首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70?C100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics.  相似文献   

2.
Cucurbita pepo L. (squash, pumpkin) is a highly polymorphic vegetable species of major importance. Our study characterized a spectrum of C. pepo germplasm for the ability to regenerate in vitro by direct organogenesis from cotyledon explants. Cultivars tested included both cultivated subspecies, texana and pepo, and nearly all of their respective cultivar-groups. Direct shoot regeneration occurred in all accessions, and was generally high (56–94%), with a single exception of 22% (‘Bolognese’). There was no significant difference between the percentage regeneration of the two subspecies. Shoot regeneration per responding explant was uniform (1.2–1.6 shoots per explant). Only ‘True French’ produced statistically more shoots (3.9 per explant) than other accessions. The morphology of regeneration varied. Most cultivars produced long shoots, often fasciated, amid a few small buds. Some subspecies pepo cultivars (Beirut, Yugoslavia 7, Ma’yan and True French) produced short, massive, hollow shoots, sometimes accompanied by shoots that were more normal. Two subspecies texana cultivars (Creamy Straightneck and Small Bicolor) produced single (sometimes double) shoots without other buds. The production of chimeric (mixoploid) regenerants varied and there was a tendency to regenerate chimeric plants from the widest-fruited accessions (i.e. lowest length-to-width ratio) in each subspecies. Subspecies pepo Pumpkin Group ‘Tondo di Nizza’ showed significantly greater production of chimeric regenerants. In comparison with the great range of variation observed in fruit shape, the variation of in vitro responses (mostly less than 2-fold in regeneration and shoot production) was less than expected.  相似文献   

3.
The majority of Hevea (Hevea brasiliensis Muell. Arg.) genetic resource in Vietnam derived from the IRRDB’81 germplasm collected in the Amazonian habitats of the genus. Random amplified polymorphic DNA (RAPD) analysis was used to examine the genetic diversity and structure of the IRRDB’81 germplasm. A total of 59 accessions from 13 different districts of the Brazilian states namely Acre, Rondonia, and Mato Grosso were brought into the study using six arbitrarily preselected primers. Sixty-five RAPD band patterns ranging in size from 0.2 to 3.0 kbp were scored for analysis. Differences in the level of DNA polymorphism among the districts and states were revealed. The percentage of the polymorphic DNA fragments calculated for 13 individual districts varied from 15.38 to 70.77%. The mean values of heterozygosity within the district varied from 0.064 to 0.264. Pairwise district Nei’s genetic distance values ranged from 0.046 for Catriquacu and Itanba of Mato Grosso to 0.304 for Tarauaca of Acre and Aracatuba of Mato Grosso. The estimated values of Shannon’s diversity index ranged from 0.093 for the Assis-Brasil district of Acre to 0.389 for the Jiparana district of Rondonia. The analysis of molecular variance (AMOVA) indicated that most of the genetic variations were found among accessions within the districts, while interdistrict variance component accounted for 14.1% only. The low interdistrict differentiation probably implied an extensive gene flow among them. Both the principal coordinate analysis and UPGMA cluster analysis based on genetic distance values revealed a varying degree of separation among the districts and that conformed to geographical origins of Hevea IRRDB’81 collection.  相似文献   

4.
Reliable information about the evolutionary and genetic relationships of various germplasm resources is essential to the establishment of rational strategies for crop improvement. We used AFLPs to study the genetic relationships of 43 cultivars of Gossypium hirsutum representative of the genomic composition of modern ’Upland’ cotton. The study also included representatives of the related tetraploid species Gossypium barbadense, as well as the diploid species Gossypium raimondii, Gossypium incanum, Gossypium herbaceum and Gossypium arboreum. We tested 20 primer combinations that resulted in a total of 3,178 fragments. At the species level, and above, genetic similarities based on AFLPs were in agreement with the known taxonomic relationships. Similarity indices ranged from 0.25 to 0.99. Representatives of the G. hirsutum germplasm resources utilized in North America, including secondary accessions collected by breeders in Central America (’Acala’, ’Tuxtla’, ’Kekchi’) and the southwestern US (’Hopi Moencopi’), formed a single cluster with exceedingly limited genetic diversity (with many pairwise similarity indices >0.96) We concluded that these accessions were derived from the same genetic pool. The early maturing or ’latifolium’ or ’Mexican Highlands’ cultigens from which these cultivars were derived appear to have had extremely limited genetic diversity, perhaps as a result of a severe genetic bottleneck resulting from the selection pressures of domestication. Outside of the major G. hirsutum cluster, well-supported phylogenies were inferred. Inside this cluster, phylogenies were obscured by limited diversity, reticulation and lineage sorting. The implications of these findings for cotton improvement are discussed. Received: 23 May 2000 / Accepted: 23 January 2001  相似文献   

