首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct development in amphibians is an evolutionarily derived life-history mode that involves the loss of the free-living, aquatic larval stage. We examined embryos of the direct-developing anuran Eleutherodactylus coqui (Leptodactylidae) to evaluate how the biphasic pattern of cranial ontogeny of metamorphosing species has been modified in the evolution of direct development in this lineage. We employed whole-mount immunohistochemistry using a monoclonal antibody against the extracellular matrix component Type II collagen, which allows visualization of the morphology of cartilages earlier and more effectively than traditional histological procedures; these latter procedures were also used where appropriate. This represents the first time that initial chondrogenic stages of cranial development of any vertebrate have been depicted in whole-mounts. Many cranial cartilages typical of larval anurans, e.g., suprarostrals, cornua trabeculae, never form in Eleutherodactylus coqui. Consequently, many regions of the skull assume an adult, or postmetamorphic, morphology from the inception of their development. Other components, e.g., the lower jaw, jaw suspensorium, and the hyobranchial skeleton, initially assume a mid-metamorphic configuration, which is subsequently remodeled before hatching. Thirteen of the adult complement of 17 bones form in the embryo, beginning with two bones of the jaw and jaw suspensorium, the angulosplenial and squamosal. Precocious ossification of these and other jaw elements is an evolutionarily derived feature not found in metamorphosing anurans, but shared with some direct-developing caecilians. Thus, in Eleutherodactylus cranial development involves both recapitulation and repatterning of the ancestral metamorphic ontogeny.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The Puerto Rican direct-developing frog Eleutherodactylus coqui (Leptodactylidae) displays a novel mode of jaw muscle development for anuran amphibians. Unlike metamorphosing species, several larval-specific features never form in E. coqui; embryonic muscle primordia initially assume an abbreviated, mid-metamorphic configuration that is soon remodelled to form the adult morphology before hatching. Also lacking are both the distinct population of larval myofibres and the conspicuous, larval-to-adult myofibre turnover that are characteristic of muscle development in metamorphosing species. These modifications are part of a comprehensive alteration in embryonic cranial patterning that has accompanied life history evolution in this highly speciose lineage. Embryonic ''repatterning'' in Eleutherodactylus may reflect underlying developmental mechanisms that mediate the integrated evolution of complex structures. Such mechanisms may also facilitate, in organisms with a primitively complex life cycle, the evolutionary dissociation of embryonic, larval, and adult features.  相似文献   

3.
A controversial issue in anuran systematics is the relationship of Leiopelma to other anurans because recent phylogenetic constructions imply different relationships among the basal frogs. Of particular evolutionary interest is whether early development of Leiopelma resembles an ancestral salamander-like larva, an anuran tadpole, or neither. In the 1950s, Neville G. Stephenson hypothesized that direct development is the primary mode of development in amphibians, based on the fact that Leiopelma spp. lack a free-living (=feeding) larval stage. Although this hypothesis has not been generally accepted, it has not been formally refuted. We review Stephenson's work on Leiopelma and examine the anatomy of embryos/"larvae" of the four extant Leiopelma species for evidence of vestigial larval features that might refute the "direct-developing ancestor" hypothesis. We describe internal oral features in early developmental stages of Leiopelma and compare Leiopelma with a closely related basal anuran, Ascaphus, to assess whether their early developmental stages share any derived features. In Leiopelma hochstetteri, embryos/larvae have open gill slits and some faint rugosities around one gill slit that may be vestiges of gill rakers or filters. They also have more intestinal loops, indicative of an elongated alimentary tract, at earlier rather than late embryonic/larval stages. Collectively, these features support the view that the ancestor of Leiopelma had a free-swimming, free-feeding, aquatic larva. The palatoquadrate of Leiopelma archeyi reorients approximately 40 degrees from a more horizontal to a more vertical position through embryonic/"larval" development. This amount of cranial remodeling is intermediate between that seen in salamanders (17-27 degrees) and that reported for Ascaphus (64 degrees ) and other basal frogs (71-78 degrees) at metamorphosis. We found no internal oral features that Leiopelma shares specifically with Ascaphus. However, Leiopelma embryos have a ventrally positioned mouth and a downturned rostrum, characteristic of Ascaphus and other stream-adapted tadpoles.  相似文献   

