首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The transparent properties of the embedding agent glycol methacrylate facilitate orientation of the complex embryonic craniofacial region. This technique allows for consistent and reproducible section-to-topography orientation. We find it to be a valuable adjunct for envisioning three-dimensional relationships. the contrast of external features of the embryo is enhanced when stained lightly with hematoxylin prior to embedding. the craniofacial region of the embedded embryo is removed with a fine surgical saw and re-imbedded. Section-to-topography relationships are readily monitored and documented photographically. Furthermore, it is possible to “preview” sections for symmetry and other considerations of orientation by viewing the cutting face of the block under oblique illumination. A relief image of structures is then visible.  相似文献   

2.
Craniofacial birth defects occur in 1 out of every 700 live births, but etiology is rarely known due to limited understanding of craniofacial development. To identify where signaling pathways and tissues act during patterning of the developing face, a ''face transplant'' technique has been developed in embryos of the frog Xenopus laevis. A region of presumptive facial tissue (the "Extreme Anterior Domain" (EAD)) is removed from a donor embryo at tailbud stage, and transplanted to a host embryo of the same stage, from which the equivalent region has been removed. This can be used to generate a chimeric face where the host or donor tissue has a loss or gain of function in a gene, and/or includes a lineage label. After healing, the outcome of development is monitored, and indicates roles of the signaling pathway within the donor or surrounding host tissues. Xenopus is a valuable model for face development, as the facial region is large and readily accessible for micromanipulation. Many embryos can be assayed, over a short time period since development occurs rapidly. Findings in the frog are relevant to human development, since craniofacial processes appear conserved between Xenopus and mammals.  相似文献   

3.
During craniofacial development in the mouse embryo (days 9-12 of gestation; plug day = day 1), transient expression of serotonin (5-HT) uptake in epithelial structures of this region correlates with critical morphogenetic events (Lauder et al., '88; Shuey, '91; Shuey et al., '89, '92). The purpose of the present investigation was to assess the possible functional significance of these uptake sites by examination of patterns of dysmorphology following exposure of embryos to selective 5-HT uptake inhibitors. Exposure of mouse embryos in whole embryo culture to sertraline, at a concentration (10 microM) which produced no evidence of general embryotoxicity, caused craniofacial malformations consistent with direct action at 5-HT uptake sites. Two other 5-HT uptake inhibitors, fluoxetine and amitriptyline, produced similar defects. The critical period of sertraline exposure occurred on days 10-11. The observed craniofacial defects were associated with decreased proliferation and extensive cell death in mesenchyme located 5-6 cell layers deep from the overlying epithelium. In contrast, the subepithelial mesenchymal layers showed normal or elevated levels of proliferation. From these results it appears that inhibition of 5-HT uptake into craniofacial epithelia may produce developmental defects by interference with serotonergic regulation of epithelial-mesenchymal interactions important for normal craniofacial morphogenesis.  相似文献   

4.
水稻中央细胞发育期间超微结构变化的观察   总被引:1,自引:0,他引:1  
本文通过透射电镜对水稻受精前胚囊中央细胞发育过程中超微结构的变化进行观察。结果表明,八核胚囊形成后很快就进行细胞化形成7个细胞,其中刚形成的中央细胞由1个大液泡、2个极核(珠孔端和合点端各1个)和一些含有丰富细胞器的胞质组成。中央细胞以后的发育主要是极核的发育和极核周围胞质的变化。极核发育经历以下过程:a.2个核都膨大呈“椭圆”形。核周围胞质呈不对称分布。b.2个核分别向胚囊中央移动并相互靠近。之后2个极核调整排列方式,由纵排(即与胚囊纵轴平行)变成横排。此时期有细胞质“桥”联结珠孔端卵器、2个极核和合点端反足细胞器。c.横排的极核移向卵器,并排列于卵细胞之上。此时胚囊未明显膨大,但极核相靠近的两边核膜有许多处已形成“融合桥”,核周围的胞质也起较大的变化,如质体内淀粉消失和光面内质网增加等。极核进一步发育直至胚囊成熟期间,极核排列方式及其周围胞质组成未观察到明显的变化,但胚囊体积明显增大。  相似文献   

