首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen G  Kennedy SD  Qiao J  Krugh TR  Turner DH 《Biochemistry》2006,45(22):6889-6903
A previous NMR structure of the duplex 5'GGU GGA GGCU/PCCG AAG CCG5' revealed an unusually stable RNA internal loop with three consecutive sheared GA pairs. Here, we report NMR studies of two duplexes, 5'GGU GGA GGCU/PCCA AAG CCG5' (replacing the UG pair with a UA closing pair) and 5'GGU GAA GGCU/PCCG AAG CCG5' (replacing the middle GA pair with an AA pair). An unusually stable loop with three consecutive sheared GA pairs forms in the duplex 5'GGU GGA GGCU/PCCA AAG CCG5'. The structure contrasts with that reported for this loop in the crystal structure of the large ribosomal subunit of Deinococcus radiodurans [Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) Cell 107, 679-688]. The middle AA pair in the duplex 5'GGU GAA GGCU/PCCG AAG CCG5' rapidly exchanges orientations, resulting in alternative base stacking and pseudosymmetry with exclusively sheared pairs. The U GAA G/G AAG C internal loop is 2.1 kcal/mol less stable than the U GGA G/G AAG C internal loop at 37 degrees C. Structural, energetic, and dynamic consequences upon functional group substitutions within related 3 x 3 and 3 x 6 internal loops are also reported.  相似文献   

2.
In 1985 an analysis of the Escherichia coli 16 S rRNA covariation-based structure model revealed a strong bias for unpaired adenosines. The same analysis revealed that the majority of the G, C, and U bases were paired. These biases are (now) consistent with the high percentage of unpaired adenosine nucleotides in several structure motifs.An analysis of a larger set of bacterial comparative 16 S and 23 S rRNA structure models has substantiated this initial finding and revealed new biases in the distribution of adenosine nucleotides in loop regions. The majority of the adenosine nucleotides are unpaired, while the majority of the G, C, and U bases are paired in the covariation-based structure model. The unpaired adenosine nucleotides predominate in the middle and at the 3' end of loops, and are the second most frequent nucleotide type at the 5' end of loops (G is the most common nucleotide). There are additional biases for unpaired adenosine nucleotides at the 3' end of loops and adjacent to a G at the 5' end of the helix. The most prevalent consecutive nucleotides are GG, GA, AG, and AA. A total of 70 % of the GG sequences are within helices, while more than 70 % of the AA sequences are unpaired. Nearly 50 % of the GA sequences are unpaired, and approximately one-third of the AG sequences are within helices while another third are at the 3' loop.5' helix junction. Unpaired positions with an adenosine nucleotide in more than 50 % of the sequences at the 3' end of 16 S and 23 S rRNA loops were identified and arranged into the A-motif categories XAZ, AAZ, XAG, AAG, and AAG:U, where G or Z is paired, G:U is a base-pair, and X is not an A and Z is not a G in more than 50 % of the sequences. These sequence motifs were associated with several structural motifs, such as adenosine platforms, E and E-like loops, A:A and A:G pairings at the end of helices, G:A tandem base-pairs, GNRA tetraloop hairpins, and U-turns.  相似文献   

3.
Chen G  Znosko BM  Jiao X  Turner DH 《Biochemistry》2004,43(40):12865-12876
Internal loops in RNA are important for folding and function. The 3 x 3 nucleotide internal loops are the smallest size symmetric loops with a potential noncanonical base pair (middle pair) flanked on both sides by a noncanonical base pair (loop-terminal pair). Thermodynamic and structural insights acquired for 3 x 3 loops should improve approximations for stabilities of 3 x 3 and larger internal loops. Most natural 3 x 3 internal loops are purine rich, which is also true of other internal loops. A series of oligoribonucleotides containing different 3 x 3 internal loops were studied by UV melting and imino proton NMR. Both loop-terminal and middle pairs contribute to the thermodynamic stabilities of 3 x 3 loops. Extra stabilization of -1.2 kcal/mol was found for a GA middle pair when flanked by at least one non-pyrimidine-pyrimidine loop-terminal pair. A penalty of approximately 1 kcal/mol was found for loops with a single loop-terminal GA pair that has a U 3' to the G of the GA pair. A revised model for predicting stabilities of 3 x 3 loops is derived by multiple linear regression.  相似文献   