5.
In three year field experiments (2001 – 2003) the growth, yield and productivity of 8 flax cultivars were compared. Cultivars ‘AC Linora’, ‘Flanders’, ‘Linola™ 947’, ‘Norlin’ and ‘Omega’ were obtained from Canada, ‘Barbara’ and ‘Hungarian Gold’ from Hungary and ‘Opal’ from Poland. Apart from the estimation of the yield of aboveground parts dry matter and seed yield the determinations of the primary index value of growth analysis were done and on their basis the indices LAI, LAD, RGR, CGR and HI were calculated. The obtained yield results of the examined flax cultivars show significant genotypic — environmental relationships pertaining to the dynamics of dry matter accumulation and the amount of seed yield. Meteorological conditions in the successive years significantly influenced the particular phases of growth and development of cultivars and the factor which increased the amount of dry matter was the air temperature during the period of plant emergence — budding. During the vegetative season with a large amount of rainfall the average seed yield was about 40 % lower than compared with a year of average precipitation and a warm second part of the second period of flax vegetation. Among the analyzed cultivars a stable yield in all the years was characteristic for cultivars ‘Flanders’, ‘Barbara’ and ‘AC Linora’ (that cultivar, however, during a wet year yielded at a low level). The assimilation leaf surface of the linseed quickly increased during the period from budding to flowering and the accumulation of dry matter of the aboveground parts lasted up to the green maturity. In the successive years of the experiment there were observed significant (linear or logarithmic regressions) relationship between the yield of dry matter and the indices of growth analysis. The biggest values of the CGR indicator were observed for the period from budding to flowering. The maintaining of a high CGR value after plant flowering in the year with a favourable course of climatic parameters was beneficial for a better yield of all flax cultivars. The low values of the RGR index after flowering of cultivar ‘Hungarian Gold’ and ‘Opal’ strictly corresponded to their low yield of seed and straw biomass.  相似文献   

6.
The impact of mapped microsatellites on the study of genetic diversity of Tunisian apricot accessions was assessed. The genetic variability of 47 traditional apricot cultivars originating from several areas in Tunisia was investigated with 32 polymorphic microsatellite loci selected for their location throughout the eight linkage groups of Prunus genome. The higher polymorphism and greater transportability of these markers among Prunus species were proved by the expected heterozygosity (He = 0.56) and Shannon’s index of diversity (I = 1.05), indicating that Tunisian apricot germplasm maintained a substantial level of genetic diversity. According to their geographical origin, the genetic differentiation among groups (north, center, and south; Fst = 0.04) was lower, while the gene flow among groups was consequent (Nm = 4.79), attesting a narrow genetic background of apricot in the country. Both unweighted pair-group method with arithmetic mean dendrogram, based on Nei’s genetic distances and factorial correspondence analysis, separated northern cultivars from central and southern cultivars, revealing the same molecular basis of apricot material in the Center and the South of Tunisia. These results revealed the efficiency of mapped markers for genetic variability measurements compared to randomly ones, however, no advantage was observed considering the genetic relationships among studied accessions.  相似文献   