5.
Okubo N  Motokawa T 《Zoological science》2007,24(12):1169-1177
Embryogenesis in the reef building corals Acropora intermedia, A. solitaryensis, A. hyacinthus, A. digitifera, and A. tenuis was studied in detail at the morphological level, and the relationships among the animal pole, blastopore, and mouth were investigated for the first time in corals. These species showed essentially the same sequence of development. The embryo undergoes spiral-like holoblastic cleavage despite the presence of a dense isolecithal yolk. After the morula stage, the embryo enters the "prawn-chip" stage, which consists of an irregularly shaped cellular bilayer. The embryo begins to roll inward to form the bowl stage; the round shape observed during this stage suggests that it may be the beginning of gastrulation. However, the blastopore closes and the stomodeum (mouth and pharynx) is formed via invagination at a site near the closed blastopore. During the planula stage, a concavity forms in the aboral region in conjunction with numerous spirocysts, suggesting that spirocysts are used to attach to the substrate before the onset of metamorphosis.  相似文献   

6.
The craniofacial haft resists forces generated in the face during feeding, but the importance of these forces for the form of the craniofacial haft remains to be determined. In vivo bone strain data were recorded from the medial orbital wall in an owl monkey (Aotus), rhesus macaques (Macaca mulatta), and a galago (Otolemur) during feeding. These data were used to determine whether: the interorbital region can be modeled as a simple beam under bending or shear; the face is twisting on the brain case during unilateral biting or mastication; the interorbital "pillar" is being axially compressed during incisor loading and both axially compressed and laterally bent during mastication; and the interorbital "pillar" transmits axial compressive forces from the toothrow to the braincase. The strain data reveal that the interorbital region cannot be modeled as a anteroposteriorly oriented beam bent superiorly in the sagittal plane during incision or mastication. The strain orientations recorded in the majority of experiments are concordant with those predicted for a short beam under shear, although the anthropoids displayed evidence of multiple loading regimes in the medial orbital wall. Strain orientation data corroborate the hypothesis that the strepsirrhine face is twisted during mastication. The hypothesis that the interorbital region is a member in a rigid frame subjected to axial compression during mastication receives some support. The hypothesis that the interorbital region is a member in a rigid frame subjected to lateral bending during mastication is supported by the epsilon1/absolute value epsilon2 ratio data but not by the strain orientation data. The timing of peak shear strains in the medial orbital wall of anthropoids does not bear a consistent relationship to the timing of peak shear strain in the mandibular corpus, suggesting that bite force is not the only external force influencing the medial orbital wall. Strain orientation data suggest the existence of two distinct loading regimes, possibly associated with masseter or medial pterygoid contraction. Regardless of the loading regime, all taxa showed low strain magnitudes in the medial orbital wall relative to the anterior root of the zygoma and the mandibular corpus. The strain gradients documented here and elsewhere suggest that, in anthropoids at least, local effects of external forces are more important than a single global loading regime. The low strain magnitudes in the medial orbital wall and in other thin bony plates around the orbit suggest that these structures are not optimally designed for resisting feeding forces. It is hypothesized that their function is to provide rigid support and protection for soft-tissue structures such as the nasal epithelium, the brain, meninges, and the eye and its adnexa. In contrast with the face of Otolemur, which appears to be subjected to a single predominant loading regime, anthropoids may experience different loading regimes in different parts of the face. This implies that the anthropoid and strepsirrhine facial skulls might be optimized for different functions.  相似文献   

7.
Past investigations of the Eskimo have indicated that there are marked morphological differences in the craniofacial skeleton of this relatively isolated ethnic group compared to other ethnic and racial groups. This study, using cephalometric radiography, attempted to characterize the craniofacial phenotype of the Eskimo living in the northern Foxe Basin, Northwest Territories, Canada. Age changes were examined on a cross-sectional basis with comparisons being made with a Winnipeg Caucasian group. This investigation indicates that the Igloolik Eskimo has a phenotype, established early in life, and is distinct from the Winnipeg group. The overall size of the Eskimo craniofacial complex was significantly larger at three years of age and remained larger through the ages studied. Development of the craniofacial region, however, was fairly similar in rate and direction for both populations. The greatest differences between the Eskimo and Caucasian groups were found in the linear measurements assessing cranial width, facial width, mandibular length, facial height, protrusion of the incisors, chin point development, and nasal morphology. Differences between the two groups in the morphological relationships of the component structures include the angular relationships of the maxilla and nasal bones to the anterior cranial base, the gonial angle of the mandible, and the angle of facial convexity.  相似文献   

