首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular distribution and intracellular localization of neuron-specific enolase (NSE) has been studied by electron microscopic immunocytochemistry in the brain of the rat and of the mouse. Although the intensity of staining was less in the mouse, the same structures were positive in both species. In the cerebrum, the neuronal perikarya and dendrites were intensely stained, but staining was almost entirely absent in the presynaptic terminals. The deep neurons of the brain stem were also positive. In the cerebellum, perikarya, axons, and parallel fibers of the granule cell neurons were stained as were the synaptic vesicles and presynaptic membranes of the synapses between the parallel fibers and the Purkinje cell dendrites. Golgi cell dendrites, basket cells and their axons, and mossy fibers were also positive. In contrast, the Purkinje cells including their dendrites, and the climbing fibers that formed synapses with the Purkinje cell dendrites were not stained. The majority of the myelinated axons in both the cerebrum and the cerebellum did not stain, but the fibrillary astrocytic processes between myelinated axons in the white matter did. Oligodendroglia, protoplasmic astrocytes, Bergmann glia, astrocytes investing capillaries, and vascular endothelial cells were negative for reaction product. In the positively staining cells and their processes, the positivity was dispersed throughout the cytoplasm and corresponded most closely to the distribution of ribosomes, the granular endoplasmic reticulum, and microtubules. Nuclei, mitochondria, the cisternae of the Golgi complex, myelin lamellae, and most membranes were not stained.  相似文献   

2.
Proteins of Mr 68 000, 34 000 and 32 000 were selectively extracted by EGTA from brain cortex. The three proteins that were extracted along with calmodulin were acidic, monomeric, and did not exhibit structural homology, as demonstrated by one-dimensional peptide mapping. The Mr-68 000 protein was purified to homogeneity and had a Stokes radius of 3.54 nm and S20,W value of 5.1S. Purified calmodulin, Mr-68 000 protein and two proteins of Mr 34 000 and Mr 32 000, interacted with the brain particulate fraction, with half-maximal binding occurring at 3.5 microM, 8.3 microM and 150 microM-Ca2+ respectively. Proteins were bound independently of each other and calmodulin. Pretreatment of the particulate fraction with trypsin prevented the Ca2+-dependent binding of calmodulin; however, the binding of the Mr-68 000 protein or the Mr-32 000 and -34 000 proteins was unaffected. The Mr-68 000 protein of bovine brain did not cross-react immunologically with Mr-67 000 calcimedin from chicken gizzard.  相似文献   

3.
An antiserum raised against an enriched preparation of isolated rat cerebellar Purkinje cells has been studied with the indirect immunofluorescence technique to establish its specificity and localisation. On cryostat sections, the unabsorbed IgG fraction stained large and small neurons in all brain regions. This staining was greatly reduced in the forebrain after the serum was absorbed on heart and liver membranes, and abolished after additional absorption on cerebral membranes. In the cerebellum, these absorptions also removed background staining in the internal granular layer, while the perikarya and dendrites of the Purkinje cells remained positive. Large neurons in the deep cerebellar nuclei and the brain stem were also stained, but further absorption on membranes prepared from the brain stem removed staining in both these areas without affecting that of the Purkinje cells. Thus, using immunohistochemical screening, it was possible through a series of absorptions to obtain a serum that is specific to cerebellar Purkinje cells.  相似文献   

