首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were carried out on 8 sexually immature male calves. Sections of the ureters, urinary bladder, and urethra were cut with a freezing microtome and the method of Ky?s?la et al. (1980) was used to visualize the adrenergic nerve fibres. It was found that bovine ureters possessed weak innervation; most of the nerves was located in the muscular membrane, and only in the paravesical part, sparse nerve fibres were found in the submucosa of this one. Apex of the urinary bladder was more weakly supplied with the adrenergic nerves than the corpus, whereas bladder's trigonum and cervix possessed numerous nerve fibres in both muscular and submucosal membranes. The distribution pattern of adrenergic nerves in the urethra was similar to that of urinary bladder's cervix. The presence of adregeneric nerve fibres was found in submucosal layer of both the urinary bladder and the urethra. Part of the nerves was connected with blood vessels of the organs under study.  相似文献   

2.
Adrenergic innervation of the ureters, urinary bladder, and urethra in pigs   总被引:1,自引:0,他引:1  
Studies were conducted on 4 sexually mature and 4 immature pigs. Scraps of the ureters, urinary bladder, and urethra were cut with a freezing microtome. Fluorescence method of Torre and Surgeon (1976) was used to reveal the adrenergic innervation. It was found that the ureters were weakly supplied with the adrenergic nerves; most of the nerves were located in the muscular and submucosal membranes. Apex of the urinary bladder possessed the weakest innervation. More nerves were found in particular layers of the bladder corpus whereas bladder trigonum and cervix possessed numerous nerves. Adrenergic innervation of the urethra was similar to that of the urinary bladder's cervix. Adrenergic nerves were present in the serous and muscular membranes of both the urinary bladder and the urethra. Part of the nerve fibres was connected with blood vessels of the organs under study.  相似文献   

3.
J M Polak  S R Bloom 《Peptides》1984,5(2):225-230
VIP is present in the genitourinary system of man and animals. In man the highest concentrations are found in the penis, the uterus and vagina and in the urinary bladder. VIP nerves heavily innervate the erectile tissue of the male external genitalia, the uterine smooth muscle and blood vessels, the seromucous glands of the cervix, and the lamina propria and vaginal epithelium. In the urinary bladder, VIP nerves are located beneath the transitional epithelium, in the lamina propria and in the smooth muscle. Other areas well innervated by VIP nerves include the prostate, seminal vesicles and vasa deferentia. Chemical (phenol- and 6-OHDA) or surgical (hypogastric or pelvic nerve section) extrinsic denervation fail to deplete the genitourinary system of its VIP content, supporting the view that VIP-containing nerves originate from local ganglion cells. Indeed, neuronal cell bodies containing VIP are seen in the paracervical ganglia of the female genitalia, the para- or intramural bladder ganglia and scattered through the base of the cavernosum body, the neck of the bladder and the prostate. The finding of elevated levels of VIP in the local circulation after induced penile erection in man and mammals and the ability of VIP to relax the detrusor muscle of the bladder suggests that the peptide may be involved in penile erection and bladder relaxation, as does the marked VIP depletion in the penis or bladder in patients suffering from diabetic impotence or bladder instability.  相似文献   

4.
Summary The presence and distribution of galanin-immunoreactivity was examined in the uterine cervix and paracervical autonomic ganglia of the female rat. Some animals were treated with capsaicin to determine if galanin-immunoreactivity was present in small-diameter primary afferent nerves. Other animals were treated with the noradrenergic neurotoxin 6-hydroxydopamine to ascertain if galanin-immunoreactivity was present in sympathetic noradrenergic nerves. Galanin-immunoreactive nerve fibers were sparse in the cervical myometrium and vasculature, but numerous in the paracervical ganglion where they appeared to innervate principal neurons. Immunoreactivity was also present in dorsal root ganglia, dorsal horn of spinal cord, and inferior mesenteric ganglia. Capsaicin treatment resulted in a marked reduction of galanin-immunoreactivity in the spinal cord dorsal horn, but not in the dorsal root ganglia, paracervical ganglia, or cervix (although there was a substantial reduction of substance P-, neurokinin A-, and calcitonin gene-related peptide-immunoreactivity in the dorsal horn, dorsal root ganglia, and uterine cervix). 6-Hydroxydopamine treatment did not cause any appreciable change in the galanin-immunoreactivity in any tissues. We conclude that galanin-like immunoreactivity is expressed in nerve fibers innervating the paracervical ganglia and uterine cervix of the female rat. This immunoreactivity is probably present in afferent nerves and could play a role in neuroendocrine reflexes and in reproductive function.  相似文献   