4.
The direct-developing frog, Eleutherodactylus coqui, has eliminated the tadpole stage from its ontogeny, and lacks many larval characters. We demonstrate that the dermal folds of E. coqui are homologous with the opercular folds of metamorphosing frogs. In both E. coqui and its metamorphic counterparts the opercular folds grow over the developing forelimb before perforating to free the entrapped limb. Opercular perforation in E. coqui occurs even in the absence of the forelimb but shows no signs of thyroid hormone dependence. The condensation of E. coqui development appears due to the excision of the extended larval period of developmental stasis. Analysis of opercular development, when viewed in conjunction with other developmental characters, suggests the ontogenetic period in the ancestral Eleutherodactylus life-history from which the tadpole was likely eliminated. Received: 7 October 1999 / Accepted: 17 January 2000  相似文献   

5.
Recent molecular phylogenies suggest the surprising reacquisition of posthatching metamorphosis within an otherwise direct-developing clade of lungless salamanders (family Plethodontidae). Metamorphosis was long regarded as plesiomorphic for plethodontids, yet the genus Desmognathus, which primarily includes metamorphosing species, is now nested within a much larger clade of direct-developing species. The extent to which the putative reacquisition of metamorphosis in Desmognathus represents a true evolutionary reversal is contingent upon the extent to which both larva-specific features and metamorphosis were actually lost during the evolution of direct development. In this study we analyze development of the hyobranchial skeleton, which is dramatically remodeled during salamander metamorphosis, in the direct-developing red-backed salamander, Plethodon cinereus. We find dramatic remodeling of the hyobranchial skeleton during embryogenesis in P. cinereus and the transient appearance of larva-specific cartilages. Hyobranchial development in this direct-developing plethodontid is highly similar to that in metamorphosing plethodontids (e.g., Desmognathus). The proposed reacquisition of hyobranchial metamorphosis within Desmognathus does not represent the "re-evolution" of a lost phenotype, but instead the elaboration of an existing developmental sequence.  相似文献   

6.
Direct development is the assumption of the adult morphology without progression through an intervening, morphologically distinct, free-living larval phase. We discuss the ecological factors contributing to the evolution of this derived life-history strategy in frogs, and the developmental modifications that facilitate such an unusual mode of embryogenesis. Studies on the Puerto Rican tree frog, Eleutherodactylus coqui, have identified several such modifications, including developmental adaptations for dealing with increased egg size, and loss of tadpole structures. Surprisingly, this direct developer still undergoes a thyroid hormone-dependent metamorphosis, which occurs before hatching. We suggest how the ancestral biphasic developmental pattern may have been rearranged during the evolution of direct development.  相似文献   

7.
Plethodontid salamanders capture prey with enhanced tongue protraction relative to other salamander taxa, yet metamorphosing plethodontids are hypothesized to be constrained relative to direct-developing plethodontids in their degree of tongue evolution (protraction length and velocity) by the presence of a larval stage in development. In this biphasic life history the hyobranchial apparatus serves the conflicting functions of larval suction feeding and adult tongue protraction. The deletion of the larval stage removes one of the conflicting functions and has thus permitted direct-developing plethodontids to circumvent this constraint and evolve extremely long tongues, which in some species can be projected to 80% of body length. To evaluate this constraint hypothesis and explore taxonomic diversity of feeding behaviours, we studied feeding in larvae, adults and metamorphosing individuals of seven species of metamorphosing plethodontids from the basal taxa Desmognathinae and Hemidactyliini using direct observations, high-speed videography and kinematic analysis. We found that larval plethodontids suction feed, but feeding is suspended entirely during metamorphosis, and aquatic adults do not suction feed. Adults have exapted the terrestrial modes of tongue and jaw prehension for aquatic prey capture. These findings substantiate the premise that suction feeding and tongue protraction are conflicting functions, and thus our results support the constraint hypothesis. Plethodontid adults have evolved their extreme tongue protraction ability at the expense of adult suction feeding. The rapid metamorphosis that characterizes plethodontids may be an adaptation that minimizes the non-feeding period imposed by the evolution of derived tongue protraction in adults. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 134 , 375–400.  相似文献   