7.
 The cytoplasmic genetic male-sterile (CMS) lines developed at the International Rice Research Institute are valuable in producing tropical rice hybrids. Efficient use of CMS lines in hybrid rice production will depend on their level of genetic diversity. Aside from morphological characterization, molecular analysis based on DNA markers can provide information on the genetic diversity of the germplasm. The Amplified Fragment Length Polymorphism (AFLP) technique was used to fingerprint 71 CMS lines and four rice cultivars, ‘IR64’, ‘Azucena’, ‘IR74’, and ‘FR13A’. Eleven primer pair combinations specific to the enzymes PstI and MseI were used to generate 530 AFLP markers, 176 of which were polymorphic. Each CMS line revealed a distinct fingerprint. The AFLP marker-based dendrogram depicted genetic variation among the CMS lines. The CMS lines developed in japonica background grouped with ‘Azucena’, a japonica cultivar. None of the CMS lines clustered with ‘FR13A’, a flood-tolerant traditional indica variety. ‘IR64’ was found to be distinct from the other indica CMS lines and clustered with lines developed in its background. The grouping of CMS lines into a few groups is useful for breeders in selecting genetically diverse CMS lines for hybrid rice production and in avoiding test crossing every CMS line empirically. This study demonstrated that AFLP is a powerful and reliable tool in determining the genetic relationships and in producing distinct fingerprints of rice cultivars. Received: 20 December 1996 / Accepted: 9 October 1997  相似文献   

8.
The changes of genetic diversity over time were monitored in 504 European barley cultivars released during the 20th century by genotyping with 35 genomic microsatellites. For analysis, the following four temporal groups were distinguished: 1900–1929 (TG1 with 19 cultivars), 1930–1949 (TG2 with 40 cultivars), 1950–1979 (237 cultivars as TG3), and 1980–2000 (TG4 consisting of 208 cultivars). After rarefaction of allelic diversity data to the comparable sample size of 18 varieties, of the 159 alleles found in the first group (TG1) 134 were retained in the last group (TG4) resulting in a loss of only 15.7% of alleles. On the other hand 51 novel alleles were discovered in the group representing the last investigated time period (TG4) in comparison with the TG1. Novel alleles appeared evenly distributed over the genome, almost at all investigated genomic loci, with up to five such novel alleles per locus. Alleles specific for a temporal group were discovered for all investigated time periods, however analysis of molecular variance (AMOVA) did not reveal any significant population structure attributable to temporal decadal grouping. Only 2.77% of the total observed variance was due to differences between the four temporal groups and 1.42% between individual decades of the same temporal group, while 95.81% of the variance was due to variation within temporal groups. The distinction between two-rowed and six-rowed genetic types accounted for 19.5% of the total observed variance by AMOVA, whereas the comparison between ‘winter’ and ‘spring’ types accounted for 17% of the total observed variation. The analysis of linkage disequilibrium did not reveal statistically significant differences between the temporal groups. The results indicated that the impact of breeding effort and variety delivery systems did not result in any significant quantitative losses of genetic diversity in the representative set of barley cultivars over the four time periods.  相似文献   

9.
A core collection is a chosen subset of large germplasm collection that generally contains about 10% of the total accessions and represents the genetic variability of entire germplasm collection. The purpose of a core collection is to improve the use of genetic resources in crop improvement programs. In many crops the number of accessions contained in the genebank are several thousands, and a core subset consisting of 10% of total accessions would be an unwieldy proposition. In this article we have suggested a two-stage strategy to select a chickpea mini core subset consisting of only about 1% of the entire collection held in trust at ICRISAT’s genebank (16,991 accessions). This mini core subset still represents the diversity of the entire core collection. The first stage involves developing a representative core subset (about 10%) from the entire collection using all the available information on origin, geographical distribution, and characterization and evaluation data of accessions. The second stage involves evaluation of the core subset for various morphological, agronomic, and quality traits, and selecting a further subset of about 10% accessions from the core subset. At both stages standard clustering procedure was used to separate groups of similar accessions. A mini core subset consisting 211 accessions from 1,956 core subset accessions, using data on 22 morphological and agronomic traits, was selected. Newman- Keuls’ test for means, Levene’s test for variances, the chi-square test and Wilcoxon’s rank-sum non-parametric test for frequency distribution analysis for different traits indicated that the variation available in the core collection has been preserved in the mini core subset. The most important phenotypic correlations which may be under the control of coadapted gene complexes, were also preserved in the mini core. This mini core subset, due to its drastically reduced size, will prove to be a point of entry to proper exploitation of chickpea genetic resources. Received: 20 August 2000 / Accepted: 25 September 2000  相似文献   