5.
Summary Scattered vasoactive intestinal polypeptide (VIP) — immunoreactive nerves were found in the striated muscle of the hind limb of the cat, where they usually were associated with small blood vessels. VIP-immunoreactive nerves were also demonstrated in the sciatic nerve; after nerve ligation an abundance of intensely immunoreactive VIP fibres were seen proximal to the ligation. Intraarterial infusion of VIP into the isolated hind limb of the cat had dramatic effects on different sections of the vascular bed. Thus, VIP dilated the resistance vessels leading to a marked increment in muscle blood flow. VIP also relaxed the capacitance vessels causing regional pooling of blood; it increased the capillary surface area available for fluid exchange. Infusions of VIP at a dose of 8 g/min significantly inhibited the vasoconstriction induced by electrical stimulation of the regional sympathetic nerves. It is suggested that local nervous release of VIP may act as a modulator of vascular tone in skeletal muscle.  相似文献   

6.
The innervation of the urinary bladder is known to include a considerable number of nerves containing vasoactive intestinal polypeptide (VIP). The origin of such nerves in the bladder of rat was investigated in this study using the methods of immunocytochemistry and radioimmunoassay combined with surgical sectioning of the hypogastric and/or pelvic nerves to the bladder. Eight days after pelvic nerve sectioning proximal to the main pelvic ganglion, VIP-immunoreactive nerves and VIP content were markedly increased from the level in the sham-operated rat bladder. Sectioning of hypogastric or both nerve pathways led to a less significant increase. It was therefore postulated that the majority of VIP-immunoreactive nerves originate from ganglia located either close to the bladder or within the bladder wall. It is interesting that in these experiments the VIP content of the bladder nerves is inversely related to the changes in motility that would be expected to result from the nerve sections.  相似文献   

7.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and helospectin are two vasoactive intestinal polypeptide (VIP)-related neuropeptides that have recently been demonstrated in the mammalian gut; the aim of this study was to reveal their occurrence and localisation in the gastrointestinal tract, swimbladder, urinary bladder and the vagal innervation of the gut of teleosts, using immunohistochemical methods on whole-mounts and sections of these tissues from the Atlantic cod, Gadus morhua and the rainbow trout, Oncorhynchus mykiss. Both PACAP-like and helospectin-like peptides were present in the gut wall of the two species. Immunoreactive nerve fibres were found in all layers but were most frequent in the myenteric plexus and along the circular muscle fibres. Immunoreactivity was also demonstrated in nerves innervating the swimbladder wall, the urinary bladder and blood vessels to the gut. Immunoreactive nerve cell bodies were found in the myenteric plexus of the gut and in the muscularis mucosae of the swimbladder. In the vagus nerve, non-immunoreactive nerve cells were surrounded by PACAP-immunoreactive fibres. Double staining revealed the coexistence of PACAP-like and helospectin-like peptides with VIP in all visualized nerve fibres and in some endocrine cells. It is concluded that PACAP-like and helospectin-like peptides coexist with VIP in nerves innervating the gut of two teleost species. The distribution suggests that both PACAP and helospectin, like VIP, are involved in the control of gut motility and secretion.  相似文献   

8.
Enkephalin-immunoreactive nerve fibers in the feline genito-urinary tract   总被引:1,自引:0,他引:1  
Summary Besides the classical neurotransmitters acetylcholine and norepinephrine the genito-urinary tract contains also neuropeptides. The distribution of substance P- and VIP-containing nerve fibers have earlier been described. Also enkephalin-immunoreactive nerve fibers occur in the male and female genito-urinary organs of the cat. The nerves are more numerous in male than in female genital tract. The prostatic gland and vas deferens receive the largest supply. In the female genital tract the enkephalin-immuno-reactive nerve fibers are regularly seen in the smooth muscle layer of the cervix. Of special interest is the rich occurrence of the enkephalin nerve fibers among the nerve cell bodies in the para-urethral and cervical ganglia supporting the view that enkephalin may play a neuromodulating role.  相似文献   

