect the seed storability. We concluded that in the studied material neither RSOs nor sucrose content had a specific effect on seed storability. 相似文献
3.
In some plant species, including Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type with a unique morphology and containing large quantities of polysaccharide mucilage (pectin). Such seed coat mucilage cells are necessary for neither viability nor germination under normal laboratory conditions. Thus, the Arabidopsis seed coat offers a unique system with which to use genetics to identify genes controlling cell morphogenesis and complex polysaccharide biosynthesis and secretion. As a first step in the application of this system, we have used microscopy to investigate the structure and differentiation of Arabidopsis seed coat mucilage cells, including cell morphogenesis and the synthesis, secretion, and extrusion of mucilage. During seed coat development in Arabidopsis, the epidermal cells of the outer ovule integument grow and differentiate into cells that produce large quantities of mucilage between the primary cell wall and plasma membrane. Concurrent with mucilage production, the cytoplasm is shaped into a column in the center of the cell. Following mucilage secretion the cytoplasmic column is surrounded by a secondary cell wall to form a structure known as the columella. Thus, differentiation of the seed coat mucilage cells involves a highly regulated series of events including growth, morphogenesis, mucilage biosynthesis and secretion, and secondary cell wall synthesis. 相似文献
4.
S. S. Miller Z. Jin J. A. Schnell M. C. Romero D. C. W. Brown D. A. Johnson 《Annals of botany》2010,106(2):235-242
Background and Aims
Hourglass cells (HGCs) are prominent cells in the soybean seed coat, and have potential use as ‘phytofactories’ to produce specific proteins of interest. Previous studies have shown that HGCs initiate differentiation at about 9 d post-anthesis (dpa), assuming their characteristic morphology by 18 dpa. This study aims to document the structural changes in HGCs during this critical period, and to relate these changes to the concurrent development of a specific soybean peroxidase (SBP) encoded by the Ep gene.Methods
Pods were collected from plants at specific growth stages. Fresh material was processed for analysis of Ep peroxidase activity. Tissues were processed for scanning and transmission electron microscopy, as well as extracted for western blotting. A null variety lacking expression of Ep peroxidase was grown as a control.Key Results and Conclusions
At 9 dpa, HGCs are typical undifferentiated plant cells, but from 12–18 dpa they undergo rapid changes in their internal and external structure. By 18 dpa, they have assumed the characteristic hourglass shape with thick cell walls, intercellular air spaces and large central vacuoles. By 45 dpa, all organelles in HGCs have been degraded. Additional observations indicate that plasmodesmata connect all cell types. SBP activity and SBP protein are detectable in the HGC before they are fully differentiated (approx. 18 dpa). In very early stages, SBP activity appears localized in a vacuole as previously predicted. These results increase our understanding of the structure and development of the HGC and will be valuable for future studies aimed at protein targeting to components of the HGC endomembrane systems. 相似文献5.
6.
7.
8.
The mechanisms controlling seed dormancy in Arabidopsis (Arabidopsis thaliana) have been characterized by proteomics using the dormant (D) accession Cvi originating from the Cape Verde Islands. Comparative studies carried out with freshly harvested dormant and after-ripened non-dormant (ND) seeds revealed a specific differential accumulation of 32 proteins. The data suggested that proteins associated with metabolic functions potentially involved in germination can accumulate during after-ripening in the dry state leading to dormancy release. Exogenous application of abscisic acid (ABA) to ND seeds strongly impeded their germination, which physiologically mimicked the behavior of D imbibed seeds. This application resulted in an alteration of the accumulation pattern of 71 proteins. There was a strong down-accumulation of a major part (90%) of these proteins, which were involved mainly in energetic and protein metabolisms. This feature suggested that exogenous ABA triggers proteolytic mechanisms in imbibed seeds. An analysis of de novo protein synthesis by two-dimensional gel electrophoresis in the presence of [(35)S]-methionine disclosed that exogenous ABA does not impede protein biosynthesis during imbibition. Furthermore, imbibed D seeds proved competent for de novo protein synthesis, demonstrating that impediment of protein translation was not the cause of the observed block of seed germination. However, the two-dimensional protein profiles were markedly different from those obtained with the ND seeds imbibed in ABA. Altogether, the data showed that the mechanisms blocking germination of the ND seeds by ABA application are different from those preventing germination of the D seeds imbibed in basal medium. 相似文献
9.