4.
Znosko BM  Kennedy SD  Wille PC  Krugh TR  Turner DH 《Biochemistry》2004,43(50):15822-15837
The J4/5 loop of group I introns has tertiary interactions with the P1 helix that position the P1 substrate for the self-splicing reaction. The J4/5 loop of Candida albicans and Candida dubliniensis, 5'GAAGG3'/3'UAAUU5', potentially contains two A.A pairs flanked by one G.U pair on one side and two G.U pairs on the other side. Results from optical melting, nuclear magnetic resonance spectroscopy, and functional group substitution experiments with a mimic of the C. albicans and C. dubliniensis J4/5 loop are consistent with the adenosines forming tandem sheared A.A pairs with a cross-strand stack and only the G.U pair not adjacent to an A.A pair forming a static wobble G.U pair. The two G.U pairs adjacent to the tandem A.A pairs are likely in a dynamic equilibrium between multiple conformations. Although Co(NH(3))(6)(3+) stabilizes the loop by several kilocalories per mole at 37 degrees C, addition of Mg(2+) or Co(NH(3))(6)(3+) has no effect on the structure of the loop. The tandem G.U pairs provide a pocket of negative charge for Co(NH(3))(6)(3+) to bind. The results contribute to understanding the structure and dynamics of purine-rich internal loops and potential G.U pairs adjacent to internal loops.  相似文献   

5.
The U-turn is a well-known RNA motif characterized by a sharp reversal of the RNA backbone following a single-stranded uridine base. In experimentally determined U-turn motifs, the nucleotides 3' to the turn are frequently involved in tertiary interactions, rendering this motif particularly attractive in RNA modeling and functional studies. The U-turn signature is composed of an UNR sequence pattern flanked by a Y:Y, Y:A (Y=pyrimidine) or G:A base juxtaposition. We have identified 33 potential UNR-type U-turns and 25 related GNRA-type U-turns in a large set of aligned 16 S and 23 S rRNA sequences. U-turn candidates occur in hairpin loops (34 times) as well as in internal and multi-stem loops (24 times). These are classified into ten families based on loop type, sequence pattern (UNR or GNRA) and the nature of the closing base juxtaposition. In 13 cases, the bases on the 3' side of the turn, or on the immediate 5' side, are involved in tertiary covariations, making these sites strong candidates for tertiary interactions.  相似文献   

6.
Internal loops in RNA are important for folding and function. Many folding motifs are internal loops containing GA base pairs, which are usually thermodynamically stabilizing, i.e., contribute favorable free energy to folding. Understanding the sequence dependence of folding stability and structure in terms of molecular interactions, such as hydrogen bonding and base stacking, will provide a foundation for predicting stability and structure. Here, we report the NMR structure of the oligonucleotide duplex, 5'GGUGGAGGCU3'/3'PCCGAAGCCG5' (P = purine), containing an unusually stable and relatively abundant internal loop, 5'GGA3'/3'AAG5'. This loop contains three consecutive sheared GA pairs (trans Hoogsteen/Sugar edge AG) with separate stacks of three G's and three A's in a row. The thermodynamic consequences of various nucleotide substitutions are also reported. Significant destabilization of approximately 2 kcal/mol at 37 degrees C is found for substitution of the middle GA with AA to form 5'GAA3'/3'AAG5'. This destabilization correlates with a unique base stacking and hydrogen-bonding network within the 5'GGA3'/3'AAG5' loop. Interestingly, the motifs, 5'UG3'/3'GA5' and 5'UG3'/3'AA5', have stability similar to 5'CG3'/3'GA5' even though UG and UA pairs are usually less stable than CG pairs. Consecutive sheared GA pairs in the 5'GGA3'/3'AAG5' loop are preorganized for potential tertiary interactions and ligand binding.  相似文献   