9.
Summary Vasoactive intestinal polypeptide (VIP)-immunoreactive nerves were abundant along the entire digestive tract of the chicken. In the proventriculus, gizzard and small intestine VIP nerves were numerous around glands and less numerous in the smooth muscle. Submucosal blood vessels were often encircled by VIP nerves. VIP nerves were also seen in the submucosal and myenteric plexus. In the large intestines the VIP innervation of the smooth muscle was more predominant, while there was a rather sparse supply of VIP nerves around the base of the crypts. This innervation pattern was a consistent finding with four different VIP antisera. VIP-immunoreactive cells, however, were demonstrated with only three of the antisera. They were found scattered in the epithelium of the proventriculus and small and large intestines. The failure of one of the antisera to demonstrate endocrine cells suggests that the VIP-immunoreactive material in these cells differs from that in nerves. Conceivably, the material present in nerves represents VIP, while that in endocrine cells represents cross-reacting peptides or other molecular forms of VIP.VIP nerves appeared comparatively early in embryonic development. They appeared in the upper part of the digestive tract at 13 days of incubation and in the colon a few days before hatching; at this stage, only smooth muscle received VIP nerves. The adult pattern of innervation was established about two to four weeks after hatching. VIP-immunoreactive endocrine cells appeared in the intestines a few days before hatching. The adult frequency of occurrence was established about one week after hatching.  相似文献   

10.
The immunoreactivity of vasoactive intestinal polypeptide (VIP) was localized at the light-microscopical level in cryostat sections using a peroxidase-antiperoxidase technique or at the electron-microscopical (EM) level in glutaraldehyde-fixed, resin-embedded sections, using an immunogold technique, of tissue samples from the genital tract of cycling pigs. X-ray micro-analysis of glutaraldehyde-dichromate-fixed sections was used to discriminate noradrenaline-containing nerves. VIP immunoreactivity was localized to nerves associated to some degree with epithelial cells, blood vessels and non-vascular smooth muscle. VIP nerves were most concentrated in the cervix and the uterus, localized in the submucosa, the muscle layers and the adventitia. Nerve profiles were also seen accompanying blood vessels in the endometrium, running close to the uterine glands. In the oviduct, VIP nerves had a similar localization though less dense. At the EM level, the immunogold localization confirmed the above-mentioned results, VIP being localized in synaptic vesicles. Nerve terminals without VIP reactivity had an EM appearance of cholinergic nerve terminals or were chrome positive (noradrenaline-containing) at X-ray micro-analysis, thus being adrenergic terminals. It is concluded that the porcine female genital tract is well innervated, along with adrenergic and cholinergic components, by VIP-containing nerves.  相似文献   

11.
M Yamamoto  H Kondo 《Acta anatomica》1988,132(2):169-176
The occurrence, distribution and ontogeny of nerves displaying calcitonin-gene-related peptide (CGRP)-like immunoreactivity were studied in the male reproductive tract of rats. A marked regional difference in number of CGRP-immunoreactive nerve fibers was observed in the epididymis. The immunoreactive nerve fibers were particularly numerous in the cauda epididymidis, where the nerves were found in the capsular and interstitial connective tissue and further in the smooth muscle layer and the subepithelial connective tissue surrounding the duct. In the remaining portions of the reproductive tract proximal and distal to the epididymis, CGRP-immunoreactive nerve fibers were scarcely found in the connective tissues surrounding the duct, although a small number of the CGRP-immunoreactive nerve fibers was constantly found adjacent to small blood vessels throughout the male reproductive tract. CGRP-immunoreactive nerve fibers in the epididymis were first detected at embryonic day 18 when thin bundles or single fibers were evenly distributed in the interstitial connective tissue of the entire epididymal duct. A marked regional difference in number of CGRP-immunoreactive nerve fibers seen in the adult epididymis was established by postnatal day 14. In the epididymis of young rats treated neonatally with capsaicin, CGRP-immunoreactive nerve fibers were almost completely absent. This finding together with the distribution pattern of CGRP-immunoreactive nerve fibers different from that of the autonomic nerves so far reported strongly suggests that the immunoreactive nerves were sensory in nature.  相似文献   

