首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the nature of spontaneous mutational events in cellular genes in hamster cells, mutant adenine phosphoribosyltransferase (aprt) genes were cloned and the regions to which we mapped alterations were sequenced. A variety of nucleotide changes were found to occur in the 12 mutant genes analyzed. Most mutations were simple base-pair substitutions-transitions (both G X C----A X T and A X T----G X C) and transversions. The only multiple mutation was a simple transition next to a single-base-pair insertion. Of the 12 mutations, 4 were more complex, involving small deletions or duplications. Two of these were similar to previously described deletions in that they occurred between short direct sequence repeats. No hot spots were detected. Three independent mutations were characterized at one restriction endonuclease site, although no other mutations were detected in the nucleotides surrounding this site in other mutant strains. At a functional level, sequence changes were either in exons (resulting in missense and, in one instance, nonsense mutations) or at splicing sites.  相似文献   

2.
Molecular basis of spontaneous mutation at the aprt locus of hamster cells   总被引:6,自引:0,他引:6  
Mutations occurring spontaneously at the hamster aprt locus were examined at the base-pair level by amplifying target sequences using the polymerase chain reaction and then directly sequencing the double-stranded products. In a collection of 89 sequenced genes, all types of mutations were found, with transitions (mostly G.C to A.T) constituting the largest class (35%), transversions accounting for 27%, and small deletions/duplications for 25%. Simple base substitutions were distributed throughout the aprt structural gene with few sites having recurring mutations and G.C base-pairs being the predominant substitution target. Small deletions, on the other hand, were not distributed so evenly, being concentrated in a region of aprt rich in short direct and inverted repeat sequences. The base substitutions were predominantly missense, while about 10% produced nonsense codons. Splice junctions, and start and stop codons were also significant targets for mutation. No alterations were detected in three aprt-deficient strains after sequencing all exons and substantial upstream and downstream regions.  相似文献   

3.
A two-step model to explain the high frequency of mutation at the diploid adenine phosphoribosyltransferase (aprt) locus in CHO cells has been proposed previously (Simon et al., Mol. Cell. Biol. 2:1126-1133, 1982). This model indicates that two distinct classes of aprt heterozygotes can be isolated. Class 1 heterozygotes, the most abundant class, were defined as those which arose spontaneously and were capable of undergoing mutation to the APRT- phenotype only at a low frequency (putative point mutation). Class 2 heterozygotes arose from a mutation and gave rise at a high frequency to APRT- cells. This high-frequency event has been identified as a deletion of the wild-type allele (A. E. Simon and M. W. Taylor, Proc. Natl. Acad. Sci. U.S.A. 80:810-814, 1983). In this paper we report further analysis of class 1 heterozygotes with respect to genetic structure, gene products, and karyotype. Our study indicated that class 1 heterozygotes contain two different types of mutants. About half have only one copy of the aprt gene and an unaltered karyotype, indicating that a deletion (similar to the high-frequency second-step event observed for class 2 heterozygotes) rather than a loss of the chromosome was responsible for the generation of the aprt+/- genotype. The remainder of the previously designated class 1 heterozygotes still contained two copies of the aprt gene (within the limits of the quantitation technique used) and arose presumably by a point mutation. One of this group, D423, was characterized with respect to aprt gene products and found to produce an electrophoretic variant in addition to the wild-type protein. APRT- mutants derived from D423 retained the same number of aprt gene copies as D423 and still synthesized a protein that comigrated with wild type, unlike APRT- mutants derived from class 2 heterozygotes. D423 and the other heterozygotes with two aprt genes therefore did not fit into either class 1 or 2 and are now designated class 3. The model we present suggests that only one of the two aprt alleles present in wild-type cells can undergo the deletion.  相似文献   

4.
Structure of mutant alleles at the aprt locus of Chinese hamster ovary cells   总被引:19,自引:0,他引:19  
To determine the types of gene structural alterations causing deficiency of adenine phosphoribosyl transferase (aprt) activity in spontaneous and chemically induced mutations of cultured somatic cells, we analyzed the restriction enzyme cleavage patterns of aprt gene sequences in mutant strains selected from Chinese hamster ovary cells. Patterns of aprt-containing fragments in Southern blots were mostly unchanged in our collection of 280 ethyl methane sulfonate-induced and spontaneous aprt- mutants, suggesting that base-pair changes or other alterations below our limit of resolution on agarose gels (approximately 50 base-pairs) are responsible for the great majority of mutations at the aprt locus. Occasionally, these mutations could be localized when they resulted in the loss or gain of a restriction enzyme site and the generation of new fragments of predictable size. Deletions of aprt-containing sequences were detected in only eight of 119 spontaneous mutants and in only one ethyl methane sulfonate-induced mutant. An insertion of 300 base-pairs near the 5' end of the aprt structural gene was found in one spontaneous aprt- strain. This insertion mutant was stable with a reversion frequency of less than 2 X 10(-7). Several unstable aprt- mutants were detected in our collection, but these had no observable alterations of aprt coding or flanking sequences.  相似文献   

