首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
植物、土壤及土壤管理对土壤微生物群落结构的影响   总被引:24,自引:2,他引:24  
土壤微生物是土壤生态系统的重要组成部分,对土壤微生物群落结构多样性的研究是近年来土壤生态学研究的热点。本文综述了有关植物、土壤类型以及土壤管理措施对土壤微生物群落结构影响的最新研究结果,指出植物的作用因植物群落结构多样性、植物种类、同种植物不同的基因型,甚至同一植物不同根的区域而异;而土壤的作用与土壤质地和有机质含量等因素有关;植物和土壤类型在对土壤微生物群落结构影响上的作用存在互作关系。不同的土壤管理措施对土壤微生物群落结构影响较大,长期连作、大量的外援化学物质的应用降低了土壤微生物的多样性;而施用有机肥、免耕可以增加土壤微生物群落结构多样性,有利于维持土壤生态系统的功能。  相似文献   

2.
盐碱土是陆地表面生态脆弱区域。它与荒漠化过程相伴而生,不但造成了资源的破坏、农业生产的巨大损失,而且还对生物圈和生态环境构成威胁。研究盐碱地植物根际土壤微生物群落的多样性,对于盐碱土壤的植被恢复和生态重建具有重要意义。运用PCR-DGGE技术和Biolog微平板法,对大庆盐碱地9种不同植物根际土壤微生物结构和功能的多样性进行了分析。结果表明,不同植物根际土壤微生物组成不同,同一科的植物具有相似的微生物组成。对11个克隆进行了序列测定,发现这一地区植物根际优势微生物菌群为变形菌门(Proteobacteria)和酸杆菌门(Acidobacteria)。利用Biolog微平板法分析了微生物群落功能多样性。结果表明,不同植物根际土壤细菌群落对底物碳源的代谢特征存在着一定的差异,其中豆科的野大豆根际土壤细菌对底物碳源的代谢能力最强。  相似文献   

3.
Many strains of Pseudomonas fluorescens show potential for biological control of phytopathogens especially root pathogens. In taxonomic terms, several of them are indeed P. fluorescens sensu stricto , while others belong in fact to neighbouring species of the ' P. fluorescens ' complex or to ill-defined related species within the fluorescent Pseudomonas spp. These bacteria have become prominent models for rhizosphere ecological studies and analysis of bacterial secondary metabolism, and in recent years knowledge on their plant-beneficial traits has been considerably enhanced by widening the focus beyond the case of phytopathogen-directed antagonism. Current genomic analyses of rhizosphere competence and biocontrol traits will likely lead to the development of novel tools for effective management of indigenous and inoculated P. fluorescens biocontrol agents and a better exploitation of their plant-beneficial properties for sustainable agriculture.  相似文献   

4.
土壤是植物定居的场所,也是植物-微生物互作的重要界面。古菌是土壤微生物重要组份,在碳、氮、硫、铁等元素的生物地球化学循环和植物的生长发育、适应生境中发挥重要作用。植物定居对土壤古菌群落的影响研究鲜有开展,孑遗植物在研究植物-微生物-环境互作中具有独特的优势。采用扩增子高通量测序技术,研究以荒漠孑遗植物四合木为建群种或优势种的四合木-红砂-珍珠-针茅群落、四合木-针茅群落和四合木群落等三种荒漠植物群落类型中,四合木根区土壤和光板地土体土壤古菌群落特征,揭示四合木定居对土壤古菌物种数量、多样性、群落组成及功能的影响。结果表明,荒漠孑遗植物四合木定居不仅增加了根区土壤古菌的物种数量,提高了根区土壤古菌群落多样性,而且改变了土壤古菌群落组成,减少了奇古菌门Nitrososphaeraceae科未分类的属氨氧化古菌(unclassified_f_Nitrososphaeraceae)和暂定Nitrososphaera属氨氧化古菌(Candidatus Nitrososphaera)相对丰度,增加了Nitrososphaeraceae科暂定Nitrocosmicus属氨氧化古菌(Candidatus Nitrocosmicus)和广古菌门海洋古菌类群Ⅱ中未分类的属(norank_o_Marine_Group_II)相对丰度,广古菌门热原体纲未分类的属(unclassified_c__Thermoplasmata)相对丰度变化显著。植物群落演替对四合木根区土壤和光板地土体土壤古菌群落均无显著影响。Nitrososphaeraceae科氨氧化古菌是三种不同荒漠植物群落类型中土壤古菌的核心微生物组。四合木定居也显著改变土壤古菌群落的功能,减弱了高丰度功能,增强了低丰度功能,对有氧呼吸、核苷酸合成、氨基酸合成等途径影响显著。荒漠孑遗植物四合木定居改变了土壤古菌群落物种数量、多样性、组成、功能等特征。  相似文献   