12.
Summary The guinea-pig taenia coli is rich in peptide-containing nerves. Nerve fibres containing substance P (SP), vasoactive intestinal peptide (VIP), or enkephalin, were numerous in the smooth muscle while somatostatin fibres were very few. Nerve fibres displaying SP or VIP immunoreactivity were numerous in the myenteric plexus. Enkephalin nerve fibres were fairly numerous in the plexus while somatostatin nerve fibres were sparse. Nerve cell bodies containing immunoreactive SP or VIP were regularly seen in the plexus. Delicate varicose elements of the different types of nerve fibres were found to ramify around nerve cell bodies in a manner suggestive of innervation.In the electron microscope the various peptide-storing nerve fibres (i.e., elements containing SP, VIP or enkephalin) were found to contain a varying number of fairly large, electron-opaque vesicles in the varicose swellings. These vesicles represent the storage site of the neuropeptides.The isolated taenia coli responded to electrical nerve stimulation with a contraction. After cholinergic and adrenergic blockade the contractile response was replaced by a relaxation followed by a contraction upon cessation of stimulation. SP contracted the taenia while VIP caused a relaxation. The enkephalins raised the resting tension slightly while somatostatin had no effect. These observations are compatible with a role for SP as an excitatory neurotransmitter and for VIP as an inhibitory one, and with the view that both SP neurones and VIP neurones act as motor neurones. In preparations contracted by SP the electrically induced contractions were reduced in amplitude while the electrically induced relaxations seen after adrenergic and cholinergic blockade were enhanced in amplitude. In preparations relaxed by VIP there was an increased contractile response to electrical stimulation, while in the atropine + guanethidine-treated preparation the electrically induce relaxations were reduced in amplitude. The enkephalins reduced the contractile response to electrical stimulation, while somatostatin induced a very small reduction in the amplitude of such responses. These observations suggest that SP neurones and VIP neurones may play additional roles as interneurones. Somatostatin neurones probably act as interneurones. Enkephalin-containing fibres may serve to modify the release of transmitter from other nerves in the smooth muscle, perhaps through axo-axonal arrangements. Alternatively, the enkephalin nerve fibres in the smooth muscle are afferent elements involved in mediating sensory impulses to the myenteric plexus.  相似文献   

13.
Summary Vasoactive intestinal polypeptide, substance P, neuropeptide Y and peptide histidine isoleucine immunoreactivities have been demonstrated in the female genitalia of rat, cat, mouse and guinea-pig using immunocytochemistry and radioimmunoassay. They were localized to nerves. Each type of immunoreactive nerve showed a distinct pattern of distribution, though all were associated to some degree with blood vessels and smooth muscle. Vasoactive intestinal polypeptide-immunoreactive and neuropeptide Y-immunoreactive nerves were the most abundant. Higher concentrations of peptides were detected in the female genitalia of the mouse than those of the other species studied. Vasoactive intestinal polypeptide-immunoreactive nerves were particularly concentrated in the cervix (89.1±17.2 pmol/g, mean±S.E.M.) and the uterus (57.4±14.8 pmol/g) of the mouse, while neuropeptide Y immunoreactivity was more abundant in the Fallopian tube of the mouse (31.6±11.8 pmol/g) and the vagina of the rat (38.6±4.8 pmol/g) than in other regions. Separate populations of ganglion cells in the paracervical ganglia were found to contain vasoactive intestinal polypeptide and neuropeptide Y immunoreactivities. Peptide histidine isoleucine-immunoreactive and vasoactive intestinal polypeptide-immunoreactive nerves were similarly distributed, but the former were much less frequent. Substance P-immunoreactive nerves were seen mainly beneath the epithelium of the vagina and were, in general, more numerous in the guinea-pig than in other species. The significance of these peptide-immunoreactive nerves in the female genital organ remains to be determined.Dr. Wang is on leave from The Institute of Acupuncture, The Academy of Chinese Traditional Medicine, Peking, China.  相似文献   

