首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac dysfunction is a common cause of death among pediatric patients with mutations in the lysosomal hydrolase α-l-iduronidase (IDUA) gene, which causes mucopolysaccharidosis type I (MPS-I). The purpose of this study was to analyze adrenergic regulation of cardiac hemodynamic function in MPS-I. An analysis of murine heart function was performed using conductance micromanometry to assess in vivo cardiac hemodynamics. Although MPS-I (IDUA(-/-)) mice were able to maintain normal cardiac output and ejection fraction at baseline, this cohort had significantly compromised systolic and diastolic function compared with IDUA(+/-) control mice. During dobutamine infusion MPS-I mice did not significantly increase cardiac output from baseline, indicative of blunted cardiac reserve. Autonomic tone, measured functionally by β-blockade, indicated that MPS-I mice required catecholaminergic stimulation to maintain baseline hemodynamics. Survival analysis showed mortality only among MPS-I mice. Linear regression analysis revealed that heightened end-systolic volume in the resting heart is significantly correlated with susceptibility to mortality in MPS-I hearts. This study reveals that cardiac remodeling in the pathology of MPS-I involves heightened adrenergic tone at the expense of cardiac reserve with cardiac decompensation predicted on the basis of increased baseline systolic volumes.  相似文献   

2.
    
Two polymorphisms were detected within exon I of the a-l-iduronidase (IDUA) gene both of which create restriction endonuclease sites and one of which changes an amino acid. The polymorphisms may be detected by digesting the same 245-bp polymerase chain reaction product. The polymorphisms can be used diagnostically in families with IDUA deficiency (mucopolysaccharidosis type I) and Huntington disease, which is closely linked to the IDUA locus.  相似文献   

3.
Two polymorphisms were detected within exon I of the a-l-iduronidase (IDUA) gene both of which create restriction endonuclease sites and one of which changes an amino acid. The polymorphisms may be detected by digesting the same 245-bp polymerase chain reaction product. The polymorphisms can be used diagnostically in families with IDUA deficiency (mucopolysaccharidosis type I) and Huntington disease, which is closely linked to the IDUA locus.  相似文献   

4.
Summary Two polymorphisms exist in the -l-iduronidase (IDUA) gene, the gene that is defective in mucopolysaccharidosis type I (MPS I), viz. aKpnI polymorphism and a variable number of tandem repeats (VNTR) polymorphism with three common alleles. The analysis of allele and haplotype frequencies for these two polymorphisms in the normal population and in MPS I patients revealed the presence of linkage disequilibrium. The frequency of the 2,2 (VNTR,KpnI) allele in MPS I patients was 57% compared with only 37% in the normal population. The implications for the presence of a major MPS I allele and the ability to predict patient phenotype are discussed.  相似文献   

5.
PON基因簇序列变异筛查研究   总被引:5,自引:0,他引:5  
摘要:系统筛查PON1、PON2及PON3基因编码、剪接及侧翼序列,以期发现所有潜在功能多态基因座,为进一步探讨PON基因家族与心血管疾病的关系做准备。随机选择48例冠心病患者作为筛查对象, 以PCR产物直接测序检测DNA序列变异。扩增片断涵盖整个外显子, 其两侧部分内含子区域及5’和3’侧翼序列。(1)13.9kb测序范围内共发现31个多态性基因座,均为单核甘酸多态(SNP),其中17个SNP为首次报道。(2)国人中SNP构成和等位基因频率与高加索人群存在显著差异。(3)一个基因内部两个或多个多态性基因座间存在完全或近乎完全连锁不平衡相当常见。中国汉族人群中PON基因簇多个潜在功能多态基因座的识别及这些基因座间的强连锁不平衡状态,为在国人中探讨PON基因簇与心血管疾病关系提供了重要的基础数据。  相似文献   

6.
Two polymorphisms, one in the liver-type pyruvate kinase gene (PKLR) and one in the glucocerebrosidase gene (GBA), both of which are on band q21 of chromosome 1, were found to be tightly linked. Each of three Gaucher disease mutations in 112 chromosomes studied was associated with a unique haplotype. With a conservative assumption about the length of time that the Gaucher disease mutation has been present in the Jewish population, we deduce that the genetic distance between these two loci is probably under 0.2 centimorgans. Four haplotypes are produced by these polymorphic loci, but two of these are relatively uncommon because the polymorphic sites are in linkage disequilibrium. Nonetheless these markers are potentially useful in the prenatal diagnosis of pyruvate kinase deficiency in families who have at least one affected child and may also be helpful in heterozygote detection in families with Gaucher disease where a specific mutation producing the disease in unknown.  相似文献   