10.
A total of 130 flax accessions of diverse morphotypes and worldwide origin were assessed for genetic diversity and population structure using 11 morphological traits and microsatellite markers (15 gSSRs and 7 EST–SSRs). Analysis performed after classifying these accessions on the basis of plant height, branching pattern, seed size, Indian/foreign origin into six categories called sub-populations viz. fibre type exotic, fibre type indigenous, intermediate type exotic, intermediate type indigenous, linseed type exotic and linseed type indigenous. The study assessed different diversity indices, AMOVA, population structure and included a principal coordinate analysis based on different marker systems. The highest diversity was exhibited by gSSR markers (SI = 0.46; He = 0.31; P = 85.11). AMOVA based on all markers explained significant difference among fibre type, intermediate type and linseed type populations of flax. In terms of variation explained by different markers, EST-SSR markers (12%) better differentiated flax populations compared to morphological (9%) and gSSR (6%) markers at P = 0.01. The maximum Nei's unbiased genetic distance (D = 0.11) was observed between fibre type and linseed type exotic sub-populations based on EST-SSR markers. The combined structure analysis by using all markers grouped Indian fibre type accessions (63.4%) in a separate cluster along with the Indian intermediate type (48.7%), whereas Indian accessions (82.16%) of linseed type constituted an independent cluster. These findings were supported by the results of the principal coordinate analysis. Morphological markers employed in the study found complementary with microsatellite based markers in deciphering genetic diversity and population structure of the flax germplasm.  相似文献   

11.
Developing a better understanding of associations among ploidy level, geographic distribution, and genetic diversity of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to: (1) determine ploidy analysis of Cynodon accessions collected from Turkey, (2) investigate associations between ploidy level and diversity, (3) determine whether geographic and ploidy distribution are related to nuclear genome variation, and (4) correlate among four nuclear molecular marker systems for Cynodon accessions’ genetic analyses. One hundred and eighty-two Cynodon accessions collected in Turkey from an area south of the Taurus Mountains along the Mediterranean cost and ten known genotypes were genotyped using sequence related amplified polymorphism (SRAP), peroxidase gene polymorphism (POGP), inter-simple sequence repeat (ISSR), and random amplified polymorphic DNA (RAPD). The diploids, triploids, tetraploids, pentaploids, and hexaploids revealed by flow cytometry had a linear present band frequency of 0.36, 0.47, 0.49, 0.52, and 0.54, respectively. Regression analysis explained that quadratic relationship between ploidy level and band frequency was the most explanatory (r = 0.62, P < 0.001). The AMOVA results indicated that 91 and 94% of the total variation resided within ploidy level and provinces, respectively. The UPGMA analysis suggested that commercial bermudagrass cultivars only one-third of the available genetic variation. SRAP, POGP, ISSR, and RAPD markers differed in detecting relationships among the bermudagrass genotypes and rare alleles, suggesting more efficiency of combinatory analysis of molecular marker systems. Elucidating Cynodon accessions’ genetic structure can aid to enhance breeding programs and broaden genetic base of commercial cultivars. O. Gulsen and S. Sever-Mutlu contributed equally to this work.  相似文献   