8.
To examine the spatial distribution of dorsal determinants in the early embryos of Xenopus laevis, individual cells from the 32-cell embryo were transplanted into the same tier of the ventral side of a synchronous recipient. Their abilities to initiate a secondary embryo were measured by the incidence of secondary embryos and by the length of the secondary axis relative to the primary embryo. The ability was found to be localized in all cells (A1, B1, C1, and D1) of the dorsal most column and in the vegetal cells (C2 and D2) of the dorsolateral column. Transplanted C1 (subequatorial) cells caused the highest incidence of a secondary embryo and the average relative length of the secondary embryo was also greatest. Effectiveness decreased in the order: D1, B1, D2, C2, and A1. When these results were compared with Dale and Slack's fate map of the 32-cell embryo, it was concluded that the distribution of dorsal determinants is unique and does not coincide with the prospective regions for any tissues, though it is somewhat similar to the prospective region of dorsal endoderm or notochord. From these results it seems that dorsal determinants do not determine a particular tissue in an embryo but rather the "dorsal" region of an embryo.  相似文献   

9.
The possible involvement of the neurotransmitter serotonin (5-HT) in morphogenesis of the craniofacial region in the mouse embryo has been investigated using the method of whole-embryo culture. Day-12 embryos were incubated for 3-4 h in the presence of 5-HT or its precursors L-tryptophan (L-TRP) or 5-hydroxytryptophan (5-HTP), followed by fixation, sectioning and staining with a specific antiserum to 5-HT. Sites of 5-HT immunoreactivity were found in a variety of locations in tissues of the head and neck, which are either epithelia derived from the non-neural ectoderm or are non-neuronal midline brain structures. These sites include the surface epithelia of the head, face, nasal prominences, branchial arches, oral cavity and associated parts of the nasal epithelium, the epithelium covering the eye, parts of the otic vesicle, the epiphysis and roof of the diencephalon. With the exception of the oral cavity, sites of immunoreactivity for serotonin-binding protein were identified in the mesenchyme adjacent to these sites. This mesenchyme consists of ectodermally derived neural crest cells, which are known to receive inductive influences from the epithelia with which they interact during their migration through the craniofacial region. The presence of 5-HT uptake sites in epithelia and adjacent sites of SBP in the underlying mesenchyme raises the possibility that 5-HT might be involved in those epithelial-mesenchymal interactions known to be important for the development of structures in the craniofacial region.  相似文献   

10.
The embryo of Toxoneuron nigriceps (Hymenoptera, Braconidae) is surrounded by an extraembryonic membrane, which, at hatching, releases teratocytes and gives rise to a cell layer embedding the body of the 1st instar larva. This cell layer was studied at different developmental times, from soon after hatching up to the first larval moult, in order to elucidate its ultrastructural, immunocytochemical and physiological function. The persisting "larval serosa" shows a striking structural and functional complexity: it is a multifunctional barrier with protective properties, limits the passage of macromolecules and it is actively involved in the enzymatic processing and uptake of nutrients. The reported results emphasizes the important role that the embryo-derived host regulation factors may have in parasitism success in Hymenoptera koinobionts.  相似文献   