7.
Four intragenic PKLR polymorphisms [1705A/C, 1738C/T. T10/19, and (ATT)n microsatellite] were studied in normal population samples of Central Portugal and S?o Tomé e Príncipe, a small archipelago located in the Gulf of Guinea, West Africa. For all loci, the observed genotype distributions do not deviate from Hardy-Weinberg equilibrium. The allele frequencies found in the Portuguese population are similar to those previously described in Caucasian populations. Mother-child pair analysis for the (ATT)n microsatellite does not show deviations to the Mendelian rules. In S?o Tomé e Príncipe the biallelic polymorphisms 1705A/C, 1738C/T, and T10/19 presented inverse allelic frequencies when compared with the Portuguese population. Two new alleles were found at the (ATT)n microsatellite. Significant statistical differences were found between both populations. The results showed that S?o Tomeans had higher haplotype diversity and lower linkage disequilibrium among the polymorphic sites. The PKLR intragenic polymorphisms, commonly used in haplotype analysis with the gene mutations in PK-deficient patients, can thus be successfully employed in anthropological genetics.  相似文献   

8.
Mucopolysaccharidosis type I (MPS I) arises from a deficiency in the α-L-iduronidase (IDUA) enzyme. Although the clinical spectrum in MPS I patients is continuous, it was possible to recognize 3 phenotypes reflecting the severity of symptoms, viz., the Hurler, Scheie and Hurler/Scheie syndromes. In this study, 10 unrelated Chinese MPS I families (nine Hurler and one Hurler/Scheie) were investigated, and 16 mutant alleles were identified. Three novel mutations in IDUA genes, one missense p.R363H (c.1088G > A) and two splice-site mutations (c.1190-1G > A and c.792+1G > T), were found. Notably, 45% (nine out of 20) and 30% (six out of 20) of the mutant alleles in the 10 families studied were c.1190-1G > A and c.792+1G > T, respectively. The novel missense mutation p.R363H was transiently expressed in CHO cells, and showed retention of 2.3% IDUA activity. Neither p.W402X nor p.Q70X associated with the Hurler phenotype, or even p.R89Q associated with the Scheie phenotype, was found in this group. Finally, it was noted that the Chinese MPS I patients proved to be characterized with a unique set of IDUA gene mutations, not only entirely different from those encountered among Europeans and Americans, but also apparently not even the same as those found in other Asian countries.  相似文献   

9.
Neutral DNA polymorphisms from an 8-kb segment of the dystrophin gene, previously ascertained in a worldwide sample (n= 250 chromosomes), were used to characterize the population ancestral to the present-day human groups. The ancestral state of each polymorphic site was determined by comparing human variants with their orthologous sites in the great apes. The ``age before fixation' of the underlying mutations was estimated from the frequencies of the new alleles and analyzed in the context of these polymorphisms' distribution among 13 populations from Africa, Europe, Asia, New Guinea, and the Americas (n= 860 chromosomes in total). Seventeen polymorphisms older tan 100,000–200,000 years, which contributed ∼90% to the overall nucleotide diversity, were common to all human groups. Polymorphisms endemic to human groups or continentally restricted were younger than 100,000–200,000 years. Africans (six populations) with 13 such sites stood out from the rest of the world (seven populations), where only 2 population-specific variants were observed. The similarity of the frequencies of the old polymorphisms in Africans and non-Africans suggested a similar profile of genetic variability in the population before the modern human's divergence. This ancestral population was characterized by an effective size of about 10,000 as estimated from the nucleotide diversity; this size may describe the number of breeding individuals over a long time during the Middle Pleistocene or reflect a speciation bottleneck from an initially larger population at the end of this period. Received: 3 February 1998 / Accepted: 9 February 1998  相似文献   