4.
In the search for immunohistochemical markers of the developing human brain, a monoclonal antibody, HFB-16, was raised against homogenates from the cerebrum of a 15-gestational-week-old (GW) human fetus and screened on paraffin-embedded human embryonic brain specimens. This antibody was particularly useful as a marker for Purkinje cells in the developing human cerebellum. Positive immunoreactivities with HFB-16 first appeared in the Purkinje cell layer at 17 GW. From 20 to 24 GW, positive immunoreactivities were found above the lamina dissecans. After 25 GW, dendrites of Purkinje cells were found with the HFB-16 antibody, and the nerve fibers of the Purkinje cells became positive after 35 GW. Neurons in the dentate nucleus and external and internal granular layers reacted negatively to this antibody. After 1 year, when the external granular layer faded out, the dendrites of the Purkinje cells reached the pial surface of the cerebellum, and nerve fibers began to develop in the white matter. This antibody was also useful for characterization of components in heterotopic neurons found in various anomaly syndromes such as trisomy 13. Expressional cloning indicated the antigen against HFB-16 to be human KIAA0864 protein, which is supposed to be an alternative splicing product of p116Rip, whose function has not yet been elucidated. The antigenicity of the KIAA0864 protein was confirmed using human cDNA of the KIAA0864 protein, a protein expression vector, and an HFB-16 antibody.  相似文献   

5.
Proteins that bind calcium in a phospholipid-dependent manner   总被引:2,自引:0,他引:2  
Three proteins (Mr = 64K, 32K, and 22K) that bind to phospholipids in a calcium-dependent manner were purified from bovine brain. The calcium-binding properties of these proteins were investigated by equilibrium dialysis and by gel filtration chromatography. The 64- and 32-kDa proteins were found to have calcium- and phospholipid-binding properties strikingly similar to those of protein kinase C [Bazzi, M.D., & Nelsestuen, G.L. (1990) Biochemistry 29, 7624]. The free proteins bound limited divalent metal ion even at 200 microM calcium. However, they bound eight to nine calcium ions per protein in the presence of membranes containing acidic phospholipids. The calcium concentrations needed for protein-phospholipid binding were different for these two proteins and were strongly influenced by the phospholipid composition of the vesicles; vesicles of higher phosphatidylserine content required lower concentrations of calcium for protein-membrane association. These properties described a general type of calcium-interacting system where simultaneous interaction of all three components (protein, phospholipids, and calcium) is required. The free proteins may provide only partial coordinate bonds to each calcium ion, but complete calcium-binding sites could be generated at the protein-phospholipid interface. In contrast to the 64- and 32-kDa proteins, the 22-kDa protein bound similar amounts of calcium (two to three ions/protein) in the presence or the absence of phospholipids. The 22-kDa protein had the lowest affinity for phospholipid and the highest affinity for calcium of the three proteins tested. Thus, calcium-dependent phospholipid-binding proteins consist of several types. For example, the 64- and 32-kDa proteins appear to be quite abundant and may even function as a calcium buffer to modulate signaling events.  相似文献   

6.
A site-directed anti-peptide antibody, CNB-1, that recognizes the alpha 1 subunit of rat brain class B calcium channels (rbB) immunoprecipitated 43% of the N-type calcium channels labeled by [125I]omega-conotoxin. CNB-1 recognized proteins of 240 and 210 kd, suggesting the presence of two size forms of this alpha 1 subunit. Calcium channels recognized by CNB-1 were localized predominantly in dendrites; both dendritic shafts and punctate synaptic structures upon the dendrites were labeled. The large terminals of the mossy fibers of the dentate gyrus granule neurons were heavily labeled, suggesting that the punctate labeling pattern represents calcium channels in nerve terminals. The pattern of immunostaining was cell specific. The cell bodies of some pyramidal cells in layers II, III, and V of the dorsal cortex, Purkinje cells, and scattered cell bodies elsewhere in the brain were also labeled at a low level. The results define complementary distributions of N- and L-type calcium channels in dendrites, nerve terminals, and cell bodies of most central neurons and support distinct functional roles in calcium-dependent electrical activity, intracellular calcium regulation, and neurotransmitter release for these two channel types.  相似文献   