11.
Growth retardation is a consistent finding in animal studies on the effect of sodium valproate (NaVP) in the embryo. Apart from fetal weight, the state of ossification in the embryo may be regarded as an indication of growth. The present study was to determine what effect sodium valproate at human therapeutic drug plasma levels had on the craniofacial skeletal pattern in the CD-1 mouse embryo relative to oxygen conditions, drug treatment or the interaction of the two. Two NaVP-filled Alzet osmotic minipumps were implanted subcutaneously on day 5 of gestation for continuous delivery of a total daily dosage of 850 mg/kg for 7 days. During this same time period the dams were also exposed to either normoxic (21% oxygen), hyperoxic (50% oxygen), or hypoxic (12% oxygen) controlled environments. Dams were removed from the oxygen chambers on day 12 and killed on day 18 of gestation. The fetuses were then processed for skeletal evaluation of the craniofacial region. Ossification centers were present in all but six of the skeletal elements studied. The primary ossification delay was in the tympanic bony labyrinth. In addition, there was a decrease in maxillary and mandibular length and cranial base measurements. The greatest toxic effect on the fetus for all skeletal components studied was in the NaVP/hypoxia treated group. This finding suggests that fetal skeletal maturation may be affected by a combination of intrauterine as well as external factors.  相似文献   

12.
Clinical observations have demonstrated that isotretinoin (13-cis-retinoic acid; cis-RA) is a human teratogen causing primarily heart and craniofacial malformations. Isotretinoin exposure to the early postimplantation mouse embryo in culture results in specific defects in craniofacial development that may be due to an interference in the early migration of cranial neural crest (CNC) cells [Goulding and Pratt, 1986]. The present study was designed to test this hypothesis by examining the migration of these cells in whole embryo culture. Day 8 CD-1 mouse embryos were cultured for 6-48 hr in the presence or absence of cis-RA at 2 X 10(-6) to 2 X 10(-5) M. Embryos either were fixed for light microscopy using Nichols' method for localization of CNC cells or were processed for scanning and transmission electron microscopy. At the light microscopic level, CNC cells in the mid-brain region of control embryos had migrated to the region of the first and second visceral arches after 6 hr in culture. Cis-RA interfered with this migration; CNC cells in treated embryos either did not leave the neuroepithelium (NE) or were aggregated near the NE. Autoradiographic studies indicated that cis-RA did not affect the overall viability or DNA synthesis of the CNC cells. However, at the TEM level, there was a dramatic increase in the number of cellular blebs in the CNC cells. Our results demonstrate a direct effect of 13-cis-RA on the CNC cells and suggest that this effect is due to alterations in the cell surface.  相似文献   

13.
Structural and functional polarity of starfish blastomeres   总被引:3,自引:0,他引:3  
The cortex of the blastomeres of Asterina pectinifera are structurally polarized so that some kinds of granules in the cortex, which can be stained vitally with Nile blue (Nile blue-positive granules, NBGs), and microvilli were distributed mainly in the apical region. The blastomeres always faced the adjoining blastomeres and blastocoel with the NBG-free, smooth region during embryogenesis. To confirm whether such blastomeres are functionally polarized, we rotated one of the blastomeres in the 2-cell-stage embryo so that it faced the other with the NBG-containing region. As a result, all embryos developed into twin or partitioned blastulae. This shows that the blastomeres are functionally polarized and have to orient the basal cortex toward the inner side of the embryo in order to be integrated into a blastula together with the others. The cortical polarity was formed and maintained even in blastomeres of dissociated embryos. In such blastomeres the cleavage furrows were formed along the axis of polarity. When the blastomeres began to adhere closely to each other at the 256-cell stage, only the NBG-free (basal) region acquired adhesiveness. These facts make it possible to infer why the correct apicobasal orientation of blastomeres is necessary for embryonic integration, without considering intercellular communication during the cleavage stage.  相似文献   