As sessile organisms, plants have evolved a multitude of developmental responses to cope with the ever-changing environmental conditions that challenge the plant throughout its life cycle. Of the many environmental cues that regulate plant development, light is probably the most important. From determining the developmental pattern of the emerging seedling, to influencing the organization of organelles to best maximize energy available for photosynthesis, light has dramatic effects on development during all stages of plant life. In plants, three classes of photoreceptors that mediate light perception have been characterized at the molecular level. The phytochromes recognize light in the red portion of the spectrum, while cryptochromes and phototropins perceive blue and UVA light. In this review, we discuss the different aspects of development that are regulated by these photoreceptors in the model plant species Arabidopsis thaliana and how the phytochromes, cryptochromes, and phototropins bring about changes in development seen in the growing plant. 相似文献
10.
11.
J. M. Chandlee L. O. Vodkin 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,77(4):587-594
Summary The R gene of soybean is involved in anthocyanin synthesis in the seed coat, and its r-m allele conditions a variegated distribution of black spots and/or concentric rings of pigment superimposed on an otherwise brown seed coat. We describe an unusual feature of r-m that causes expression at the R locus to switch between active and inactive phases both somatically and germinally. Non-heritable somatic changes of the allele produce single plants containing mixtures of seed with different coat colors (black+striped or brown+striped). Heritable changes of the r-m allele are manifested in progeny plants which produce all black seed or all brown seed. Surprisingly, subsequent generations from revertant sublines show continued instability of the allele such that brown revertants (r*/r*) or homozygous black seed revertants (R*/R*) can give rise to striped or striped+black-seeded plants. Thus, the revertants produced by the r-m allele are not stable but interconvert between all three forms (R*, r*, and r-m) at detectable frequencies. Mutability of the r-m allele in a different genetic background has also been found after inter-crossing various soybean genotypes. 相似文献
12.
13.
Iris Tzafrir John A McElver Chun-ming Liu Cm Li Jun Yang Jia Qian Wu Audrey Martinez David A Patton David W Meinke 《Plant physiology》2002,128(1):38-51
The titan mutants of Arabidopsis exhibit striking defects in seed development. The defining feature is the presence of abnormal endosperm with giant polyploid nuclei. Several TTN genes encode structural maintenance of chromosome proteins (condensins and cohesins) required for chromosome function at mitosis. Another TTN gene product (TTN5) is related to the ARL2 class of GTP-binding proteins. Here, we identify four additional TTN genes and present a general model for the titan phenotype. TTN1 was cloned after two tagged alleles were identified through a large-scale screen of T-DNA insertion lines. The predicted gene product is related to tubulin-folding cofactor D, which interacts with ARL2 in fission yeast (Schizosaccharomyces pombe) and humans to regulate tubulin dynamics. We propose that TTN5 and TTN1 function in a similar manner to regulate microtubule function in seed development. The titan phenotype can therefore result from disruption of chromosome dynamics (ttn3, ttn7, and ttn8) or microtubule function (ttn1 and ttn5). Three other genes have been identified that affect endosperm nuclear morphology. TTN4 and TTN9 appear to encode plant-specific proteins of unknown function. TTN6 is related to the isopeptidase T class of deubiquitinating enzymes that recycle polyubiquitin chains following protein degradation. Disruption of this gene may reduce the stability of the structural maintenance of chromosome complex. Further analysis of the TITAN network should help to elucidate the regulation of microtubule function and chromosome dynamics in seed development. 相似文献
14.
15.
16.