5.
Bacterial community shifts in a soil microcosm spiked with 3-chlorobenzoate or 2,5-dichlorobenzoate were monitored. The V6-V8 variable regions of soil bacterial 16S rRNA and rDNA were amplified and separated by temperature gradient gel electrophoresis (TGGE) profiling. Culturing in the presence of 2.5 mM chlorinated benzoates suppressed 10 to 100 fold the total aerobic bacterial community but had no effect on the diversity within the group of fluorescent pseudomonads. In contrast, the uncultured bacterial community showed a decrease in the number of bands in the TGGE profiles of the chlorobenzoate-spiked treatments. Accordingly, the Shannon's diversity and equitability indices of these treatments reflected a decreasing trend in time. The approach allowed a direct assessment of community shifts upon contamination of soil.  相似文献   

6.
7.
Previous reports have indicated positive effects of enriched rhizosphere dissolved inorganic carbon on the growth of salinity-stressed tomato (Lycopersicon esculentum L. Mill. cv. F144) plants. In the present work we tested whether a supply of CO2 enriched air to the roots of hydroponically grown tomato plants had an effect on nitrogen uptake in these plants. Uptake was followed over periods of 6 to 12 hours and measured as the depletion of nitrogen from the nutrient solution aerated with either ambient or CO2 enriched air. Enriched rhizosphere CO2 treatments (5000 μmol mol-1) increased NO3 - uptake up to 30% at pH 5.8 in hydroponically grown tomato plants compared to control treatments aerated with ambient CO2 (360 μmol mol-1). Enriched rhizosphere CO2 treatments had no effect on NH3 + uptake. Acetazolamide, an inhibitor of apoplastic carbonic anhydrase, increased NO3 - uptake in ambient rhizosphere CO2 treatments, but had no effect on NO3 - uptake in enriched rhizosphere CO2 treatments. Ethoxyzolamide, an inhibitor of both cytoplasmic and extracellular carbonic anhydrase, decreased NO3 - uptake in ambient rhizosphere CO2 treatments. In contrast, a CO2 enriched rhizosphere increased NO3 - uptake with ethoxyzolamide, although not to the same extent as in plants without ethoxyzolamide. It is suggested that a supply of enriched CO2 to the rhizosphere influenced NO3 - uptake through the formation of increased amounts of HCO3 - in the cytosol. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Pseudomonas fluorescens strain BR-5 stimulated the growth of maize in a natural soil and inhibited fungal root pathogens in vitro. Strain BR-5 was detected inside plant cells, indicating that it is able to colonize the endorhizosphere. No significant effect was detected on soil or ectorhizosphere microbial population after inoculation of strain BR-5 onto seeds.  相似文献   

9.
When genetically altered strains of Pseudomonas fluorescens were introduced into soil contaminated with copper in a laboratory study, they did not affect the phenotypic diversity (eco-physiological index) of indigenous microflora in the rhizosphere and bulk soil. Soil contamination with copper also did not cause shifts in the distribution of bacterial classes within the total community of heterotrophic or Gram-negative bacteria.  相似文献   