7.
A series of DNA heptadecamers containing the DNA analogues of RNA E-like 5'-d(GXA)/(AYG)-5' motifs (X/Y is complementary T/A, A/T, C/G, or G/C pair) were studied using nuclear magnetic resonance (NMR) methodology and distance geometry (DG)/molecular dynamics (MD) approaches. Such oligomers reveal excellent resolution in NMR spectra and exhibit many unusual nuclear Overhauser effects (NOEs) that allow for good characterization of an unusual zipper-like conformation with zipper-like Watson-Crick base-pairs; the potential canonical X.Y H-bonding is not present, and the central X/Y pairs are transformed instead into inter-strand stacks that are bracketed by sheared G.A base-pairs. Such phenomenal structural change is brought about mainly through two backbone torsional angle adjustments, i.e. delta from C2'-endo to C3'-endo for the sugar puckers of unpaired residues and gamma from gauche(+) to trans for the following 3'-adenosine residues. Such motifs are analogous to the previously studied (GGA)(2) motif presumably present in the human centromeric (TGGAA)(n) tandem repeat sequence. The novel zipper-like motifs are only 4-7 deg. C less stable than the (GGA)(2) motif, suggesting that inter-strand base stacking plays an important role in stabilizing unusual nucleic acid structures. The discovery that canonical Watson-Crick G.C or A.T hydrogen-bonded pairs can be transformed into stacking pairs greatly increases the repertoire for unusual nucleic acid structural motifs.  相似文献   

8.
The stability and structure of RNA duplexes with consecutive A.C, C.A, C.C, G.G, U.C, C.U, and U.U mismatches were studied by UV melting, CD, and NMR. The results are compared to previous results for GA and AA internal loops [SantaLucia, J., Kierzek, R., & Turner, D. H. (1990) Biochemistry 29, 8813-8819; Peritz, A., Kierzek, R., & Turner, D.H. (1991) Biochemistry 30, 6428-6436)]. The observed order for stability increments of internal loop formation at pH 7 is AG = GA approximately UU greater than GG greater than or equal to CA greater than or equal to AA = CU = UC greater than or equal to CC greater than or equal to AC. The results suggest two classes for internal loops with consecutive mismatches: (1) loops that stabilize duplexes and have strong hydrogen bonding and (2) loops that destabilize duplexes and may not have strong hydrogen bonding. Surprisingly, rCGCUUGCG forms a very stable duplex at pH 7 in 1 M NaCl with a TM of 44.8 degrees C at 1 x 10(-4) M and a delta G degrees 37 of -7.2 kcal/mol. NOE studies of the imino protons indicate hydrogen bonding within the U.U mismatches in a wobble-type structure. Resonances corresponding to the hydrogen-bonded uridines are located at 11.3 and 10.4 ppm. At neutral pH, rCGCCCGCG is one of the least stable duplexes with a TM of 33.2 degrees C and delta G degrees 37 of -5.1 kcal/mol. Upon lowering the pH to 5.5, however, the TM increases by 12 degrees C, and delta G degrees 37 becomes more favorable by 2.5 kcal/mol. The pH dependence of rCGCCCGCG may be due to protonation of the internal loop C's, since no changes in thermodynamic parameters are observed for rCGCUUGCG between pH 7 and 5.5. Furthermore, two broad imino proton resonances are observed at 10.85 and 10.05 ppm for rCGCCCGCG at pH 5.3, but not at pH 6.5. This is also consistent with C.C+ base pairs forming at pH 5.5. rCGCCAGCG and rGGCACGCC have a small pH dependence, with TM increases of 5 and 3 degrees C, respectively, upon lowering the pH from 7 to 5.5. rCGCCUGCG and rCGCUCGCG also show little pH dependence, with TM increases of 0.8 and 1.4 degrees C, respectively, upon lowering the pH to 5.5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Shankar N  Kennedy SD  Chen G  Krugh TR  Turner DH 《Biochemistry》2006,45(39):11776-11789
Internal loops play an important role in structure and folding of RNA and in recognition of RNA by other molecules such as proteins and ligands. An understanding of internal loops with propensities to form a particular structure will help predict RNA structure, recognition, and function. The structures of internal loops 5' 1009CUAAG1013 3'/3' 1168GAAGC1164 5' and 5' 998CUAAG1002 3'/3' 1157GAAGC1153 5' from helix 40 of the large subunit rRNA in Deinococcus radiodurans and Escherichia coli, respectively, are phylogenetically conserved, suggesting functional relevance. The energetics and NMR solution structure of the loop were determined in the duplex 5' 1GGCUAAGAC9 3'/3' 18CCGAAGCUG10 5'. The internal loop forms a different structure in solution and in the crystal structures of the ribosomal subunits. In particular, the crystal structures have a bulged out adenine at the equivalent of position A15 and a reverse Hoogsteen UA pair (trans Watson-Crick/Hoogsteen UA) at the equivalent of U4 and A14, whereas the solution structure has a single hydrogen bond UA pair (cis Watson-Crick/sugar edge A15U4) between U4 and A15 and a sheared AA pair (trans Hoogsteen/sugar edge A14A5) between A5 and A14. There is cross-strand stacking between A6 and A14 (A6/A14/A15 stacking pattern) in the NMR structure. All three structures have a sheared GA pair (trans Hoogsteen/sugar edge A6G13) at the equivalent of A6 and G13. The internal loop has contacts with ribosomal protein L20 and other parts of the RNA in the crystal structures. These contacts presumably provide the free energy to rearrange the base pairing in the loop. Evidently, molecular recognition of this internal loop involves induced fit binding, which could confer several advantages. The predicted thermodynamic stability of the loop agrees with the experimental value, even though the thermodynamic model assumes a Watson-Crick UA pair.  相似文献   

