首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Chory J  Nagpal P  Peto CA 《The Plant cell》1991,3(5):445-459
The greening phenotypes produced by recessive mutations in a gene designated de-etiolated-2 (DET2) are described. Recessive mutations in the DET2 gene uncouple light signals from a number of light-dependent processes. det2 mutations result in dark-grown Arabidopsis thaliana seedlings with many characteristics of light-grown plants, including hypocotyl growth inhibition, cotyledon expansion, primary leaf initiation, anthocyanin accumulation, and derepression of light-regulated gene expression. In contrast to these morphological and gene expression changes, however, the chloroplast development program is not initiated in the dark in det2 mutants, suggesting that light-regulated gene expression precedes the differentiation of etioplasts to chloroplasts. det2 mutations thus reveal at least two classes of downstream light-regulated responses that differ in their timing and control mechanisms. Homozygous det2 mutations also affect photoperiodic responses in light-grown plants, including timing of flowering, dark adaptation of gene expression, and onset of leaf senescence. The phenotype of det1 det2 double mutants is additive, implying that DET1 and DET2 function in distinct pathways that affect downstream light-regulated genes. Furthermore, these pathways are not utilized solely during early seedling development but must also be required to regulate different aspects of the light developmental program during later stages of vegetative growth.  相似文献   

2.
The genetic and phenotypic characterization of a new Arabidopsis mutant, de-etiolated -3, ( det 3), involved in light-regulated seedling development is described. A recessive mutation in the DET 3 gene uncouples light signals from a subset of light-dependent processes. The det 3 mutation causes dark-grown Arabidopsis thaliana seedlings to have short hypocotyls, expanded cotyledons, and differentiated leaves, traits characteristic of light-grown seedlings. Despite these morphological changes, however, the det 3 mutant does not develop chloroplasts or show elevated expression of nuclear- and chloroplast-encoded light-regulated mRNAs. The det 3 mutation thus uncovers a downstream branch of the light transduction pathways that separates leaf development from chloroplast differentiation and light-regulated gene expression. In addition, light-grown det 3 plants have reduced stature and apical dominance, suggesting that DET3 functions during growth in normal light conditions as well. The genetic interactions between mutations in det 1, det 2, and det 3 are described. The phenotypes of doubly mutant strains suggest that there are at least two parallel pathways controlling light-mediated development in Arabidopsis .  相似文献   

3.
光质对植物光合作用的调控及其机理   总被引:28,自引:0,他引:28  
光合作用是植物生长发育的基础.光质对植物光合作用的调控主要包括可见光对植物气孔器运动、叶片生长、叶绿体结构、光合色素、D1蛋白及其编码基因和光合碳同化等的调节,以及紫外光对植物光系统Ⅱ的影响.蓝光和红光能促进气孔的开张,而绿光能够逆转这种作用.蓝光有利于叶绿体的发育,红、蓝、绿复合光有利于叶面积的扩展,而红光更有利于光合产物的积累;不同光质对不同植物、不同组织器官叶绿素积累的影响不同.蓝光和远红光可以促进psbA基因转录物质的积累.大多数高等植物和绿藻在橙、红光下光合速率最高,蓝紫光其次,绿光最低.紫外光可以导致光系统Ⅱ的电子传递活性下降.此外,针对光质与光合作用研究领域中存在的问题,对今后的研究方向进行了讨论.  相似文献   

4.
When grown in the absence of light, Arabidopsis thaliana deetiolated (det) mutants develop many of the characteristics of light-grown plants, including the development of leaves and chloroplasts, the inhibition of hypocotyl growth elongation, and elevated expression levels of light-regulated genes. We show here that dark-grown wild-type seedlings exhibit similar phenotypic traits if any one of a variety of cytokinins are present in the growth medium. We further show that the striking phenotype of det mutants is unlikely to be caused by different levels of cytokinins in these mutants. The three major Arabidopsis cytokinins, zeatin, zeatin riboside, and isopentenyladenosine, accumulate to similar levels in wild-type seedlings grown in either the light or the dark. There is no consistently different pattern for the levels of these cytokinins in wild-type versus det1 or det2 mutants. However, det1 and det2 have an altered response to cytokinin in a detached leaf senescence assay and in tissue culture experiments. A model is proposed in which light and cytokinins act independently or sequentially through common signal transduction intermediates such as DET1 and DET2 to control the downstream light-regulated responses.  相似文献   

5.
6.
7.
The rice zebra mutant TCM248 is a single recessive mutant. This mutant develops transverse-striped leaves with green and white sectors under alternate light/dark growth conditions. Mutants that were grown under a higher light intensity during the light period showed a more intense striped phenotype. The white tissues contained abnormal chloroplasts with few internal membrane structures, while the green tissues in the mutants contained normal chloroplasts. The white tissue contained only trace amounts of Chls and carotenoids, and mRNA accumulation of nuclear genes encoding chloroplast proteins (rbcS, cab) was strongly suppressed compared to that in the wild type plants. A series of growth condition shift experiments demonstrated that the mutant displayed the striped phenotype only if it was exposed to the alternate light/dark growth conditions during a limited stage of early leaf development. These data suggest that the zebra gene is involved in the acquisition of photoprotective capacity of the plants and that this gene functions at an early stage of chloroplast differentiation.  相似文献   