10.
The major cause of hyperphenylalaninemia is mutations in the gene encoding phenylalanine hydroxylase (PAH). The known mutations have been identified primarily in European patients. The purpose of this study was to determine the spectrum of mutations responsible for PAH deficiency in the United States. One hundred forty-nine patients enrolled in the Maternal PKU Collaborative Study were subjects for clinical and molecular investigations. PAH gene mutations associated with phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) were identified on 279 of 294 independent mutant chromosomes, a diagnostic efficiency of 95%. The spectrum is composed of 71 different mutations, including 47 missense mutations, 11 splice mutations, 5 nonsense mutations, and 8 microdeletions. Sixteen previously unreported mutations were identified. Among the novel mutations, five were found in patients with MHP, and the remainder were found in patients with PKU. The most common mutations were R408W, IVS12nt1g-->a, and Y414C, accounting for 18.7%, 7.8%, and 5.4% of the mutant chromosomes, respectively. Thirteen mutations had relative frequencies of 1%-5%, and 55 mutations each had frequencies < or = 1%. The mutational spectrum corresponded to that observed for the European ancestry of the U.S. population. To evaluate the extent of allelic variation at the PAH locus within the United States in comparison with other populations, we used allele frequencies to calculate the homozygosity for 11 populations where >90% ascertainment of mutations has been obtained. The United States was shown to contain one of the most heterogeneous populations, with homozygosity values similar to Sicily and ethnically mixed sample populations in Europe. The extent of allelic heterogeneity must be a major determining factor in the choice of mutation-detection methodology for molecular diagnosis in PAH deficiency.  相似文献   

11.

BACKGROUND:

Coronary artery disease (CAD) is a leading cause of death in the United States. South Asian immigrants (SAIs) from the Indian subcontinent living in the US are disproportionately at higher risk of CAD than other immigrant populations. Unique genetic factors may predispose SAIs to increased risk of developing CAD when adopting a Western lifestyle including a higher-fat diet, more sedentary behavior and additional gene-environment interactions. SAIs are known to have low levels of the protective high density lipoprotein (HDL) and an altered function for Apo-lipoprotein A-1 (ApoA1), the main protein component of HDL cholesterol. One gene that may be genetically distinctive in this population is APOA1 which codes for ApoA-1 protein, a potentially important contributing factor in the development of CAD.

MATERIALS AND METHODS:

DNA sequencing was performed to determine the status of the seven single-nucleotide polymorphisms (SNPs) in the APOA1 gene from 94 unrelated SAI adults. Genotypes, allelic frequencies, and intragenic linkage disequilibrium of the APOA1 SNPs were calculated.

RESULTS:

Several polymorphisms and patterns were common among persons of south Asian ethnicity. Frequencies for SNPs T655C, T756C and T1001C were found to be different than those reported in European Caucasian individuals. Linkage disequilibrium was found to be present between most (13 of 15) SNP pairings indicating common inheritance patterns.

CONCLUSIONS:

SAIs showed variability in the sequence of the APOA1 gene and linkage disequilibrium for most SNPS. This pattern of APOA1 SNPs may contribute to decreased levels of HDL cholesterol reported in SAIs, leading to an increased risk for developing CAD in this population.  相似文献   

12.
Perturbations of calcium homeostasis have been associated with several neurodegenerative disorders. A common polymorphism (rs2986017) in the CALHM1 gene, coding for a regulator of calcium homeostasis, is a genetic risk factor for the development of Alzheimer disease (AD). Although some authors failed to confirm these results, a meta-analysis has shown that this polymorphism modulates the age at disease onset. Furthermore, a recent association study has explored the genetic variability of CALHM1 gene and two adjacent paralog genes (CALHM3 and CALHM2) in an Asian population. Since several lines of evidence suggest that AD and prion diseases share pathophysiologic mechanisms, we investigated for the first time the genetic variability of the gene cluster formed by CALHM1 and its paralogs in a series of 235 sporadic Creutzfeldt-Jakob disease (sCJD) patients, and compared the genotypic and allelic frequencies with those presented in 329 controls from the same ancestry. As such, this work also represents the first association analysis of CALHM genes in sCJD. Sequencing analysis of the complete coding regions of the genes demonstrated the presence of 10 single nucleotide polymorphisms (SNP) within the CALHM genes. We observed that rs4918016-rs2986017-rs2986018 and rs41287502-rs41287500 polymorphic sites at CALHM1 were in linkage disequilibrium. We found marginal associations for sCJD risk at CALHM1 polymorphic sites rs41287502 and rs41287500 [coding for two linked missense mutations (p.(Met323Ile); (Gly282Cys)], and rs2986017 [p.(Leu86Pro)]. Interestingly, a TGG haplotype defined by the rs4918016-rs2986017-rs2986018 block was associated with sCJD. These findings underscore the need of future multinational collaborative initiatives in order to corroborate these seminal data.  相似文献   