14.
Our understanding of the functional morphology of the primate supraorbital region is based largely on previous morphometric and in vivo mechanical tests of hypotheses in non-human anthropoids. Prior tests of two structural hypotheses explaining morphological variation in the supraorbital region, the craniofacial size hypothesis and the spatial hypothesis, did not fully consider modern humans. We extend these previous findings to include modern humans by conducting morphometric tests of these two hypotheses in a sample of adult Melanesian crania. Morphometric correlates of structural predictions for the craniofacial size and spatial hypotheses were developed and compared to measurements of the supraorbital region via bivariate product-moment correlations. Measurements of the supraorbital region are significantly correlated with a craniofacial size estimate across individuals from this Melanesian sample. This result supports the prediction of the craniofacial size hypothesis that the magnitude of the supraorbital region is proportional to craniofacial size. The predicted link between the degree of neural-orbital disjunction and the magnitude of the supraorbital region, explicated in the spatial hypothesis, receives mixed support in the correlation analysis. These two results agree with previous research indicating that support for the craniofacial size and spatial hypotheses can be found across and within anthropoid primate species, including modern humans. Correlational support for both the craniofacial size and spatial hypotheses suggests multiple factors influence variation in the modern human supraorbital region. Thus, a single hypothesis cannot fully account for modern human variation in this region. The low bivariate correlation coefficients in this study further question whether existing hypotheses can adequately explain morphological variation in the supraorbital region in a primate population sample. Novel functional, structural, behavioral and developmental ideas must be explored if we are to better understand morphological variation in the modern human supraorbital region.  相似文献   

15.
Craniofacial morphogenesis is a complex multi-step process that involves numerous biological processes to coordinate the growth, proliferation, migration, and subsequent differentiation of the cranial neural crest cells. Members of the Fibronectin Leucine-Rich Transmembrane (Flrt) gene family have been previously reported to be widely expressed in the developing embryo. We mapped the expression of Flrt2 and Flrt3 at critical stages of craniofacial development and found that, during early craniofacial development, Flrt2 was highly expressed initially in the cranial neural crest cells and Flrt3 in the midbrain. Later both genes were expressed in the developing pharyngeal region. Flrt2 expression predominated in the neural crest-derived mesenchyme in the medial aspect of the developing frontonasal region in close relationships with the expression of Fgfr2, Shh, and Msx1, three genes shown previously to play critical roles in craniofacial development. Flrt2 was also present in the vomero-nasal organ, mandibular primodia, and the posterior aspects of the unfused and fused secondary palatal shelves. Flrt3, however, had a more restrictive expression, being present in the mesenchyme underlying the ectoderm of the medial nasal process and in the mandibular primordium and in regions undergoing outgrowth, in a pattern that overlapped with Bmp4 expression. Both Flrt2 and Flrt3 were later found to be present at sites of epithelial–mesenchymal interactions such as the developing tooth buds, hair follicles, and eye. Together the data suggested important roles for Flrt2 and Flrt3 in mediating events such as NCC migration, chondrogenesis and epithelial–mesenchymal interactions during craniofacial development.  相似文献   

16.
The Mdm2 oncoprotein acts as the principal negative regulator of p53 activities and is essential for its control during mouse early development, at least before implantation. We analyzed Mdm2 expression between 7.5 and 9 days post-coitum (dpc) by whole-mount in situ hybridization and report here a novel expression pattern during neural crest development. At 7.5 dpc Mdm2 becomes preferentially expressed at the top of the neural folds. Between 8 and 9 dpc, this preferential expression is also observed in neural crest cells migrating from the closing brain towards craniofacial regions and the first three branchial arches. It persists in the craniofacial mesenchyme and the first branchial arch in 9 dpc embryos. Migrating neural crest cells in the tail region are also preferentially labeled at this stage. At day 9.5 Mdm2 becomes more ubiquitously expressed throughout the embryo as reported before.  相似文献   

17.
A method is presented for In situ treatment of whole chick embryos with drugs and immunocytochemical and fixative reagents that resembles conditions “in ovo.” The chick embryo is placed in a “shell-less” culture system where it is contained by an agar ring allowing for treatment in vivo. The conceptus (embryo + membranes) is then mounted on a microporous membrane and inserted into a filter device connected to a three-way stopcock that permits fluids to be changed using syringes. The embryo is then processed in toto or after embedding and sectioning for light or electron microscopy. The proposed handling system decreases technical artifacts and changes in the topographic microanatomy produced by conventional manipulation of chick embryos. This method is useful also for directly observing and recording changes in the embryo during drug treatments and allows processing with dangerous reagents without their direct contact with the operator. It is simple, inexpensive and requires only minimal technical training.  相似文献   