12.
Fire blight (Erwinia amylovora) causes serious damage to pome fruit orchards, and identification of germplasm with heritable disease resistance is therefore crucial. Two dominant SCAR (sequence characterised amplified region) marker alleles (AE10-375 and GE-8019), flanking a previously identified QTL (quantitative trait locus) for resistance to fire blight on ‘Fiesta’ linkage group 7 in apple cultivars related to ‘Cox’s Orange Pippin’, were screened on 205 apple cultivars. Both marker alleles were present in 22% of the cultivars, indicating presence of the QTL allele for tolerance, and both were lacking in 25%, indicating homozygosity for absence of the QTL tolerance allele. However, 33% had only the marker allele AE10-375, while 20% had only GE-8019, suggesting that some cultivars with the dominant alleles for both of the flanking markers can carry these on separate chromosomes and may lack the QTL allele for tolerance. In 2009 and 2010, terminal shoots of greenhouse-grown grafted trees of 21 cultivars (only 20 in 2010) were inoculated with Erwinia amylovora. ‘Idared’ (susceptible) and ‘Enterprise’ (tolerant) were included as controls. Disease severity for each cultivar was expressed as percentage of necrosis in relation to entire length of shoot, and the ranking of cultivars in 2009 and 2010 was compared with a Spearman rank correlation test, P < 0.01. A relationship between presence of both flanking marker alleles for tolerance and level of fire blight tolerance was confirmed with a Mann–Whitney U-test, P < 0.01 in 2009, and P < 0.05 in 2010. A PCO (principal coordinate) analysis based on band profiles obtained with 12 SSR (simple sequence repeat) loci produced three loose clusters, two of which contained known offspring of ‘Cox’s Orange Pippin’, and one with cultivars that were either unrelated or had an unknown origin. Cases where DNA markers did not predict level of fire blight damage as expected, were, however, as common among descendants of ‘Cox’s Orange Pippin’ as among apparently unrelated cultivars. Obviously the ‘Fiesta’ LG 7 QTL has some predictive value, both for known ‘Cox’ relatives and others, but more efficient markers would be desirable for marker-assisted selection.  相似文献   

13.
Local cultivars adapted to specific environmental conditions are the chief source of seed for farmers in Ethiopia and deserve research priority. The aim of this study was, therefore, to determine the genetic relationships between different barley landraces, from north Shewa in Ethiopia so as to differentiate genotypes known by different local names and facilitate their conservation and use in breeding new varieties. Five AFLP primer combinations were analyzed for 19 barley landraces and five malting varieties. The number of scoreable fragments amplified by each AFLP primer combination varied from 49 to 118 with an average of 84.5 and polymorphic fragments for each primer combination varied from 27 to 77 with an average of 58.5. The average percent polymorphism was 69.9% with values ranging from 55.1% to 75.8%. Cluster analysis placed the accessions and malting varieties into one main group while all the farmers’ cultivars, with the exception of two, were in the other main group. It was shown that sampling of germplasm at a given locality might not represent the whole array of genetic variability of locally grown famers’ cultivars. A comprehensive study of all the farmers’ barley cultivars, grown in different parts of Ethiopia, is required to maximize the efforts of germplasm conservation and utilization in national and regional breeding programs.  相似文献   

14.
Flemingia macrophylla (Willd.) Kuntze ex Merr., a multi-purpose legume with potential as dry-season forage crop, mainly occurs in subhumid to humid environments of tropical and subtropical Asia. Despite increasing interest in conservation of germplasm suitable for low-input production systems information on the genetic diversity of F. macrophylla is extremely scarce. The creation of baseline data is supposed to contribute to more efficient conservation management and to identify collecting strategies of novel germplasm. Random amplified polymorphic (RAPD) markers were used to investigate the genetic variation among 37 F. macrophylla accessions. Germplasm analysed in this study originated from Bac Kan province, Northeast Vietnam. Eight primers generated a total of 47 amplified RAPD loci of which 38 were polymorphic. Jaccard’s similarity coefficients among accessions ranged from 0.069 to 1 with a mean of 0.67. The UPGMA dendrogram revealed three clusters along with three outliers. No correspondence between geographic and genetic distance was found (Mantel test: R = 0.21; P = 0.016). Analysis of molecular variance (AMOVA) revealed significant (P < 0.001) differentiation between accessions collected in lowland and upland regions. Results of UPGMA clustering were confirmed by the pattern of principle coordinates analysis (PCO) plotting. Future collecting strategies should target populations at large distances and along the altitudinal range. Ex situ conservation should encompass those accessions that showed genetic divergence. In situ conservation may consist of establishing a system of interconnected population fragments to guarantee continuing genetic exchange via corridors and of rehabilitating degraded habitats.  相似文献   