13.
14.
Hereditary fructose intolerance (HFI) is a potentially fatal autosomal recessive disease resulting from the catalytic deficiency of fructose 1-phosphate aldolase (aldolase B) in fructose-metabolizing tissues. The A149P mutation in exon 5 of the aldolase B gene, located on chromosome 9q21.3-q22.2, is widespread and the most common HFI mutation, accounting for 57% of HFI chromosomes. The possible origin of this mutation was studied by linkage to polymorphisms within the aldolase B gene. DNA fragments of the aldolase B gene containing the polymorphic marker loci from HFI patients homozygous for the A149P allele were amplified by PCR. Absolute linkage to a common PvuII RFLP allele was observed in 10 A149P homozygotes. In a more informative study, highly heterozygous polymorphisms were detected by direct sequence determination of a PCR-amplified aldolase B gene fragment. Two two-allele, single-base-pair polymorphisms, themselves in absolute linkage disequilibrium, in intron 8 (C at nucleotide 84 and A at nucleotide 105, or T at 84 and G at 105) of the aldolase B gene were identified. Mendelian segregation of these polymorphisms was confirmed in three families. Allele-specific oligonucleotide (ASO) hybridizations with probes for both sequence polymorphisms showed that 47% of 32 unrelated individuals were heterozygous at these loci; the calculated PIC value was .37. Finally, ASO hybridizations of PCR-amplified DNA from 15 HFI patients homozygous for the A149P allele with probes for these sequence polymorphisms revealed absolute linkage disequilibrium between the A149P mutation and the 84T/105G allele. These results are consistent with a single origin of the A149P allele and subsequent spread by genetic drift.  相似文献   

15.
Inflammation plays an important role in the pathogenesis of atherosclerosis and acute coronary syndromes (ACS). Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine that mediates the inflammatory process. The objective of the present study was to evaluate the role of IL-10 gene polymorphisms as susceptibility markers for ACS in Mexican patients. IL-10 promoter polymorphisms (positions -1082, -819, and -592) were analyzed by 5' exonuclease TaqMan genotyping assays in 389 ACS patients and 302 healthy controls. ACS patients showed increased frequencies of IL-10-592 C allele and CC genotype when compared to healthy controls (pC=0.0006, OR=1.48 and pC=0.022, OR=1.56, respectively), whereas the frequencies of the A allele and AA genotype were decreased in patients (pC=0.0006, OR=0.68 and pC=0.006, OR=0.57, respectively). When the distribution of IL-10-592 genotypes was analyzed separately in women and men (patients and healthy controls), a different distribution of alleles and genotypes was observed only in the group of men. In this case, increased frequency of C allele (pC=0.004, OR=1.46) and decreased frequencies of A allele (pC=0.004, OR=0.68) and AA genotype (pC=0.023, OR=0.56) were observed in the group of patients when compared to healthy controls. Multiple logistic analyses by gender showed that male individuals with IL-10-592CC+AC genotypes had 3.54-fold increased risk of developing ACS than individuals with AA genotype (p<0.001). The analysis of linkage disequilibrium showed one (ACC) increased haplotype in patients as compared to healthy controls. The results suggest that IL-10 gene polymorphisms could be involved in the risk of developing ACS in the Mexican population.  相似文献   

16.
Friedreich ataxia accounts for approximately 75% of European recessive ataxia patients. Approximately 98% of pathogenic chromosomes have large expansions of a GAA triplet repeat in the FRDA gene (E alleles), and strong linkage disequilibrium among polymorphisms spanning the FRDA locus indicates a common origin for all European E alleles. In contrast, we found that only 14 of 151 (9.3%) Mexican Mestizo patients with recessive ataxia were homozygous for E alleles. Analysis of polymorphisms spanning the FRDA locus revealed that all Mestizo E alleles had the common European haplotype, indicating that they share a single origin. Genetic admixture levels were determined, which revealed that the relative contributions to the Mestizo FRDA gene pool by Native American and European genes were 76-87% and 13-24%, respectively, commensurate with the observed low prevalence of Friedreich ataxia in Mestizos. This indicates that Friedreich ataxia in Mexican Mestizos is due to genetic admixture of European mutant FRDA genes in the Native American gene pool that existed prior to contact with Europeans.  相似文献   