5.
Deletion and amplification of the HGPRT locus in Chinese hamster cells.   总被引:24,自引:13,他引:24       下载免费PDF全文
Somatic cell selective techniques and hybridization analyses with a cloned cDNA probe were used to isolate and identify Chinese hamster cell lines in which the X-linked gene for hypoxanthine-guanine phosphoribosyltransferase (HGPRT) has been altered. Two of 19 HGPRT-deficient mutants selected were found to have major DNA deletions affecting the HGPRT locus. Cytogenetic studies revealed that the X chromosome of each deletion mutant had undergone a translocation event, whereas those from the remaining 17 mutants were normal. Phenotypic revertants of the thermosensitive HGPRT mutant RJK526 were isolated, and amplification of the mutant allele was shown to be the predominant mechanism of reversion. Comparisons of restriction enzyme fragments of DNA from deletion versus amplification strains identified two regions of the Chinese hamster genome that contained homology to the cDNA probe. One was shown to be much larger than the 1,600-nucleotide mRNA for HGPRT and to be comprised of linked fragments that contained the functional HGPRT gene. The second was neither transcribed nor tightly linked to the functional gene. These initial studies of HGPRT alterations at the level of DNA thus identified molecular mechanisms of phenotypic variation.  相似文献   

6.
To examine the factors governing the generation of DNA sequence rearrangements in mammalian somatic cells, we have cloned and sequenced novel junctions produced by six spontaneous deletion mutations at the aprt locus of Chinese hamster ovary cells. Our analyses indicate that these rearrangements were produced by non-homologous recombinational events occurring between short (2-7 bp) sequence repeats at the two termini of the deletion which leave one copy of the repeat in the mutant gene. Certain tri- and tetranucleotides recur at the deletion termini, suggesting that these may possibly be a recognition sequence for an enzyme involved in the event. No other gene structural alterations were found at the novel junctions or in neighbouring sequences. The deletions are not randomly distributed over the aprt gene; four termini clustered in a 40-bp sequence. This region of aprt is unusual as it contains both significant stretches of dyad symmetry which could potentially form stable DNA secondary structures and short direct repeats. Regions of dyad symmetry were also found at at least one terminus of all the deletions. In view of the similar properties of this set of deletions, possible mechanisms for the formation of this type of gene rearrangement are considered.  相似文献   

7.
C Miles  M Meuth 《Mutation research》1989,227(2):97-102
From a collection of 85 independent gamma-radiation hamster aprt- mutants, 27 having no major structural alterations were analysed at the nucleotide level by using the polymerase chain reaction to amplify mutant exons and then directly sequencing the double-stranded products. The majority of these mutations were simple base substitutions of all types, particularly transversions (11/27). Frameshifts and small deletions were also induced. The 'spectrum' of mutations produced by gamma-radiation was not significantly different from that occurring spontaneously at this locus. Differences with respect to the target and structure of frameshifts and small deletions occurring in the two collections were apparent.  相似文献   

8.
A system for studying mutational specificity at a heterozygous locus in Chinese hamster ovary (CHO) cells is described. The strategy employed is based on restriction fragment analysis and DNA sequencing of enzymatically amplified mutant adenine phosphoribosyltransferase (aprt) alleles. We have demonstrated the usefulness of this approach through the characterization of a collection of aprt- mutants with respect to the role played by loss of heterozygosity events in ultraviolet light (UV) induced mutagenesis. A similar strategy has also been applied to speculate on the identity of the premutational lesion responsible for a UV-induced mutational hotspot at the aprt locus.  相似文献   

9.
Mutants induced at the adenine phosphoribosyl transferase (aprt) locus by dTTP or dCTP pool imbalances were examined for alterations in genomic DNA sequences. No observable changes were detected by Southern blot analysis of most mutant DNAs, suggesting induction of base pair alterations or other events below our level of detection (approximately 30 base pairs). However, in a few strains (11 from a total collection of 125 mutant cell strains), we were able to localize these events to restriction endonuclease recognition sequences when the mutations resulted in the loss or gain of a particular site. The distribution of lost or gained sites in aprt-deficient mutants induced by the two types of pool imbalances clearly varied, with those occurring in a mutator strain with increased dCTP clustering at one end of the aprt gene. Mutants induced by dTTP also revealed novel events: multiple restriction site modifications in a small region of the aprt gene in one mutant and a small (approximately 50 base pairs) insertion or duplication of DNA sequences. As in previous studies, very few deletion or insertion mutants were detected at the aprt locus. The significance of these findings in terms of the known biochemical and genetic consequences of these pool imbalances is discussed.  相似文献   