10.
RNA hairpin loop stability depends on closing base pair.   总被引:7,自引:4,他引:3       下载免费PDF全文
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequences of the type GGXAUAAUAYCC, where X and Y are CG, GC, AU, UA, GU, or UG. A nearest neighbor analysis of the data indicates the free energy change for loop formation at 37 degrees C, delta degrees Gl,37, averages 3.4 kcal/mol for hairpin loops closed with C.G, G.C, and G.U pairs. In contrast, delta G degree l,37 averages 4.6 kcal/mol for loops closed with A.U, U.A, or U.G pairs. Thus the stability of an RNA hairpin depends on the closing base pair. The hairpin with a GA mismatch that is formed by GGCGUAAUAGCC is more stable than the corresponding hairpin with an AA mismatch. Thus hairpin stability also depends on loop sequence. These effects are not included in current algorithms for prediction of RNA structure from sequence.  相似文献   

11.
RNA exhibits a higher structural diversity than DNA and is an important molecule in biology of life. It shows a number of secondary structures such as duplexes, hairpin loops, bulges, internal loops etc. However, in natural RNA, bases are limited to the four predominant structures U, C, A, and G and so the number of compounds that can be used for investigation of parameters of base stacking, base pairing and hydrogen bond, is limited. We synthesized different fluoromodifications of RNA building blocks: 1'-deoxy-1'-(2,4,6-trifluorophenyl)-beta-D-ribofuranose (F), 1'-deoxy-1'-(2,4,5-trifluorophenyl)-beta-D-ribofuranose (M) and 1'-deoxy-1'-(5-trifluoromethyl-1H-benzimidazol-1-yl)-beta-D-ribofuranose (D). Those amidites were incorporated and tested in a defined A, U-rich RNA sequence (12-mer, 5'-CUU UUC XUU CUU-3' paired with 3'-GAA AAG YAA GAA-5') (Schweitzer, B.A.; Kool, E.T. Aromatic nonpolar nucleosides as hydrophobic isosters of pyrimidine and purine nucleosides. J. Org. Chem. 1994, 59, 7238 pp.). Only one position was modified, marked as X and Y respectively. UV melting profiles of those oligonucleotides were measured.  相似文献   