15.
This study analyzes population structure and linkage disequilibrium (LD) among 187 commonly used Chinese maize inbred lines, representing the genetic diversity among public, commercial and historically important lines for corn breeding. Seventy SSR loci, evenly distributed over 10 chromosomes, were assayed for polymorphism. The identified 290 alleles served to estimate population structure and analyze the genome-wide LD. The population of lines was highly structured, showing 6 subpopulations: BSSS (American BSSS including Reid), PA (group A germplasm derived from modern U.S. hybrids in China), PB (group B germplasm derived from modern U.S. hybrid in China), Lan (Lancaster Surecrop), LRC (derivative lines from Lvda Reb Cob, a Chinese landrace) and SPT (derivative lines from Si-ping-tou, a Chinese landrace). Forty lines, which formerly had an unknown and/or miscellaneous origin and pedigree record, were assigned to the appropriate group. Relationship estimates based on SSR marker data were quantified in a Q matrix, and this information will inform breeder’s decisions regarding crosses. Extensive inter- and intra-chromosomal LD was detected between 70 microsatellite loci for the investigated maize lines (2109 loci pairs in LD with D′ > 0.1 and 93 out of them at P < 0.01).This suggests that rapidly evolving microsatellites may track recent population structure. Interlocus LD decay among the diverse maize germplasm indicated that association studies in QTLs and/or candidate genes might avoid nonfunctional and spurious associations since most of the LD blocks were broken between diverse germplasm. The defined population structure and the LD analysis present the basis for future association mapping. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
 PCR-based DNA profiling of coconut palms indigenous to Sri Lanka was conducted using amplified fragment length polymorphism (AFLPs). A total of 322 amplification products were generated from the 42 genotypes with eight pairs of primers (EcoRI and MseI). Overall most variation was detected in the tall (Typica) rather than the intermediate (Aurantiaca) and dwarf (Nana) forms. A hierarchical analysis of molecular variance (AMOVA) was used to quantify and partition levels of variability into between- and within-form components. This revealed that for the inbreeding dwarf and intermediate forms most variation was observed between, rather than within, forms. In contrast, the outbreeding tall forms exhibited as much variation within as between forms. These observations have important implications for the maintenance and collection of coconut germplasm. This study also provided insights into the genetic (as opposed to phenotypic) relatedness of coconut accessions. Morphologically the Aurantiaca group of accessions are considered to be intermediate between the tall and dwarf accessions. Estimation of genetic relatedness based on AFLP analysis identified the Aurantiaca group as being more similar to the dwarf rather than the tall group. In addition, putative duplicate accessions were identified in the Aurantiaca group. Information emerging from this study will facilitate the management of coconut germplasm and optimise the choice of genetically divergent parents for crossing. Received: 16 June 1997 / Accepted: 14 October 1997  相似文献   

17.
Theobroma cacao ) genotypes. Six primers were sufficient to distinguish all but three pairs of the 62 accessions examined. A UPGMA dendrogram was used to provide a measure of the genetic variability between genotypes. The scale was supplied by the inclusion of Theobroma grandiflora as an ’out group’ and also by the use of two contrasting progenies as ’in groups’. The ’in groups’ were obtained from the self-pollination of one plant (SPEC 54.1) known to be highly homozygous and also of a second, highly heterozygous, clone (P 19B). These reference points allowed several documentation errors to be resolved and provided a basis for identifying unwanted or low-priority material. Implications of the work for the routine maintenance of large germplasm collections are briefly discussed. Received: 20 January 1999 / Accepted: 25 May 1999  相似文献   