7.
In a new approach to isolating proteins which participate in the Ca2+-dependent regulation of membrane traffic in animal cells, two new Ca2+-binding proteins (Mr 67 000 and 32 500) have been identified in and purified from bovine liver, brain, and adrenal medulla. These proteins specifically and reversibly bind to chromaffin granule membranes at low Ca2+ concentrations (half-maximal binding at 5.5 microM Ca2+) and greatly potentiate the Ca2+-induced aggregation of these membranes at higher concentrations (above 10 microM). In the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetate, the isolated proteins have Stokes radii of 3.40 nm (Mr 67 000) and 2.53 nm (Mr 32 500) as estimated by gel filtration and therefore occur as monomers. They are slightly acidic proteins with pI's of 5.85 and 5.60. In bovine tissues, both proteins and a third protein of Mr 35 000 cross-react immunologically with each other and with Torpedo calelectrin (Mr 34 000) and are therefore identified as mammalian calelectrins. In all tissues of Torpedo marmorata tested, only a single molecular mass form of calelectrin exists, whereas multiple forms of calelectrin exist in mammalian tissues, indicating gene duplication during evolution. We suggest that the evolutionary conservation and diversification, the high tissue concentrations, and the Ca2+-specific interactions of the calelectrins make them candidates for Ca2+-dependent regulators of membrane events in animal cells.  相似文献   

8.
Localisation of the MRC OX-2 Glycoprotein on the Surfaces of Neurones   总被引:6,自引:1,他引:5  
The MRC OX-2 monoclonal antibody recognises membrane glycoproteins of Mr 41,000 in rat brain and 47,000 on thymocytes. It also reacts with follicular dendritic cells in lymphoid organs, endothelium, smooth muscle, and B-lymphocytes. Indirect immunoperoxidase staining of cryostat sections showed that OX-2 antigen was present throughout the cerebellum, with staining of both grey and white matter. Blood vessels were also stained. The Purkinje cell layer appeared to be unlabelled. Double-immunofluorescence staining of cerebellar interneurone cultures with MRC OX-2 antibody and tetanus toxin showed that all tetanus-positive cells (neurones) were MRC OX-2-positive. Glial fibrillary acidic protein-positive astrocytes were not labelled by MRC OX-2 antibody. Thus OX-2 antigen is one of the few biochemically characterised components of neuronal membranes and its properties are compared with those of the neuronal membrane glycoprotein Thy-1.  相似文献   

9.
We previously reported that rat testis and porcine testis contain a physicochemically indistinguishable Mr 32,000 calmodulin-binding protein, which we named "calspermin." In this study, antiserum against calspermin from porcine testis was raised in a rabbit, and a radioimmunoassay was developed. The antiserum reacted with calspermin from porcine testis but possessed little cross-reactivity against calspermin from rat testis. Among various porcine tissues, this protein was found primarily in testis, sperm, and brain. Its concentration in the cytosol was higher than that in the particular fraction in testis, but the reverse was found in brain. In brain, its concentration was highest in gray matter of cortex and in cerebellum, and became lower in tectum, white matter of cortex, hypothalamus, midbrain, and pons, in this order, and was nondetectable in medulla oblongata.  相似文献   

10.
The localization of alpha-D-mannosidase in the rat cerebellum was studied by using indirect immunohistochemistry at both optical and electron microscopic levels. In the adult the enzyme is particularly concentrated in the dendrites and cell bodies of Purkinje cells, basket cells, and Golgi neurons in the cerebellar cortex and in the cytoplasm and dendrites of deep nuclei neurons. The cytoplasm of granule cells is poorly stained, whereas parallel fibers, white matter, Bergman fibers, and Golgi epitheloid cell perikarya show virtually no staining. Electron microscopy suggests that most of the staining is found in the cytosol, although some staining is found in the postsynaptic densities of the synapses between parallel fibers and Purkinje dendrites. The pattern of staining was followed throughout the postnatal development of the rat cerebellum. At bith an intense and diffuse staining is found in all cells except those of the external germinative layer. At the 6th postnatal day, Purkinje cell bodies and apical cones are strongly labeled. From the 13th day on the pattern is very similar to that found in the adult. However, at the 18th postnatal day (when compared with the other structures), the staining of Purkinje cell dendrites seems to be higher than at all other ages. These data are correlated with biochemical studies and discussed in relation to the possible role of this enzyme during the postnatal development of the rat cerebellum.  相似文献   