8.
The development of bony skull was studied in four species of Asian tree frogs (Rhacophoridae) with different life histories: biphasic development with free larval stage and direct development. In biphasic rhacophorids the sequence of the appearance of cranial bones generally followed the generalized pattern of craniogenesis, which was described for most studied anurans. In contrast, direct-developing species displayed some heterochronies in the formation of skull bones, namely, the accelerated formation of the anlagen of jaw and suspensorium bones. The obtained results support that the embryonization in amphibians is regularly accompanied by a heterochronic repatterning of craniogenesis, rather similar in different phyletic groups.  相似文献   

9.
五种蝌蚪口器及舌鳃骨的结构比较   总被引:2,自引:0,他引:2  
夏坤  吴民耀  周凤  王宏元 《四川动物》2012,31(4):593-597
采用体视显微镜和骨骼双染色法对5种不同栖息环境的无尾两栖动物蝌蚪的口器和舌鳃骨的形态结构特征进行了观察。5种蝌蚪口器由唇齿行、唇乳突和角质颌等组成。舌鳃骨是由关联骨Ⅰ、关联骨Ⅱ、角舌骨、舌鳃骨盘和角鳃骨等骨骼组成。蝌蚪的梅氏软骨若较发达,其摄食方式可能为刮食;蝌蚪的舌鳃骨发达,其摄食方式则可能为滤食。角质颌、唇齿以及角鳃骨上鳃耙的出现显著增强了蝌蚪主动摄食能力和对食物与非食物的主动选择性。  相似文献   

10.
Abstract.— Development creates morphology, and the study of developmental processes has repeatedly shed light on patterns of morphological evolution. However, development itself evolves as well, often concomitantly with changes in life history or in morphology. In this paper, two approaches are used to examine the evolution of skull development in pipoid frogs. Pipoids have highly unusual morphologies and life histories compared to other frogs, and their development also proves to be remarkable. First, a phylogenetic examination of skull bone ossification sequences reveals that jaw ossification occurs significantly earlier in pipoids than in other frogs; this represents a reversal to the primitive vertebrate condition. Early jaw ossification in pipoids is hypothesized to result from the absence of certain larval specializations possessed by other frogs, combined with unusual larval feeding behaviors. Second, thin-plate spline morphometric studies of ontogenetic shape change reveal important differences between pipoid skull development and that of other frogs. In the course of frog evolution, there has been a shift away from salamander-like patterns of ontogenetic shape change. The pipoids represent the culmination of this trend, and their morphologies are highly derived in numerous respects. This study represents the first detailed examination of the evolution of skull development in a diverse vertebrate clade within a phylogenetic framework. It is also the first study to examine ossification sequences across vertebrates, and the first to use thin-plate spline morphometrics to quantitatively describe ontogenetic trajectories.  相似文献   

11.
A table of development (25 stages) for the period of incubation in the pouch was constructed for Gastrotheca riobambae; it can be used to stage embryos of other egg-brooding hylids. Analysis of embryonic weights during incubation shows that the mother does not contribute nutrients, but gases and other factors are probably exchanged between mother and embryos. According to species, incubation on the back of the mother is carried to the froglet or to the tadpole stages. Development in these hylids is characterized by specialized gills, the bell gills derived from the branchial arches. In some species, the bell gills derive from the first branchial arch and cover less than 50% of the embryo, while in others, the bell gills come from both branchial arches I and II and cover from less than 50% to 100% of the embryo. The most complex bell gills derive from the fusion of the two branchial arches. The majority of egg-brooding hylids live in tropical forests and carry development to the froglet stage. Tadpoles are produced by species of Flectonotus, Fritziana, and Gastrotheca. Tadpole-producing species of Gastrotheca have the most complex reproductive adaptations among egg-brooding hylids Acceleration and retardation in development seem to have played important roles in the evolution of these frogs. The evolutionary trend has been toward direct development, i.e., disappearance of the free-living larval stages through maternal incubation, and later to a recovery of the free-living tadpole stages in species of Gastrotheca with the most complex reproductive adaptations.  相似文献   