8.
9.
10.
Chloroplast development requires coordinated expression of both nuclear- and chloroplast-encoded genes. To better understand the roles played by nuclear-encoded chloroplast proteins in chloroplast biogenesis, we isolated an Arabidopsis mutant, egy1-1, which has a dual phenotype, reduced chlorophyll accumulation and abnormal hypocotyl gravicurvature. Subsequent map-based cloning and DNA sequencing of the mutant gene revealed a 10-bp deletion in an EGY1 gene, which encodes a 59-kDa metalloprotease that contains eight trans-membrane domains at its C-terminus, and carries out beta-casein degradation in an ATP-independent manner. EGY1 protein accumulation varies between tissue types, being most prominent in leaf and stem tissues, and is responsive to light and ethylene. EGY1-GFP hybrid proteins are localized in the chloroplast. egy1 mutant chloroplasts had reduced granal thylakoids and poorly developed lamellae networks. Furthermore, the accumulation of chlorophyll a/b binding proteins of the light-harvesting complexes I and II (Lhca and Lhcb) are significantly decreased in three separate loss-of-function egy1 mutants. Taken together, these results suggest that EGY1 metalloprotease is required for chloroplast development and, hence, a defective EGY1 gene has pleiotropic effects both on chloroplast development and on ethylene-dependent gravitropism of light-grown hypocotyls.  相似文献   

11.
We have isolated a new complementation group of Arabidopsis thaliana long hypocotyl mutant (hy6) and have characterized a variety of light-regulated phenomena in hy6 and other previously isolated A. thaliana hy mutants. Among six complementation groups that define the HY phenotype in A. thaliana, three (hy1, hy2, and hy6) had significantly lowered levels of photoreversibly detectable phytochrome, although near wild-type levels of the phytochrome apoprotein were present in all three mutants. When photoregulation of chlorophyll a/b binding protein (cab) gene expression was examined, results obtained depended dramatically on the light regime employed. Using the red/far-red photoreversibility assay on etiolated plants, the accumulation of cab mRNAs was considerably less in the phytochrome-deficient mutants than in wild-type A. thaliana seedlings. When grown in high-fluence rate white light, however, the mutants accumulated wild-type levels of cab mRNAs and other mRNAs thought to be regulated by phytochrome. An examination of the light-grown phenotypes of the phytochrome-deficient mutants, using biochemical, molecular, and morphological techniques, revealed that the mutants displayed incomplete chloroplast and leaf development under conditions where wild-type chloroplasts developed normally. Thus, although phytochrome may play a role in gene expression in etiolated plants, a primary role for phytochrome in green plants is likely to be in modulating the amount of chloroplast development, rather than triggering the initiation of events (e.g., gene expression) associated with chloroplast development.  相似文献   

12.
13.
14.
Summary Many of the studies of chloroplast ontogeny in higher plants have utilized suboptimal conditions of light and growth to assess development. In this study, we utilized structural, immunological, and physiological techniques to examine the development of the chloroplast in fieldgrown cotton (Gossypium hirsutum cv. MD 51 ne). Our youngest leaf sample developmentally was completely folded upon itself and about 0.5 cm in length; leaves of this same plastochron were followed for three weeks to the fully expanded leaf. The chloroplasts at the earliest stage monitored had almost all of the lamellae in small, relatively electron-opaque grana, with relatively few thylakoids which were not appressed on at least one surface. During the development of the thylakoids, the membranes increase in complexity, with considerable stroma lamellae development and an increase in the number of thylakoids per granum. Besides the increase in complexity, both the size and numbers of the chloroplast increase during the development of the leaf. Developmental changes in six thylakoid proteins, five stromal proteins, and one peroxisomal protein were monitored by quantitative immunocytochemistry. Even at the earliest stages of development, the plastids are equipped with the proteins required to carry out both light and dark reactions of photosynthesis. Several of the proteins follow three phases of accumulation: a relatively high density at early stages, a linear increase to keep step with chloroplast growth, and a final accumulation in the mature chloroplast. Photosystem-II(PS II)-related proteins are present at their highest densities early in development, with an accumulation of other parts of the photosynthetic apparatus at a latter stage. The early accumulation of PS-II-related proteins correlates with the much lower ratio of chlorophylla tob in the younger leaves and with the changes in fluorescence transients. These data indicate that some of the conclusions on chloroplast development based upon studies of intercalary meristems of monocots or the greening of etiolated plants may not be adequate to explain development of chloroplasts in leaves from apical meristems grown under natural conditions.Abbreviations CF1 chloroplast coupling factor 1 - chl chlorophyll - DAP days after planting - LHC light-harvesting chlorophyll-a/b-binding protein - OEC oxygen-evolving complex of photosystem II - PBS phosphate-buffered saline - PS photosystem - RuBisCo ribulose bisphosphate carboxylase/oxygenase  相似文献   