10.
Take-all of wheat, caused by Gaeumannomyces graminis var tritici (Ggt), is reduced by ammoniacal fertilizers as compared to nitrate sources. This influence of nitrogen on the disease is only observed on nodal roots at flowering. But soil conduciveness to take-all, as measured in a soil bioassay, is modified earlier. Forty days after nitrogen application at early tillering, the NH4-treated soil became less conducive than the NO3-treated one. When nitrogen applications are done at sowing and at tillering, differences in disease propagation between the two soils are enhanced. Results from four years of experimentation show that when the level of natural soil inoculum is high, disease severity is reduced by ammonium, showing an effect on the parasitic phase of Ggt. At a low level of natural inoculum the effect of the source of nitrogen is mainly observed on the percent of infected plants, indicating that the saprophytic and preparasitic phases are affected. Rhizospheric bacterial populations increase from sowing to tillering, but differences on take-all conduciveness after tillering are not correlated with differences in the amounts of aerobic bacteria or fluorescent pseudomonads isolated from soils treated with different sources of nitrogen. Qualitative changes in fluorescent Pseudomonas spp. populations, like in vitro antagonism, are more likely to explain differences in soil conduciveness to take-all than are quantitative changes in this group. Nevertheless, the introduction of Ggt in a cropped soil leads to a greater increase in fluorescent pseudomonads populations than in total aerobic bacteria.The delay between reducing soil conduciveness and reducing disease in the field with ammonium nitrogen fertilization, the qualitative change of fluorescent pseudomonads populations and the role of necroses in rhizobacteria multiplication, provide information leading to our representation of a dynamic model based on the differentiation of the wheat root system into seminal and nodal roots.  相似文献   

11.
Roots naturally exert axial and radial pressures during growth, which alter the structural arrangement of soil at the root–soil interface. However, empirical models suggest soil densification, which can have negative impacts on water and nutrient uptake, occurs at the immediate root surface with decreasing distance from the root. Here, we spatially map structural gradients in the soil surrounding roots using non‐invasive imaging, to ascertain the role of root growth in early stage formation of soil structure. X‐ray computed tomography provided a means not only to visualize a root system in situ and in 3‐D but also to assess the precise root‐induced alterations to soil structure close to, and at selected distances away from the root–soil interface. We spatially quantified the changes in soil structure generated by three common but contrasting plant species (pea, tomato, and wheat) under different soil texture and compaction treatments. Across the three plant types, significant increases in porosity at the immediate root surface were found in both clay loam and loamy sand soils and not soil densification, the currently assumed norm. Densification of the soil was recorded, at some distance away from the root, dependent on soil texture and plant type. There was a significant soil texture × bulk density × plant species interaction for the root convex hull, a measure of the extent to which root systems explore the soil, which suggested pea and wheat grew better in the clay soil when at a high bulk density, compared with tomato, which preferred lower bulk density soils. These results, only revealed by high resolution non‐destructive imagery, show that although the root penetration mechanisms can lead to soil densification (which could have a negative impact on growth), the immediate root–soil interface is actually a zone of high porosity, which is very important for several key rhizosphere processes occurring at this scale including water and nutrient uptake and gaseous diffusion.  相似文献   

12.
Bacteria were isolated from the mycelial surface of Pleurotus ostreatus and their role in fruiting body induction (fructification) of the edible mushroom P. ostreatus was investigated. Analysis of the bacterial community that colonized the mycelium showed that the species composition and numbers of culturable bacteria differed according to the developmental stage of P. ostreatus. In particular, the population size of fluorescent pseudomonads increased during fruiting body induction. An experiment showed that inoculation of pure cultures of the mycelium with strains of fluorescent Pseudomonas spp. isolated from the mycelial plane of commercially produced mushrooms promoted the formation of primordia and enhanced the development of the basidiome of P. ostreatus. Results of this research strongly suggest that inoculation of the mycelium with specific bacteria may have beneficial applications for mushroom production.  相似文献   