18.
This study analyzed genetic differences of 19 cultivars selected from somaclonal variants of Syngonium podophyllum Schott along with their parents as well as seven additional Syngonium species and six other aroids using amplified fragment length polymorphism (AFLP) markers generated by 12 primer sets. Among the 19 somaclonal cultivars, ‘Pink Allusion’ was selected from ‘White Butterfly’. Tissue culture of ‘Pink Allusion’ through organogenesis resulted in the development of 13 additional cultivars. Self-pollination of ‘Pink Allusion’ obtained a cultivar, ‘Regina Red Allusion’, and tissue culture propagation of ‘Regina Red Allusion’ led to the release of five other cultivars. The 12 primer sets generated a total of 1,583 scorable fragments from all accessions, of which 1,284 were polymorphic (81.9%). The percentages of polymorphic fragments within ‘White Butterfly’ and ‘Regina Red Allusion’ groups, however, were only 1.2% and 0.4%, respectively. Jaccard's similarity coefficients among somaclonal cultivars derived from ‘White Butterfly’ and ‘Regina Red Allusion’, on average, were 0.98 and 0.99, respectively. Seven out of the 15 cultivars from the ‘White Butterfly’ group and three out of six from the ‘Regina Red Allusion’ group were clearly distinguished by AFLP analysis as unique fragments were associated with respective cultivars. The unsuccessful attempt to distinguish the remaining eight cultivars from the ‘White Butterfly’ group and three from the ‘Regina Red Allusion’ group was not attributed to experimental errors or the number of primer sets used; rather it is hypothesized to be caused by DNA methylation and/or some rare mutations. This study also calls for increased genetic diversity of cultivated Syngonium as they are largely derived from somaclonal variants.  相似文献   

19.
The polymerase chain reaction (PCR) was used to survey DNA sequence variation among 12 indica and 10 japonica rice cultivars. Of the 143 primer pairs used, 37 detected amplicon length polymorphism (ALP) and 11 revealed PCR banding patterns paralleled with the indica/japonica differentiation. Thus the 11 primer pairs were used to discriminate the two rice subspecies. A collection of 116 accessions representing the breadth of rice germplasm was analyzed for ALP at the 11 loci. Rice accessions with scores of 0.3 or more were classified as indica while those with –0.3 or less were classified as japonica. Those with scores from –0.3 to 0.3 were considered intermediate. With this criterion, 70 accessions were classified as indica, 35 accessions as japonica, and 11 accessions as intermediate. The concept and the approach used here for rice should be equally applicable for classifying other plant species. Received: 1 July 1997 / Revision received: 4 December 1997 / Accepted: 29 December 1997  相似文献   

20.
Peng JH  Bai Y  Haley SD  Lapitan NL 《Genetica》2009,135(1):95-122
Genetic diversity of a set of 71 wheat accessions, including 53 biotype 2 Russian wheat aphid (RWA2)-resistant landraces and 18 RWA2 susceptible accessions, was assessed by examining molecular variation at multiple microsatellite (SSR) loci. Fifty-one wheat SSR primer pairs were used, 81 SSR loci were determined, and 545 SSR alleles were detected. These SSR loci covered all the three genomes, 21 chromosomes, and at least 41 of the 42 chromosome arms. Diversity values averaged over SSR loci were high with mean number of SSR alleles/locus = 6.7, mean Shannon’s index (H) = 1.291, and mean Nei’s gene diversity (He) = 0.609. The three wheat genomes ranked as A > D > B and the homoeologous groups ranked as 7 > 3  > 1 > 2 > 6 > 5 > 4 based on the number of alleles per locus. Xgwm136 on chromosome arm 1AS is the most polymorphic SSR locus with the largest number of observed and effective alleles and the highest H and He. Among all 2485 pairs of wheat accessions, genetic distance (GD) ranged from 0.054 to 1.933 and averaged 0.9832. A dendrogram based on GD matrix showed that all the wheat accessions could be grouped into distinct clusters. Most of the susceptible cultivars (13/18) were clustered into groups that contains all or mostly susceptible accessions. Most of the U.S. cultivars belong to a group that is distinguishable from all the different RWA2 resistant groups. Diversity analysis was also conducted separately for subgroups containing 53 RWA2-resistant accessions and 18 RWA2-susceptible accessions. Association mapping revealed 28 SSR loci significantly associated with leaf chlorosis, and 8 with leaf rolling. New chromosome regions associated with RWA2 resistance were detected, and indicated existence of new RWA resistance genes located on chromosomes of all other homoeologous groups in addition to the groups 1 and 7 in bread wheat. This information is helpful for development of mapping populations for RWA2 resistance genes from different phylogenetic groups, and for wise utilization of the RWA-resistant germplasm in wheat breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号