15.
Epigenetic gene variants,termed epialleles,can broaden genetic and phenotypic diversity in eukaryotes.Here,we identify a natural epiallele of OsAK1,which encodes a rice adenylate kinase.The Epiaki plants show albino in young leaf and panicle with abnormal chloroplast structures.We found that no nucleotide sequence variation but hypermethylation at promoter region caused silencing of OsAK1(Oso8go177o) in Epi-ak1 plants.OsAK1 localizes to chloroplast and many genes associated with photosynthesis processes were downregulated in Epi-ak1.Thus,the work identified a novel rice epiallele caused by DNA methylation changes,shedding light on significant roles of DNA methylation on rice development.  相似文献   

16.
17.
Königer M  Bollinger N 《Planta》2012,236(2):411-426
It is well known that chloroplasts move in response to changes in blue light intensity in order to optimize light interception, however, little is known about interspecific variation and the relative importance of this mechanism for the high light stress tolerance of plants. We characterized chloroplast movement behavior as changes in light transmission through a leaf in a variety of species ranging from ferns to monocots and eudicots and found a wide spectrum of responses. Most species exhibited a distinct accumulation response compared to the dark positioning, and all species showed a distinct avoidance response. The speed with which transmission values changed during the avoidance response was consistently faster than that during the accumulation response and speeds varied greatly between species. Plants thriving in higher growth light intensities showed greater degrees of accumulation responses and faster changes in transmission than those that prefer lower light intensities. In some species, the chloroplasts on both the adaxial and abaxial leaf surfaces changed their positioning in response to light, while in other species only the chloroplasts on one leaf side responded. No correlation was found between high light stress tolerance and the speed or degree of transmission changes, indicating that plants can compensate for slow and limited transmission changes using other photoprotective mechanisms.  相似文献   

18.
19.
Leaf mesostructure, photochemical activity, and chloroplast photophosphorylation (PP) in the fourth true leaf of 28-day-old Chinese cabbage (Brassica chinensis L.) plants were investigated. Plants were grown under a light source based on red (650 nm) and blue (470 nm) light-emitting diodes (LED) with red/blue photon flux ratio of 7: 1 and under illumination with high-pressure sodium lamp (HPSL) at photon flux densities of 391 ± 24 μmol/(m2 s) (“normal irradiance”) and 107 ± 9 μmol/(m2 s) (“low irradiance”) in photosynthetically active range. At normal irradiance, the leaf area in plants grown under HPSL was twofold higher than in LED-illuminated plants; other parameters of leaf mesostructure were little affected by spectral quality of incident light. The lowering of growth irradiance reduced the majority of leaf mesostructure parameters in plants grown under illumination with HPSL, whereas in LED-illuminated plants the lowered irradiance reduced only specific leaf weight but increased the leaf thickness and dimensions of mesophyll cells and chloroplasts. The photochemical activity of isolated chloroplasts was almost independent of growth irradiance and light spectral quality. Light quality and intensity used for plant growing had a considerable impact on PP in chloroplasts. At normal light intensity, the highest activity of noncyclic PP in chloroplasts was observed for plants grown under HPSL; at low light intensity the highest rates of PP were noted for plants grown under LED. The P/2e ratio, which characterizes the degree of PP coupling to electron transport in the chloroplast electron transport chain, showed a similar pattern. Thus, the narrow-band spectrum of the light source had little influence on leaf mesostructure and electron transport rates. However, this spectrum significantly affected the chloroplast PP activity. The PP patterns at low and normal light intensities were opposite for plants grown under LED and HPSL light sources. We suppose that growing plants under LED array at normal light intensity disturbed the chloroplast coupling system, thus preventing the effective use of light energy for ATP synthesis. At low light intensity, chloroplast PP activity was significantly higher under LED illumination, but plant growth was suppressed because of impaired adaptation to low light intensity.  相似文献   

20.
An important step in understanding influence of growth environment on carbon metabolism in plants is to gain a better understanding of effects of light quality on the photosynthetic system. Electron microscopy was used to study chloroplast ultrastructure in developing and fully expanded leaves of tobacco (Nicotiana tabacum L. cv Burley 21). Brief exposures to red or far-red light at the end of each day during growth under controlled environments influenced granum size, granum number and starch grain accumulation in chloroplasts, and the concentration of sugars in leaf lamina. Far-red-treated leaves had chloroplasts with more but smaller grana than did red-treated leaves. Red light at the end of the photosynthetic period resulted in more and larger starch grains in the chloroplasts and a lower concentration of sugars in leaves. Chloroplast ultrastructure and starch grain accumulation patterns that were initiated in the expanding leaves were also evident in the fully expanded leaves that received the treatment during development. It appears that the phytochrome system in the developing leaves sensed the light environment and initiated events which influenced chloroplast development and partitioning of photosynthate to adapt the plant for better survival under those environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号