BACKGROUND AND AIMS: Medicago truncatula has gained much attention as a genomic model species for legume biology, but little is known about the morphology of its pods and seeds. Structural and developmental characteristics of M. truncatula pod walls and seed coats are presented. METHODS: Plants of M. truncatula ecotype A17 were grown under controlled conditions in a greenhouse. Flowers were date-tagged at anthesis, so that pods of known age could be collected. Harvested pods were fixed and sectioned for light microscopy. Structural attributes of pod walls and seed coats were characterized at four time points throughout early to mid-stages of pod development (3, 6, 13 and 20 d post-pollination). KEY RESULTS: Basic features of the pod wall are an exocarp comprised of a single epidermal layer, a mesocarp with seven to 14 layers of parenchyma cells, and an endocarp composed of an inner epidermal cell layer and three to five layers of sclerenchyma cells adjacent to it. Vascular bundles are abundant in the pod wall and include one lateral carpellary bundle, one median carpellary bundle and nine to 12 vascular bundles, all embedded within the mesocarp parenchyma. Seed coat features include an epidermal layer of macrosclereids, a sub-epidermal layer of osteosclereids, and two to five rows of internal parenchyma cells. The hilar region contains the tracheid bar and the chalazal vascular bundle, the latter of which expands to form only two short branches. CONCLUSIONS: This characterization provides a needed understanding of pod structure and development in this model legume, and should facilitate various molecular investigations into legume fruit and seed biology. 相似文献
17.
Differentiation of the Arabidopsis thaliana seed coat cells includes a secretory phase where large amounts of pectinaceous mucilage are deposited to a specific domain of the cell wall. During this phase, Golgi stacks had cisternae with swollen margins and trans-Golgi networks consisting of interconnected vesicular clusters. The proportion of Golgi stacks producing mucilage was determined by immunogold labeling and transmission electron microscopy using an antimucilage antibody, CCRC-M36. The large percentage of stacks found to contain mucilage supports a model where all Golgi stacks produce mucilage synchronously, rather than having a subset of specialist Golgi producing pectin product. Initiation of mucilage biosynthesis was also correlated with an increase in the number of Golgi stacks per cell. Interestingly, though the morphology of individual Golgi stacks was dependent on the volume of mucilage produced, the number was not, suggesting that proliferation of Golgi stacks is developmentally programmed. Mapping the position of mucilage-producing Golgi stacks within developing seed coat cells and live-cell imaging of cells labeled with a trans-Golgi marker showed that stacks were randomly distributed throughout the cytoplasm rather than clustered at the site of secretion. These data indicate that the destination of cargo has little effect on the location of the Golgi stack within the cell. 相似文献
18.
Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5·1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2·5, 5·1, 10·1, 16·2 and 21·3 kPa O2 , 0·035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16·2 kPa, and seeds from plants grown in 2·5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5·1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5·1 kPa O2 , at around the curled cotyledon stage in 10·1 kPa O2 , and at the premature stage in 16·2 kPa O2 . Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2·5 kPa O2 . Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis . 相似文献
19.
20.
TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat 总被引:10,自引:0,他引:10
下载免费PDF全文

Pourcel L Routaboul JM Kerhoas L Caboche M Lepiniec L Debeaujon I 《The Plant cell》2005,17(11):2966-2980
The Arabidopsis thaliana transparent testa10 (tt10) mutant exhibits a delay in developmentally determined browning of the seed coat, also called the testa. Seed coat browning is caused by the oxidation of flavonoids, particularly proanthocyanidins, which are polymers of flavan-3-ol subunits such as epicatechin and catechin. The tt10 mutant seeds accumulate more epicatechin monomers and more soluble proanthocyanidins than wild-type seeds. Moreover, intact testa cells of tt10 cannot trigger H2O2-independent browning in the presence of epicatechin and catechin, in contrast with wild-type cells. UV-visible light detection and mass spectrometry revealed that the major oxidation products obtained with epicatechin alone are yellow dimers called dehydrodiepicatechin A. These products differ from proanthocyanidins in the nature and position of their interflavan linkages. Flavonol composition was also affected in tt10 seeds, which exhibited a higher ratio of quercetin rhamnoside monomers versus dimers than wild-type seeds. We identified the TT10 gene by a candidate gene approach. TT10 encodes a protein with strong similarity to laccase-like polyphenol oxidases. It is expressed essentially in developing testa, where it colocalizes with the flavonoid end products proanthocyanidins and flavonols. Together, these data establish that TT10 is involved in the oxidative polymerization of flavonoids and functions as a laccase-type flavonoid oxidase. 相似文献