12.
The crystal structure of the RNA octamer, 5'-GGCGUGCC-3' has been determined from x-ray diffraction data to 1.5 angstroms resolution. In the crystal, this oligonucleotide forms five self-complementary double-helices in the asymmetric unit. Tandem 5'GU/3'UG basepairs comprise an internal loop in the middle of each duplex. The NMR structure of this octameric RNA sequence is also known, allowing comparison of the variation among the five crystallographic duplexes and the solution structure. The G.U pairs in the five duplexes of the crystal form two direct hydrogen bonds and are stabilized by water molecules that bridge between the base of guanine (N2) and the sugar (O2') of uracil. This contrasts with the NMR structure in which only one direct hydrogen bond is observed for the G.U pairs. The reduced stability of the r(CGUG)2 motif relative to the r(GGUC)2 motif may be explained by the lack of stacking of the uracil bases between the Watson-Crick and G.U pairs as observed in the crystal structure.  相似文献   

13.
G.U pairs occur frequently and have many important biological functions. The stability of symmetric tandem G.U motifs depends both on the adjacent Watson-Crick base pairs, e.g., 5'G > 5'C, and the sequence of the G.U pairs, i.e., 5'-UG-3' > 5'-GU-3', where an underline represents a nucleotide in a G.U pair [Wu, M., McDowell, J. A., and Turner, D. H. (1995) Biochemistry 34, 3204-3211]. In particular, at 37 degrees C, the motif 5'-CGUG-3' is less stable by approximately 3 kcal/mol compared with other symmetric tandem G.U motifs with G-C as adjacent pairs: 5'-GGUC-3', 5'-GUGC-3', and 5'-CUGG-3'. The solution structures of r(GAGUGCUC)(2) and r(GGCGUGCC)(2) duplexes have been determined by NMR and restrained simulated annealing. The global geometry of both duplexes is close to A-form, with some distortions localized in the tandem G.U pair region. The striking discovery is that in r(GGCGUGCC)(2) each G.U pair apparently has only one hydrogen bond instead of the two expected for a canonical wobble pair. In the one-hydrogen-bond model, the distance between GO6 and UH3 is too far to form a hydrogen bond. In addition, the temperature dependence of the imino proton resonances is also consistent with the different number of hydrogen bonds in the G.U pair. To test the NMR models, U or G in various G.U pairs were individually replaced by N3-methyluridine or isoguanosine, respectively, thus eliminating the possibility of hydrogen bonding between GO6 and UH3. The results of thermal melting studies on duplexes with these substitutions support the NMR models.  相似文献   

14.
A mutational analysis of U12-dependent splice site dinucleotides   总被引:4,自引:1,他引:3       下载免费PDF全文
Introns spliced by the U12-dependent minor spliceosome are divided into two classes based on their splice site dinucleotides. The /AU-AC/ class accounts for about one-third of U12-dependent introns in humans, while the /GU-AG/ class accounts for the other two-thirds. We have investigated the in vivo and in vitro splicing phenotypes of mutations in these dinucleotide sequences. A 5' A residue can splice to any 3' residue, although C is preferred. A 5' G residue can splice to 3' G or U residues with a preference for G. Little or no splicing was observed to 3' A or C residues. A 5' U or C residue is highly deleterious for U12-dependent splicing, although some combinations, notably 5' U to 3' U produced detectable spliced products. The dependence of 3' splice site activity on the identity of the 5' residue provides evidence for communication between the first and last nucleotides of the intron. Most mutants in the second position of the 5' splice site and the next to last position of the 3' splice site were defective for splicing. Double mutants of these residues showed no evidence of communication between these nucleotides. Varying the distance between the branch site and the 3' splice site dinucleotide in the /GU-AG/ class showed that a somewhat larger range of distances was functional than for the /AU-AC/ class. The optimum branch site to 3' splice site distance of 11-12 nucleotides appears to be the same for both classes.  相似文献   