13.
The factors regulating soil microbial stability (e.g. resistance and resilience) are poorly understood, even though microorganisms are essential for ecosystem functioning. In this study, we tested whether a functional microbial community subjected to different primary mild stresses was equally resistant or resilient to a subsequent severe stress. The nitrate reducers were selected as model community and analysed in terms of nitrate reduction rates and genetic structure by narG PCR-restriction fragment length polymorphism fingerprinting. Heat, copper and atrazine were used as primary stresses and mercury at a high concentration as a severe stress. None of the primary stresses had any significant impact on the nitrate reducer community. Although primary stress with heat, copper or atrazine had no effect on the resilience of the nitrate reducer activity to mercury stress, pre-exposure to copper, another heavy metal, resulted in increased resilience. In contrast, the resistance of both structure and activity of the nitrate reducer community to severe mercury stress was not affected by any of the primary stresses tested. Our experiment suggests that the hypothetical effect of an initial stress on the response of a microbial community to an additional stress is complex and may depend on the relatedness of the two consecutive stresses and the development of positive cotolerance.  相似文献   

14.
The short term effect of NO3 (12 mM) on nitrate reductase (NR. EC 1.6.6.1) activity has been studied in the roots, nodules and leaves of different genotypes of Vicia faba L. at the end of vegetative growth. Root and leaf NR activity responded positively to NO3 while nodule activity, where detected, proved to he strongly inhibited. The withdraw of this NO3 from the solution consistently reduced activity in the roots and leaves but surprising, promoted a significant increase in nodule activity, which matched or surpassed that of control plants On the other hand, nodules developed in the presence of 8 mM NO3 expressed an on average 141% higher level of NR activity than did controls. This effect was observed even in nodules with negligible control activity. In any case, a naturally occurring mutant (VF17) lacking root and nodule NR activity is described. The results indicate that in V. faba. the effects of NO3 and plant genotype on NR activity depended on plant organ and time of NO3 application, hut the distribution of NO3 reduction through the plain was mainly dependent on plant genotype, and to a lesser extent on NO: supply and plant age.  相似文献   

15.
The nitrate reducing capacity of pure cultures of Cenococcum geophilum (Sow.) Ferd. & Winge, Paxillus involutes (Batsch: Fr.) Fr. (strains 1 and 2), Piloderma croceum Erikss. & Hjortst., Suillus variegatus (Fr.) O. Kuntze (strains 1 and 2) and an ectendomycorrhizal (E-strain) fungus was measured using an in vivo nitrate reductase (EC 1.6.6.3) assay. Differences between species and strains were established. The nitrate concentration of the culture medium influenced the nitrate reductase activities of the E-strain fungus and one strain of S. variegatus. The nitrate reductase activity of certain species and strains was a function of nitrate concentration. Addition of ammonium to the growth medium did not have any significant effect on the in vivo or in vitro nitrate reductase activity. The in vivo nitrate reductase activity in the mycelia of C. geophilum and the E-strain fungus decreased during 28 day growth in modified Melin-Norkrans medium. For mycelia of Paxillus involutus, Piloderma croceum and S. variegatus grown on agar the in vitro assays showed higher nitrate reductase activity than the in vivo assays.  相似文献   

16.
为明确不同入侵地植物群落和土壤生态对黄顶菊入侵的反馈机制,选取天津静海(JH)、河北沧州(CZ)、河北衡水(HS)及河南安阳(AY)4个黄顶菊入侵典型区域,研究黄顶菊对不同入侵地植物群落多样性、土壤理化及土壤微生物群落结构的影响,并进一步揭示植物群落、土壤养分和土壤微生物之间的相关关系。结果表明,黄顶菊入侵显著降低了JH、CZ和HS的植物群落多样性指数(P0.05),改变了四个地区的土壤理化性质,显著升高了不同入侵地真菌PLFA的含量、总PLFA的含量、真菌/细菌和革兰氏阴性菌/革兰氏阳性菌(P0.05),降低了土壤微生物的Margalef丰富度指数(P0.05),但均存在地区间差异;RDA和相关分析的结果表明,硝态氮、全氮的含量对植物群落的影响较大,而铵态氮的含量对土壤微生物群落结构的影响较大,除丰富度指数外,植物群落与土壤微生物群落的多样性指数之间存在显著的负相关关系(P0.05)。总之,黄顶菊改变了入侵地植物群落多样性,并且对入侵地土壤理化性质和土壤微生物群落结构产生了显著影响,且存在地区差异。本研究将为更好的理解外来植物的入侵机制及制定相应的防控策略提供理论依据。  相似文献   