11.
Abstract: The 2-deoxyglucose autoradiographic method has been used to study activity in cerebellum of the weaver and nervous mutant mice. Patterns of 2-deoxyglucose incorporation into the cerebral hemispheres from weaver and nervous strains did not differ significantly from those of the controls. In the normal cerebellum, 2-deoxyglucose incorporation was maximal in the granular layer, where mossy fibers form synapses with the dendrites of granule cells. In the cerebellum of nervous mice, which lacks Purkinje cells, the incorporation of the 2-deoxyglucose was maximal in the granular layer, but the incorporation into the molecular layer appeared less than in the control. The incorporation into the cerebellum from weaver, which lacks granule cells, was much higher than that of the control, the maximal incorporation being found in the Purkinje cell layer and in cell masses located in the white matter. These data suggest that the heterologous synapses that mossy fibers or climbing fibers form with the cells in the Purkinje cell layer and the cells in the white matter in the weaver cerebellum are functional.  相似文献   

12.
Neuroglycan C (NGC) is a membrane-spanning chondroitin sulfate proteoglycan with an epidermal growth factor module that is expressed predominantly in the brain. Cloning studies with mouse NGC cDNA revealed the expression of three distinct isoforms (NGC-I, -II, and -III) in the brain and revealed that the major isoform showed 94. 3% homology with the rat counterpart. The NGC gene comprised six exons, was approximately 17 kilobases in size, and was assigned to mouse chromosome band 9F1 by fluorescence in situ hybridization. Western blot analysis demonstrated that, although NGC in the immature cerebellum existed in a proteoglycan form, most NGC in the mature cerebellum did not bear chondroitin sulfate chain(s), indicating that NGC is a typical part-time proteoglycan. Immunohistochemical studies showed that only the Purkinje cells were immunopositive in the cerebellum. In the immature Purkinje cells, NGC, probably the proteoglycan form, was immunolocalized to the soma and thick dendrites on which the climbing fibers formed synapses, not to the thin branches on which the parallel fibers formed synapses. This finding suggests the involvement of NGC in the differential adhesion and synaptogenesis of the climbing and parallel fibers with the Purkinje cell dendrites.  相似文献   

13.
We have isolated a monoclonal antibody that recognizes a 42-kDa protein from adult zebrafish brain. The antibody stains the typical drop-shaped perikaryon of Purkinje cells and their dendrites. The cerebellum of teleosts has complex features. It is composed of three parts; the valvula cerebelli (Va), the corpus cerebelli (CCe), and the crista cerebellaris (CC). In higher vertebrates, the molecular layer is always found as the most outer layer of the cerebellum, but in teleosts, some of the granular cells are located on the surface of the Va. In higher vertebrates, the boundary between the granular and molecular layers always contains Purkinje cells, but this does not occur in teleosts. The Purkinje cells are found only in a part of the boundary in Va. We have found that the layer containing Purkinje cells forms a continuous zone in the cerebellum in the zebrafish. The complex structure of the cerebellum is more easily understood with the aid of the concept of a "Purkinje zone". The Purkinje zone starts at the caudal end of Val (lateral division of Va), turns at the edge of Va toward Vam (medial division of Va), connects to CCe, and ends at the bottom of CCe. The dendrites are found only on one side of the zone. The dendrites of the Purkinje cells in Vam are planar and are packed regularly, similar to those of higher vertebrates. However, the dendrites in Val and the posterior part of CCe are not planar and are irregularly packed.  相似文献   