18.
Laterality is fundamental to the vertebrate body plan. Here, we investigate the roles of fgf8 signaling in LR patterning of the zebrafish embryo. We find that fgf8 is required for proper asymmetric development of the brain, heart and gut. When fgf8 is absent, nodal signaling is randomized in the lateral plate mesoderm, leading to aberrant LR orientation of the brain and visceral organs. We also show that fgf8 is necessary for proper symmetric development of the pharyngeal skeleton. Attenuated fgf8 signaling results in consistently biased LR asymmetric development of the pharyngeal arches and craniofacial skeleton. Approximately 1/3 of zebrafish ace/fgf8 mutants are missing Kupffer's vesicle (KV), a ciliated structure similar to Hensen's node. We correlate fgf8 deficient laterality defects in the brain and viscera with the absence of KV, supporting a role for KV in proper LR patterning of these structures. Strikingly, we also correlate asymmetric craniofacial development in ace/fgf8 mutants with the presence of KV, suggesting roles for KV in lateralization of the pharyngeal skeleton when fgf8 is absent. These data provide new insights into vertebrate laterality and offer the zebrafish ace/fgf8 mutant as a novel molecular tool to investigate tissue-specific molecular laterality mechanisms.  相似文献   

19.
O Slaby 《Folia morphologica》1990,38(4):408-417
As in the red deer, in the fallow deer embryo we found a number of ancestral structures reminiscent of relationships in other mammals, such as paraseptal cartilages, a septum nasi with trabecular widening, a lamina transversalis ant., a cart. ectochoanalis, a capsule wall with a roof and a lateral wall formed of a clearly distinguishable cart. parietotectalis and cart. paranasalis, an ethmoturbinale I projecting a long way rostrally and additionally, in the fallow deer, cart. paraseptales posteriores. I regard the relationship of the cart. alaris inf. to the parietotectal cartilage (or "marginoturbinale") as relatively "primitive"; this may mean that the term "atrioturbinale" is also justified in mammals and that the relevant structure is homologous with the one known by the same name in birds. The specializations found during study of the morphogenesis of the nasal apparatus in the red deer (Slaby 1990b) are accentuated in the fallow deer. The chief ones are the specific rostral processes of the anlage of the nasal septum, which are a significant part of reinforcement of the nostril, the marked widening of the nasal capsule in a lateral direction (so that even the paranasal cartilages have a largely horizontal course), the striking ventrolateral bulge in the nasal capsule at the beginning of the olfactory region and the final resultant decrease in the height (i. e. flattening) of the capsule. This leads to reduction of the frontoturbinalia and their corresponding recesses, which - where they are developed - are oriented more horizontally. The structure of ethmoturbinale I, together with its insertion, is also simplified. As in the corresponding red deer embryo, the paranasal cartilage zone in the anterior part of the olfactory region is strikingly thickened; the frontoturbinalia do not, however, originate (in our stage) by the formation of cavities in the cartilage, but develop as simple processes. A crista semicircularis and foramen epiphaniale and also, as distinct from the red deer embryo, cart. paraseptales posteriores, are clearly discernible. In conclusion, it can therefore be claimed that the morphogenesis of specialized cervid features is accentuated in Dama more than in Cervus and that relationships in the fallow deer represent a further step in specialization, or - if we are speaking of the development of radiations - specialization here has progressed further.  相似文献   

20.
A method is presented for In situ treatment of whole chick embryos with drugs and immunocytochemical and fixative reagents that resembles conditions “in ovo.” The chick embryo is placed in a “shell-less” culture system where it is contained by an agar ring allowing for treatment in vivo. The conceptus (embryo + membranes) is then mounted on a microporous membrane and inserted into a filter device connected to a three-way stopcock that permits fluids to be changed using syringes. The embryo is then processed in toto or after embedding and sectioning for light or electron microscopy. The proposed handling system decreases technical artifacts and changes in the topographic microanatomy produced by conventional manipulation of chick embryos. This method is useful also for directly observing and recording changes in the embryo during drug treatments and allows processing with dangerous reagents without their direct contact with the operator. It is simple, inexpensive and requires only minimal technical training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号