12.
Ziermann, J.M., Infante, C., Hanken, J. and Olsson, L. 2011. Morphology of the cranial skeleton and musculature in the obligate carnivorous tadpole of Lepidobatrachus laevis (Anura: Ceratophryidae). —Acta Zoologica (Stockholm) 00 :1–12. Lepidobatrachus laevis (Ceratophryidae: Ceratophryinae) is a bizarre frog endemic to the Chacoan desert of central South America. Its tadpole is an obligate carnivore that can catch and consume live prey nearly its own size. Morphological adaptations associated with this unique feeding mode, including the larval skull anatomy and associated cranial musculature, have only been partly described. We studied the head of Stages 26–27 larvae using gross dissection, immunohistochemistry, and standard histology. Derived features of this tadpole compared to the microphagous, herbivorous larvae of most other anurans include simplified chondrocranial cartilages and very robust jaw muscles. The mm. suspensorio‐ et quadratoangularis do not take their origin from the processus muscularis of the palatoquadrate, as in most other tadpoles, but instead originate from the corpus of the palatoquadrate caudal to this process. The jaw levators are unusually large. The tadpole of Ceratophrys, another member of the ceratophryine clade, also consumes large animal prey, but its morphology is very different. It probably has evolved independently from a generalized, mainly herbivorous tadpole similar to the larva of Chacophrys, the third ceratophryine genus. Most specialized features of the larval head of Lepidobatrachus laevis are adaptations for ‘megalophagy’—ingestion of whole, very large animal prey.  相似文献   

13.
Nearly all vertebrates possess an olfactory organ but the vomeronasal organ is a synapomorphy for tetrapods. Nevertheless, it has been lost in several groups of tetrapods, including aquatic and marine animals. The present study examines the development of the olfactory and vomeronasal organs in two terrestrial anurans that exhibit different developmental modes. This study compares the development of the olfactory and vomeronasal organs in metamorphic anurans that exhibit an aquatic larva (Bufo americanus) and directly developing anurans that have eliminated the tadpole (Eleutherodactylus coqui). The olfactory epithelium in larval B. americanus is divided into dorsal and ventral branches in the rostral and mid-nasal regions. The larval olfactory pattern in E. coqui has been eliminated. Ontogeny of the olfactory system in E. coqui embryos starts to vary substantially from the larval pattern around the time of operculum development, the temporal period when the larval stage is hypothesized to have been eliminated. The nasal anatomy of the two frogs does not appear morphologically similar until the late stages of embryogenesis in E. coqui and the terminal portion of metamorphosis in B. americanus. Both species and their respective developing offspring, aquatic tadpoles and terrestrial egg/embryos, possess a vomeronasal organ. The vomeronasal organ develops at mid-embryogenesis in E. coqui and during the middle of the larval period in B. americanus, which is relatively late for neobatrachians. Development of the vomeronasal organ in both frogs is linked to the developmental pattern of the olfactory system. This study supports the hypothesis that the most recent common ancestor of tetrapods possessed a vomeronasal organ and was aquatic, and that the vomeronasal organ was retained in the Amphibia, but lost in some other groups of tetrapods, including aquatic and marine animals.  相似文献   

14.
The reorganization of cranial cartilages during tadpole metamorphosis is a set of complex processes. The fates of larval cartilage‐forming cells (chondrocytes) and sources of adult chondrocytes are largely unknown. Individual larval cranial cartilages may either degenerate or remodel, while many adult cartilages appear to form de novo during metamorphosis. Determining the extent to which adult chondrocytes/cartilages are derived from larval chondrocytes during metamorphosis requires new techniques in chondrocyte lineage tracing. We have developed two transgenic systems to label cartilage cells throughout the body with fluorescent proteins. One system strongly labels early tadpole cartilages only. The other system inducibly labels forming cartilages at any developmental stage. We examined cartilages of the skull (viscero‐ and neurocranium), and identified larval cartilages that either resorb or remodel into adult cartilages. Our data show that the adult otic capsules, tecti anterius and posterius, hyale, and portions of Meckel's cartilage are derived from larval chondrocytes. Our data also suggest that most adult cartilages form de novo, though we cannot rule out the potential for extreme larval chondrocyte proliferation or de‐ and re‐differentiation, which could dilute our fluorescent protein signal. The transgenic lineage tracing strategies developed here are the first examples of inducible, skeleton‐specific, lineage tracing in Xenopus.  相似文献   

15.
16.
Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt‐adapted (“coastal”) and nonsalt‐adapted (“inland”) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high‐density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.  相似文献   