10.
In a collection of spontaneous mutants of Chinese hamster ovary cells selected for deficiency in adenine phosphoribosyl transferase (aprt) activity, one was detected having not only a deletion of aprt coding sequences but also an apparent amplification of remaining sequences. The HindIII fragment bearing the novel joint was cloned and sequenced revealing a complex gene rearrangement. A deletion of at least 9 kb extending upstream from the aprt locus is accompanied by an inverted duplication of flanking sequences 672 bp downstream from the novel joint. This unit is amplified three to four times with the net result of some sequences being increased as much as eight fold in copy number because of the duplication. The fidelity of the sequences involved is preserved. We propose a model which could account for this inverted duplication.  相似文献   

11.
G Phear  M Meuth 《Mutation research》1989,214(2):201-206
To determine the effect of deoxyribonucleoside triphosphate pool imbalances on the accuracy of DNA replication within the cell, we examined the base pair alterations induced by excess intracellular dTTP at the adenine phosphoribosyl transferase (aprt) locus of CHO cells. The mutations were predominantly simple (C----T) transitions (38/44) and transversions (G----T, 5/44) explicable by the misincorporation of the DNA precursor supplied in excess (dTTP). Only one small deletion was observed. The context of the mutations is notable as the nucleotide incorporated after the error was usually the nucleotide in excess for the great majority of the transitions but not the transversions. As next nucleotide effects are characteristic of replication complexes having proofreading exonuclease activity, our data indicate that this mechanism functions within the cell to control the occurrence of some types of replicational errors.  相似文献   

12.
We analyzed the nature of mutations at the autosomal locus coding for adenine phosphoribosyltransferase (aprt) in human cells to elucidate the process(es) governing mutagenesis at autosomal loci. A human lymphoblastoid cell line, WR10, was found to be heterozygous for mutated allele at the aprt locus, and was used for mutation analyses. By the use of a restriction fragment length polymorphism associated with the aprt locus in WR10 cells, the molecular characteristics of mutations arising spontaneously or induced by gamma-rays were investigated. Eighty-five percent (22/26) of the spontaneous mutant clones and 93% (64/69) of the gamma-ray-induced mutant clones resulted from loss of one of the two aprt alleles. Determination of the dosage of aprt genes in those mutants with allelic losses revealed that approximately half of them retained two copies of the mutated allele. These data suggest that the mutational events leading to APRT deficiency are analogous to those reported for tumor suppressor genes in malignancies.  相似文献   

13.
14.
We describe an assay for the quantification of reverse mutations at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in Chinese hamster ovary cells utilizing the selective agent L-azaserine (AS). Conditions are defined in terms of optimal AS concentration, cell density, and phenotypic expression time. After treatment, replicate cultures of 106 cells are allowed a 48-h phenotypic expression time in 100-mm plates. AS (10 μM) is then added directly to the growing culture and AS-resistant (ASr) cells form visible colonies. This assay is used to quantify ICR-191-, ICR-170-, and N-ethyl-N-nitrosourea-induced reversion of independently isolated HGPRT? clones. The ASr phenotype is characterized both physiologically and biochemically. All ASr clones isolated are stably resistant to AS and aminopterin but sensitive to 6-thioguanine. They also have re-expressed HGPRT enzyme. In addition, several revertants are shown to contain altered HGPRT. The data provide further evidence that ICR-191 and ICR-170 cause structural gene mutations in mammalian cells and also suggest that ICR-191, ICR-170, and N-ethyl-N-nitrosourea induce similar types of mutations in Chinese hamster ovary cells.  相似文献   

15.
Deletion analysis of the F plasmid oriT locus.   总被引:6,自引:2,他引:6       下载免费PDF全文
Functional domains of the Escherichia coli F plasmid oriT locus were identified by deletion analysis. DNA sequences required for nicking or transfer were revealed by cloning deleted segments of oriT into otherwise nonmobilizable pUC8 vectors and testing for their ability to promote transfer or to be nicked when tra operon functions were provided in trans. Removal of DNA sequences to the right of the central A + T-rich region (i.e., from the direction of traM) did not affect the susceptibility of oriT to nicking functions; however, transfer efficiency for oriT segments deleted from the right was progressively reduced over an 80- to 100-bp interval. Deletions extending toward the oriT nick site from the left did not affect the frequency of transfer if deletion endpoints lay at least 22 bp away from the nick site. Deletions or insertions in the central, A + T-rich region caused periodic variation in transfer efficiency, indicating that phase relationships between nicking and transfer domains of oriT must be preserved for full oriT function. These data show that the F oriT locus is extensive, with domains that individually contribute to transfer, nicking, and overall structure.  相似文献   