14.
Abstract: A60 is a 60-kDa component of the axonal cortical cytoskeleton in CNS neurones. It appears to be neurone specific and is tightly bound to brain membranes. In this study the cytoskeletal activities and developmental expression of A60 in rat cerebellum have been examined using the monoclonal antibody DR1. A60 in a partially purified soluble extract of brain membranes interacts selectively with brain but not erythrocyte spectrin. Because erythrocyte spectrin is more closely related to the dendritic form of spectrin than the axonal form, this raises the possibility that AGO localises in axons by interaction with the axonal form of spectrin only. A60 is not found in rat cerebellum before the day of birth. However, during postnatal development of the cerebellum (days 1–13) DR1 reactivity appears progressively. On postnatal day 1, a small population of cells in the mantle layer (presumptive Purkinje cells) is DR1 positive. There is no DR1 reactivity found in Purkinje cell axons during their initial phase of growth. By postnatal day 7, Purkinje cell bodies, initial dendritic segments, and the cerebellar white matter are all positive. This pattern of labelling is strengthened up until postnatal day 13. By contrast, in adult rat cerebellum, the location of A60 has changed so that it is most concentrated in axons, and dendritic staining is lost. These data indicate that A60 is a spectrin-binding component of the adult axonal membrane skeleton, the presence of which is only required in axons after the initial phase of growth.  相似文献   

15.
We prepared a monoclonal antibody to microtubule-associated protein 1 (MAP 1), one of the two major high molecular weight MAP found in microtubules isolated from brain tissue. We found that MAP 1 can be resolved by SDS PAGE into three electrophoretic bands, which we have designated MAP 1A, MAP 1B, and MAP 1C in order of increasing electrophoretic mobility. Our antibody recognized exclusively MAP 1A, the most abundant and largest MAP 1 polypeptide. To determine the distribution of MAP 1A in nervous system tissues and cells, we examined tissue sections from rat brain and spinal cord, as well as primary cultures of newborn rat brain by immunofluorescence microscopy. Anti-MAP 1A stained white matter and gray matter regions, while a polyclonal anti-MAP 2 antibody previously prepared in this laboratory stained only gray matter. This confirmed our earlier biochemical results, which indicated that MAP 1 is more uniformly distributed in brain tissue than MAP 2 (Vallee, R.B., 1982, J. Cell Biol., 92:435-442). To determine the identity of cells and cellular processes immunoreactive with anti-MAP 1A, we examined a variety of brain and spinal cord regions. Fibrous staining of white matter by anti-MAP 1A was generally observed. This was due in part to immunoreactivity of axons, as judged by examination of axonal fiber tracts in the cerebral cortex and of large myelinated axons in the spinal cord and in spinal nerve roots. Cells with the morphology of oligodendrocytes were brightly labeled in white matter. Intense staining of Purkinje cell dendrites in the cerebellar cortex and of the apical dendrites of pyramidal cells in the cerebral cortex was observed. By double-labeling with antibodies to MAP 1A and MAP 2, the presence of both MAP in identical dendrites and neuronal perikarya was found. In primary brain cell cultures anti-MAP 2 stained predominantly cells of neuronal morphology. In contrast, anti-MAP 1A stained nearly all cells. Included among these were neurons, oligodendrocytes and astrocytes as determined by double-labeling with anti-MAP 1A in combination with antibody to MAP 2, myelin basic protein or glial fibrillary acidic protein, respectively. These results indicate that in contrast to MAP 2, which is specifically enriched in dendrites and perikarya of neurons, MAP 1A is widely distributed in the nervous system.  相似文献   

16.
Brenowitz SD  Regehr WG 《Neuron》2005,45(3):419-431
Associative learning is important on rapid timescales, but no suitable form of short-term plasticity has been identified that is both associative and synapse specific. Here, we assess whether endocannabinoids can mediate such plasticity. In the cerebellum, bursts of parallel fiber (PF) activity evoke endocannabinoid release from Purkinje cell dendrites that results in retrograde synaptic inhibition lasting seconds. We find that the powerful climbing fiber (CF) to Purkinje cell synapse regulates this inhibition. Compared to PF stimulation alone, coactivation of PF and CF synapses greatly enhanced endocannabinoid-mediated inhibition of PF synapses. Retrograde inhibition was restricted to PFs activated within several hundred milliseconds of CF activation. This associative plasticity reflects two aspects of calcium-dependent endocannabinoid release. First, PF-mediated activation of metabotropic glutamate receptors locally reduced the dendritic calcium levels required for endocannabinoid release. Second, CF and PF coactivation evoked localized supralinear dendritic calcium signals. Thus, endocannabinoids mediate transient associative synaptic plasticity.  相似文献   