14.
Histochemical method of KARNOWSKY and ROOTS (1964) was used to discover the AChE-positive nerves. These nerve fibres were found in all layers of all organs under study. The ureter was weakly innervated, while the urinary bladder and the urethra possessed strong AChE-positive innervation. AChE-positive fibres were most abundant in the bladder trigone. Muscular membrane was the best supplied layer, both in the urinary bladder and in the urethra. Part of AChE-positive nerves was connected with the blood vessels in all organs under discussion.  相似文献   

15.
Calcitonin gene-related peptide (CGRP) in the female rat urogenital tract   总被引:1,自引:0,他引:1  
CGRP-immunoreactivity was found throughout the female rat urogenital tract by specific radioimmunoassay, and shown to be present in nerve fibres by immunocytochemistry. The highest concentrations of CGRP-like immunoreactivity were found in the urinary tract, with lower levels in regions of the genitalia. Chromatographic analysis of bladder and vaginal extracts on Sephadex G-50 columns and HPLC revealed at least three CGRP-immunoreactive peaks. The major peak emerged in the same position as synthetic rat CGRP. CGRP nerve fibres were associated mainly with blood vessels, non-vascular smooth muscle, squamous epithelium and uterine and cervical glands, and were particularly abundant in the ureter and bladder. CGRP-immunoreactivity was depleted by neonatal treatment with capsaicin and after surgical section of pelvic and/or hypogastric nerves. Immunocytochemistry demonstrated that depletion occurred predominantly in the mucosal layer of the urogenital tract. These findings indicate a sensory function for most of the CGRP-immunoreactive nerves in the rat urogenital tract.  相似文献   

16.
Peptide HI (PHI)-immunoreactive nerve fibres were numerous around cerebral blood vessels of the cat. The number and distribution resemble that previously found for vasoactive intestinal polypeptide (VIP), a peptide with which PHI co-exists in pial arteries, at least in some segments. PHI and VIP elicit dilatation in a concentration-dependent manner in isolated middle cerebral arteries; the maximum effects were similar but VIP was considerably more potent. Neither effect was blocked by atropine, cimetidine or propranolol, confirming an action at a non-adrenergic, non-cholinergic site. In chloralose-anaesthetized cats PHI and VIP elicited concentration-dependent dilatations; the magnitude of responses was similar, however, considerably more PHI was necessary to elicit the same response as that of VIP. The results suggest that though both peptides are co-localized and may act at the same receptor, VIP is a more likely candidate for eliciting dilatation during physiological conditions.  相似文献   

17.
The proximal urethra plays a central role in maintaining urinary continence, and sympathetic excitatory innervation to urethral smooth muscle is a major factor in promoting tonic contraction of this organ. Elevated estrogen levels are often associated with incontinence in humans. Because elevated estrogen levels result in degeneration of sympathetic nerves from the closely related uterine smooth muscle, we examined the effects of chronic estrogen administration on proximal urethral innervation. Ovariectomized virgin female rats received either vehicle or 17 beta-estradiol for 1 week, and smooth muscle size and parasympathetic, sensory and sympathetic nerve densities were assessed quantitatively throughout the first 3 mm of the proximal urethral smooth muscle. In vehicle-infused ovariectomized rats, parasympathetic nerves immunoreactive for vesicular acetylcholine transporter were most abundant, while calcitonin gene-related peptide-immunoreactive sensory nerves and tyrosine hydroxylase-immunoreactive sympathetic nerves were less numerous. The densities of parasympathetic and sensory nerves remained constant along the proximal urethra, while sympathetic nerves showed a significant increase along a proximal-distal gradient. Administration of 17beta-estradiol for 7 days via subcutaneous osmotic pump did not change smooth muscle area in sections, and neither densities nor total innervation of any nerve population was altered. These findings reveal a rich cholinergic innervation of the proximal urethra, and a pronounced gradient in sympathetic innervation. Unlike the embryologically similar uterine smooth muscle, estrogen does not influence muscle size or composition of innervation, indicating that estrogen's actions on innervation are highly target-specific. Thus, estrogen's effects on urinary continence apparently occur independently of any significant remodeling of smooth muscle or resident innervation.  相似文献   