16.
DNA was analysed from a large set of hamster hprt gene mutants, some induced by ionising radiations and others occurring naturally, to identify those with large alterations in part of the gene. DNA from these mutants was restricted further with different endonucleases and probed to establish the patterns of restriction fragments remaining. Of 15 mutants characterized, one showed a duplication of part of the 5' end of the gene, and the remainder showed deletions of various sizes. It was possible to approximately locate the breakpoints of the deletions by comparison of fragment patterns to a recently-established map of the hamster gene. The relatively small number of mutants examined precludes rigorous analysis of the distribution of breakpoints in the hprt gene, but taken with other recent studies of deletion mutagenesis it is suggested that non-random induction or selection of this type of mutation may occur.  相似文献   

17.
Spontaneous and X-ray-induced mutants at the hypoxanthine phosphoribosyl transferase (HPRT) locus have been isolated from V79 Chinese hamster cells and characterized at the biochemical and cytogenetic levels. Fourteen spontaneous and 24 X-ray-induced clones were azaguanine and thioguanine resistant, did not grow in HAT medium (AZRTGRHATS) and failed to incorporate significant levels of [14C]hypoxyanthine. Cytogenetic analysis of two spontaneous and eight X-ray-induced mutants revealed no major X chromosome rearrangements. In two induced mutants, one of which was hypotetraploid (mode 35-39) with 2 X chromosomes, the short arm of the chromosome (Xp) was slightly shorter than normal. A third mutant was hyperdiploid (mode 22-23) compared with the parental clone (mode 21). When compared with wild-type clones, no other cytogenetic changes were evident in the remaining mutants. Analysis at the DNA level using a Chinese hamster HPRT cDNA probe showed major deletion of HPRT sequences in two and partial deletion in another two induced mutants. In two of the mutants with deletions of HPRT sequences there was a visible shortening of the Xp arm. In the other six mutants two spontaneous and four induced) no karyotypic changes or alterations in restriction fragment patterns were detected suggesting that they carry small deletions or point mutations at the HPRT locus.  相似文献   

18.
Autophagosome formation in mammalian cells   总被引:28,自引:0,他引:28  
Macroautophagy is an intracellular degradation system for the majority of proteins and some organelles. The molecular mechanism of autophagy has been extensively studied using the yeast, Saccharomyces cerevisiae, during these past 10 years. These studies suggested that the molecular machinery of autophagosome formation is well conserved from yeast to higher eukaryotes. Identification and characterization of the mammalian counterparts of the yeast autophagy proteins has facilitated our understanding of mammalian autophagy, particularly of autophagosome formation. These findings are now being applied to studies on the physiological roles of autophagy in mammals.  相似文献   

19.
Homologous recombination in mammalian cells between extrachromosomal molecules, as well as between episomes and chromosomes, can be mediated by a nonconservative mechanism. It has been proposed that the key steps in this process are the generation (by double-strand cleavage) of overlapping homologous ends, the creation of complementary single-strand ends (either by strand-specific exonuclease degradation or by unwinding of the DNA helix), and finally the creation of heteroduplex DNA by the annealing of the single-strand ends. We have analyzed in detail the structure of nonconservative homologous junctions and determined the contribution of each end to the formation of the junction. We have also analyzed multiple descendants from single recombination events. Two types of junctions were found. The majority (90%) of the junctions were characterized by a single crossover site. These crossover sites were distributed randomly throughout the junction. The remaining 10% of the junctions had mosaic patterns of parental markers. Furthermore, in 9 of 10 cases, multiple descendants from a single recombination event were identical. Thus, it appears that in most cases few parental markers were involved in junction formation. This finding suggests that nonconservative homologous junctions are mediated mainly by short heteroduplexes of a few hundred base pairs or less. These results are discussed in terms of the current models of nonconservative homologous recombination.  相似文献   

20.
In ventricular myocardial cells of mouse, guinea-pig, dog, and monkey, mitochondria frequently form close associations with gap junctions, the two structures being separated by a space of 20 nm or less. Similar appositions are found in both the mature atria and the developing myocardium of the mouse. The gap junctions assume a variety of configurations with respect to the apposed mitochondria. These include profiles in which the gap junctions conform closely to the contours of mitochondria, as well as profiles in which finger-like sarcolemmal evaginations, composed entirely of gap junctions, extend longitudinally or transversely into an adjoining cell to envelop mitochondria. In mouse ventricular wall, over 40% of the length of gap junctions is juxtaposed to mitochondria, and strands of connecting material are often present in the interspace between the two structures. In addition, in freeze-fracture replicas, portions of mitochondria are found attached to areas of myocardial sarcolemma that contain gap-junctional particles. Since mitochondria are known to sequester Ca2+ ion, it is possible that the close association between mitochondria and gap junction may function to buffer the intracellular Ca2+ concentration near the gap junctions, and thereby regulate the ionic permeability of the gap junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号