17.
内蒙草原不同植物功能群及物种对土壤微生物组成的影响   总被引:1,自引:0,他引:1  
为了分析不同植物群落组成对内蒙古典型草原土壤微生物群落组成的影响,本研究利用植物功能群剔除处理实验平台,采用荧光定量PCR(real-timePCR)和自动核糖体间隔区基因分析(automated ribosomal intergenic spacer analysis,ARISA)技术,对不同植物功能群组成的非根际土壤和常见物种的根际土壤中细菌和真菌的数量及群落结构进行了分析。结果表明,在非根际土壤中,不同植物功能群组成对细菌数量有显著影响,而对真菌数量及细菌和真菌的群落结构影响不明显;在根际土壤中,不同植物物种对细菌、真菌的数量都有显著影响。此外,聚类分析表明,不同物种的根际土中细菌和真菌的群落结构也有所不同,尤其以细菌的群落结构变化较为明显。研究结果表明不同植物物种可以通过根系影响土壤微生物群落组成。  相似文献   

18.
Although fungi contribute significantly to the microbial biomass in terrestrial ecosystems, little is known about their contribution to biogeochemical nitrogen cycles. Agricultural soils usually contain comparably high amounts of inorganic nitrogen, mainly in the form of nitrate. Many studies focused on bacterial and archaeal turnover of nitrate by nitrification, denitrification and assimilation, whereas the fungal role remained largely neglected. To enable research on the fungal contribution to the biogeochemical nitrogen cycle tools for monitoring the presence and expression of fungal assimilatory nitrate reductase genes were developed. To the ∼100 currently available fungal full-length gene sequences, another 109 partial sequences were added by amplification from individual culture isolates, representing all major orders occurring in agricultural soils. The extended database led to the discovery of new horizontal gene transfer events within the fungal kingdom. The newly developed PCR primers were used to study gene pools and gene expression of fungal nitrate reductases in agricultural soils. The availability of the extended database allowed affiliation of many sequences to known species, genera or families. Energy supply by a carbon source seems to be the major regulator of nitrate reductase gene expression for fungi in agricultural soils, which is in good agreement with the high energy demand of complete reduction of nitrate to ammonium.  相似文献   

19.
了解雅鲁藏布江大峡谷沿岸不同植被根际土壤细菌群落结构和多样性特征对于揭示该区植被与土壤的相互作用具有重要科学意义。采用Illumina Miseq高通量测序技术,研究了雅鲁藏布江沿岸自然分布和生长的艾草Artemisia argyi H. Lév.&Vaniot、白刺花Sophora davidii(Franch)、八宝Hylotelephium erythrostictum(Miq.)H. Ohba、黄刺玫Rosa xanthina Lindl4种典型植被根际土壤细菌群落结构和多样性,并结合植物根际土壤养分含量进行相关性分析。雅鲁藏布江沿岸4种植物根际土壤中共有28门、84纲、156目、262科、599属土壤细菌,其中变形菌门、酸杆菌门、放线菌门是雅鲁藏布江岸边植物根际土壤的优势菌群,相对丰度较高,其次为拟杆菌门、芽单胞菌门、疣微菌门。在门水平上,4种植物根际土壤细菌的群落结构组成表现为黄刺玫和艾草相似,而八宝和另外三种植物相差较大。土壤细菌OTUs(操作分类单元)数和Chaol均以艾草为最高,其值分别是6695和8000.02,以白刺花为最低,其值分别是4563和5113....  相似文献   

20.
A rapid method for determination of nitrate in soil and plant extracts   总被引:2,自引:0,他引:2  
J. P. Singh 《Plant and Soil》1988,110(1):137-139
A rapid colourimetric method of determination of nitrate was modified. Proposed modifications eliminated the use of barium sulphate and introduced diazotization of sulphanilamide by the nitrite ion obtained by the reduction of nitrate and subsequent coupling with N-1-naphthyethelenediamine dihydrochloride. Introduction of filtration in place of centrifugation of coloured solution simplified the procedure. Determinations were highly reproducible with coefficient of variation of 2.2 and 2.9% for soil and plant extracts respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号