18.
Summary Non-hairy and hairy human skin were investigated with the use of the indirect immunohistochemical technique employing antisera to different neuronal and non-neuronal structural proteins and neurotransmitter candidates. Fibers immunoreactive to antisera against neurofilaments, neuron-specific enolase, myelin basic protein, protein S-100, substance P, neurokinin A, neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) were detected in the skin with specific distributional patterns. Neurofilament-, neuron-specific enolase-, myelin basic protein-, protein S-100-, substance P-, neurokinin A-and vasoactive intestinal polypeptide (VIP)-like immunoreactivities were found in or in association with sensory nerves; moreover, neuron-specific enolase-, myelin basic protein-, protein S-100, neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide (VIP)-like immunoreactivities occurred in or in association with autonomic nerves. It was concluded that antiserum against neurofilaments labels sensory nerve fibers exclusively, whereas neuron-specific enolase-, myelin basic protein- and protein S-100-like immunoreactivities are found in or in association with both sensory and autonomic nerves. Substance P- and neurokinin A-like immunoreactivities were observed only in sensory nerve fibers, and neuropeptide Y- and tyrosine hydroxylase-like immunoreactivities occurred only in autonomic nerve fibers, whereas vasoactive intestinal polypeptide (VIP)-like immunoreactivity was seen predominantly in autonomic nerves, but also in some sensory nerve fibers.  相似文献   

19.
The vasoactive intestinal polypeptide (VIP) has been shown to exert effects on endocrine and exocrine pancreatic secretion. Immunocytochemistry reveals that VIP immunoreactive nerves occur in the porcine, canine, feline and avian pancreas. In the pancreas of pig and cat VIP nerves are abundant around non-immunoreactive nerve cell bodies of the intrapancreatic ganglia but scarce in the islets and in the exocrine parenchyma. In the dog pancreas, however, the intrapancreatic ganglia contain strongly immunoreactive VIP nerve cell bodies which give off axons that seem to heavily innervate vessels as well as endocrine and exocrine cells. We suggest that in the pig and cat the pancreatic VIP nerves mainly affect the activity of a second type of intrapancreatic neuron, whose transmitter is unknown, whereas in the dog pancreas VIP nerves directly contact their putative effector structures.  相似文献   

20.
The concentrations of vasoactive intestinal polypeptide (VIP) and the peptide with NH2- terminal histidine and COOH-terminal isoleucine (PHI) in various peripheral tissues and some areas in the CNS of the cat were compared with their immunohistochemical localization. The VIP levels in the gastrointestinal tract were 3 to 6 times higher than PHI levels. Much (up to 10-fold) higher VIP than PHI levels were also observed in the genitourinary tract as well as in the lung and heart. In the neurohypophysis, however, the VIP/PHI ratio was close to 1. Gel-permeation chromatography revealed that VIP- and PHI-immunoreactivity (IR) in the intestine, pancreas and brain consisted of three larger molecular forms in addition to the 'standard' peptides. These larger forms which had overlapping elution positions may represent prepro-VIP/PHI forms. The immunohistochemical analysis revealed that VIP- and PHI-IR was present in the same ganglion cells in the intestine, pancreas, uterus and sympathetic ganglia. Furthermore, the terminal networks for these two peptides were very similar in the periphery. In the median eminence of the hypothalamus and in the posterior lobe of the pituitary, considerably more nerves were PHI- than VIP-IR. This observation was in parallel to a low VIP/PHI ratio. In conclusion, VIP and PHI seem to co-exist in most neuronal systems. Although the ratio of VIP and PHI on the precursor gene is 1:1, differences in posttranslational processing may create a considerably higher content of VIP than PHI in most terminal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号