17.
The presence of calcium-dependent potential-activated chloride currents in the membranes of freshly isolated rat cerebellar Purkinje cells (12–15 days) was shown by the whole-cell patch clamp technique. Chloride currents appeared in a sodium-free external solution and reversibly disappeared in the absence of external chloride and calcium ions.  相似文献   

18.
Glial fibrillary acidic protein was localized at the electron microscope level in the cerebellum of adult mice by indirect immunoperoxidase histology. In confirmation of previous studies at the light microscope level, the antigen was detectable in astrocytes and their processes, but not in neurons or their processes, or in oligodendroglia. Astrocytic processes were stained in white matter, in the granular layet surrounding synaptic glomerular complexes, and in the molecular layer in the form of radially oriented fibers and of sheaths surrounding Purkinje cell dendrites. Astrocytic endfeet impinging on meninges and perivascular membranes were also antigen positive. In astrocytic perikarya and processes, the immunohistochemical reaction product appears both as a diffuse cytoplasmic label and as elongated strands, which by their distribution and frequency could be considered glial filaments.  相似文献   

19.
Is the acetylcholine releasing protein mediatophore present in rat brain?   总被引:2,自引:0,他引:2  
Mediatophore is a protein purified from the nerve terminal membranes of Torpedo electric organ. It confers to artificial membranes a calcium-dependent mechanism that translocates acetylcholine. When similar reconstitution experiments are applied to rat brain synaptosomal membranes they reveal the presence of mediatophore activity with properties close to those described for the Torpedo protein (extractability, sensitivity to calcium, and effect of the drug cetiedil). The activity was more abundant in synaptosomal membranes than in mitochondrial or myelinic membranes and in cholinergic areas as compared to cerebellum.  相似文献   

20.
The acid-sensing ion channels (ASICs) are members of the DEG/ENaC superfamily of Na+ channels. Acid-gated cation currents have been detected in neurons from multiple regions of the brain including the cerebellum, but little is known about their molecular identity and function. Recently, one of ASICs (ASIC1a) was implicated in synaptic plasticity. In this study we examined the subcellular distribution of ASIC2a in rat cerebellum by immunostaining and confocal microscopy. Monoclonal antibodies for labeling of defined brain structures, for example, astroglia, Purkinje cell dendrites, nuclei, and presynaptic terminals were used for colocalization analyses. In the gray matter, the anti-ASIC2a antibody intensively stained dendrite branches of Purkinje cells evenly distributed throughout the entire molecular layer (ML). In the granule cell layer (GL), anti-ASIC2a antibody stained synaptic glomeruli. Neuronal localization of ASIC2a was confirmed by lack of co-staining with glial fibrillary acidic protein. Anti-ASIC2a staining in the ML colocalized with metabotropic glutamate receptor 1alpha (mGluR1alpha) in Purkinje cell dendrites and dendritic spines. Both proteins, mGluR1alpha and ASIC2a, were enriched in a crude synaptic membrane fraction prepared from cerebellum, suggesting synaptic expression of these proteins. Dual staining with anti-syntaxin 1A and anti-ASIC2a antibodies demonstrates characteristic complementary distribution of two proteins in both ML and GL. Because syntaxin 1A localized in presynaptic membranes and synaptic vesicles, complementary distribution with ASIC2a suggests postsynaptic localization of ASIC2a in these structures. This study shows specific localization of ASIC2a in both Purkinje and granule cell dendrites of the cerebellum and enrichment of ASIC2a in a crude cerebellar synaptic membrane fraction. The study is the first report of synaptic localization of ASIC2a in the CNS. The synaptic localization of ASIC2a in the cerebellum makes this channel a candidate for a role in motor coordination and learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号