17.
The Indian Purple frog, Nasikabatrachus sahyadrensis, occupies a basal phylogenetic position among neobatrachian anurans and has a very unusual life history. Tadpoles have a large ventral oral sucker, which they use to cling to rocks in torrents, whereas metamorphs possess adaptations for life underground. The developmental changes that underlie these shifts in habits and habitats, and especially the internal remodeling of the cranial and postcranial skeleton, are unknown. Using a nearly complete metamorphic series from free-living larva to metamorph, we describe the postembryonic skeletal ontogeny of this ancient and unique monotypic lineage. The torrent-dwelling larva possesses a dorsoventrally flattened body and a head with tiny dorsal eyes, robust lower and upper jaw cartilages, well-developed trabecular horns, and a definable gap between the trabecular horns and the tip of the snout. Unlike tadpoles of many other frogs, those of Nasikabatrachus retain larval mouthparts into late metamorphic stages. This unusual feature enables the larvae to maintain their clinging habit until near the end of metamorphosis. The subsequent ontogenetic shift from clinging to digging is correlated with rapid morphological changes and behavioral modifications. Metamorphs are equipped with a shortened tibiafibula and ossified prehallical elements, which likely facilitate initial digging using the hind limbs. Subsequently, the frogs may shift to headfirst burrowing by using the wedge-shaped skull, anteriorly positioned pectoral girdle, well-developed humeral crests and spatula-shaped forelimbs. The transition from an aquatic life in torrents to a terrestrial life underground entails dramatic changes in skeletal morphology and function that represent an extreme in metamorphic remodeling. Our analysis enhances the scope for detailed comparative studies across anurans, a group renowned for the diversity of its life history strategies.  相似文献   

18.
《Zoology (Jena, Germany)》2014,117(2):139-145
For organisms with complex life histories it is well known that risk experienced early in life, as embryos or larvae, may have effects throughout the life cycle. Although carryover effects have been well documented in invertebrates with different levels of parental care, there are few examples of predator-induced responses in externally brooded embryos. Here, we studied the effects of nonlethal predation risk throughout the embryonic development of newly spawned eggs carried by female shrimp on the timing of egg hatching, hatchling morphology, larval development and juvenile morphology. We also determined maternal body mass at the end of the embryonic period. Exposure to predation risk cues during embryonic development led to larger larvae which also had longer rostra but reached the juvenile stage sooner, at a smaller size and with shorter rostra. There was no difference in hatching timing, but changes in larval morphology and developmental timing showed that the embryos had perceived waterborne substances indicative of predation risk. In addition to carryover effects on larval and juvenile stages, predation threat provoked a decrease of body mass in mothers exposed to predator cues while brooding. Our results suggest that risk-exposed embryos were able to recognize the same infochemicals as their mothers, manifesting a response in the free-living larval stage. Thus, future studies assessing anti-predator phenotypes should include embryonic development, which seems to determine the morphology and developmental time of subsequent life-history stages according to perceived environmental conditions.  相似文献   

19.
长吻(鱼危)的幼鱼发育共分为仔鱼前期、仔鱼期和稚鱼期三个阶段。本文记述的是幼鱼发育各阶段外部形态的变化和内部器官的建成以及不同时期出现的集群、摄食、避光等生物学特性。对提高鱼苗成活率,培育出优质健壮的苗种有指导意义。    相似文献   

20.
Many species of frogs and salamanders, in at least 12 families, alter their timing of hatching in response to conditions affecting mortality of eggs or larvae. Some terrestrially laid or stranded embryos wait to hatch until they are submerged in water. Some embryos laid above water accelerate hatching if the eggs are dehydrating; others hatch early if flooded. Embryos can hatch early in response to predators and pathogens of eggs or delay hatching in response to predators of larvae; some species do both. The phylogenetic pattern of environmentally cued hatching suggests that similar responses have evolved convergently in multiple amphibian lineages. The use of similar cues, including hypoxia and physical disturbance, in multiple contexts suggests potential shared mechanisms underlying the capacity of embryos to respond to environmental conditions. Shifts in the timing of hatching often have clear benefits, but we know less about the trade-offs that favor plasticity, the mechanisms that enable it, and its evolutionary history. Some potentially important types of cued hatching, such as those involving embryo-parent interactions, are relatively unexplored. I discuss promising directions for research and the opportunities that the hatching of amphibians offers for integrative studies of the mechanisms, ecology and evolution of a critical transition between life-history stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号