17.
High levels of plasma homocysteine are associated with an increased risk of many health conditions influenced by both environmental and genetic factors. The objective of this study was to provide the geographical distribution of folate pathway genetic polymorphisms in Mexico and the comparison with the reported frequencies in different continental populations. This study included the analysis of the genotypic frequencies of eight polymorphisms in genes of the folate/homocysteine metabolic pathway in 1,350 Mestizo and Amerindian subjects from different regions in Mexico and 836 individuals from European, African and Asian populations of the 1,000 Genomes Project. In Mexican Mestizo and Amerindian populations, the MTHFR C677T risk genotype (TT) was highly prevalent (frequency: 25 and 57 %, respectively). In Mestizos, the frequency showed clear regional variation related to ancestry; the Guerrero subpopulation with the highest Amerindian contribution had the highest TT frequency (33 %). The MTHFD1 G1958A AA risk genotype was also enriched in Mexican Mestizos and Amerindians (frequency: 34 and 58 %, respectively), whereas in African and Asian ancestry populations the frequency for AA was low (~4 %). All together risk genotypes showed regional differences, and Sonora had significantly different genetic frequencies compared with the other regions (P value <0.05). Our study illustrates differential geographical distribution of the risk variants in the folate/homocysteine metabolic pathway relative to ethnic background. This work supports that certain areas of the world have increased needs for folic acid and vitamin B supplementation, and this information needs to be considered in public health guidelines and eventually policies.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0421-7) contains supplementary material, which is available to authorized users.  相似文献   

18.
In Caucasian populations a single mutation, 35delG, accounts for the majority of GJB2 gene mediated hearing loss, with carrier frequencies estimated between 2-4%, possibly resulting from a founder effect rather than from a mutational hot spot. In Moroccan population, the 35delG mutation accounts for 90.8% of all GJB2 mutated alleles in deaf patients with a carrier frequency of 2.65%. The aim of this study was to evaluate whether the 35delG mutation has derived from a single origin in the Moroccan population. We enrolled 30 unrelated deaf patients homozygous for the 35delG mutation and 165 unrelated control individuals negative for this mutation, and genotyped three microsatellite markers flanking the GJB2 region: D13S141, D13S175 and D13S143. Data analysis revealed that the 35delG mutation is associated with particular alleles of these markers, with significant linkage disequilibrium for the 125 and 105 nucleotide long alleles of D13S141 and D13S175, and that a single specific haplotype accounts for 68% of the chromosomes carrying the 35delG mutation. The estimate age of 35delG mutation is 135 generations or approximately 2700 years old. Like in other Mediterranean populations, our results suggest that in the Moroccan population the 35delG mutation has derived from a single origin in a common founder process.  相似文献   

19.
Allele frequency differences of functional CYP2C9 polymorphisms are responsible for some of the variation in drug response observed in human populations. The most relevant CYP2C9 functional variants are CYP2C9*2 (rs1799853) and CYP2C9*3 (rs1057910). These polymorphisms show variation in allele frequencies among different population groups. The present study aimed to analyze these polymorphisms in 947 Mexican-Mestizo from Mexico City and 483 individuals from five indigenous Mexican populations: Nahua, Teenek, Tarahumara, Purepecha and Huichol. The CYP2C9*2 allele frequencies in the Mestizo, Nahua and Teenek populations were 0.051, 0.007 and 0.005, respectively. As for CYP2C9*3, the allelic frequencies in the Mestizo, Nahua and Teenek populations were 0.04, 0.005 and 0.005, respectively. The CYP2C9*2 and CYP2C9*3 alleles were not observed in the Tarahumara, Purepecha and Huichol populations. These findings are in agreement with previous studies reporting very low allele frequencies for these polymorphisms in American Indigenous populations.  相似文献   

20.
We determined the allelic (X+/X-, M+/M-, and E+/E-) distribution frequencies of the XbaI, MspI, and EcoRI restriction fragment length polymorphisms (RFLPs) in the apolipoprotein B gene in a control group of 374 healthy Chinese, Malays, and Indians and in a hyperlipidemic cohort of 131 Chinese patients. Covariability between the RFLPs and serum lipid, lipoprotein, and apolipoprotein concentrations was also studied. We found a lower frequency (average 0.0829) of the X+ allele and higher frequencies of the E+ (average 0.9452) and M+ (average 0.9772) alleles in our study population compared with frequencies reported in other populations. The 3 polymorphic sites did not contribute to significant variations in lipid levels (p > 0.1 in all cases). Also, there was no significant variation in genotype frequencies between the control subjects and the hyperlipidemic subjects. Despite their relative close proximity within the APOB gene sequence, the 3 polymorphic sites did not show any significant linkage disequilibrium. However, the presence of the X+ cutting site was in linkage disequilibrium with the Del allele of the 5' insertion-deletion polymorphism and the E-allele was in linkage disequilibrium with the 3' VNTR located near the 3' end of the coding region of the APOB gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号