15.
The J4/5 loop of the group I intron in the mouse-derived fungal pathogen Pneumocystis carinii is the docking site for the first step of the RNA-catalyzed self-splicing reaction and thus is a model of a potential drug target. This purine-rich asymmetric internal loop, 5'GGAAG/3'UAGU, is also thermodynamically more stable than other internal loops with two GU closing pairs and three nucleotides opposite two nucleotides. The results from optical melting, nuclear magnetic resonance spectroscopy, and functional group substitution experiments suggest that the GU closing pairs form and that sheared GA pairs form in the internal loop. The NMR spectra show evidence of conformational dynamics, and several GA pairings are possible. Thus, this dynamic loop presents several possible structures for potential binding of drugs that target group I self-splicing introns. The results also contribute to understanding the structural and dynamic basis for the function and thermodynamic stability of this loop.  相似文献   

16.
Vecenie CJ  Morrow CV  Zyra A  Serra MJ 《Biochemistry》2006,45(5):1400-1407
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequence of the types GCGXUAAUYCGC and GGUXUAAUYACC with Watson-Crick loop closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.1 to 5.1 kcal/mol. These results agree with the model previously developed [Vecenie, C. J., and Serra, M. J. (2004) Biochemistry 43, 11813] to predict the stability of RNA hairpin loops: DeltaG degrees (37L(n) = DeltaG degrees (37i(n) + DeltaG degrees (37MM) - 0.8 (if first mismatch is GA or UU) - 0.8 (if first mismatch is GG and loop is closed on the 5' side by a purine). Here, DeltaG degrees (37i(n) is the free energy for initiating a loop of n nucleotides, and DeltaG degrees (37MM) is the free energy for the interaction of the first mismatch with the closing base pair. Thermodynamic parameters are also reported for hairpin formation in 1 M NaCl by RNA sequence of the types GACGXUAAUYUGUC and GGUXUAAUYGCC with GU base pair closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.6 to 5.3 kcal/mol. These results allow the development of a model for predicting the stability of hairpin loops closed by GU base pairs. DeltaG degrees (37L(n) (kcal/mol) = DeltaG degrees (37i(n) - 0.8 (if the first mismatch is GA) - 0.8 (if the first mismatch is GG and the loop is closed on the 5' side by a purine). Note that for these hairpins, the stability of the loops does not depend on DeltaG degrees (37MM). For hairpin loops closed by GU base pairs, the DeltaG degrees (37i(n) values, when n = 4, 5, 6, 7, and 8, are 4.9, 5.0, 4.6, 5.0, and 4.8 kcal/mol, respectively. The model gives good agreement when tested against six naturally occurring hairpin sequences. Thermodynamic values for terminal mismatches adjacent to GC, GU, and UG base pairs are also reported.  相似文献   

17.
Efficient gene control by antisense RNA requires rapid bi-molecular interaction with a cognate target RNA. A comparative analysis revealed that a YUNR motif (Y=pyrimidine, R=purine) is ubiquitous in RNA recognition loops in antisense RNA-regulated gene systems. The (Y)UNR sequence motif specifies two intraloop hydrogen bonds forming U-turn structures in many anticodon-loops and all T-loops of tRNAs, the hammerhead ribozyme and in other conserved RNA loops. This structure creates a sharp bend in the RNA phosphate-backbone and presents the following three to four bases in a solvent-exposed, stacked configuration providing a scaffold for rapid interaction with complementary RNA. Sok antisense RNA from plasmid R1 inhibits translation of the hok mRNA by preventing ribosome entry at the mok Shine & Dalgarno element. The 5' single-stranded region of Sok-RNA recognizes a loop in the hok mRNA. We show here, that the initial pairing between Sok antisense RNA and its target in hok mRNA occurs with an observed second-order rate-constant of 2 x 10(6) M(-1) s(-1). Mutations that eliminate the YUNR motif in the target loop of hok mRNA resulted in reduced antisense RNA pairing kinetics, whereas mutations maintaining the YUNR motif were silent. In addition, RNA phosphate-backbone accessibility probing by ethylnitrosourea was consistent with a U-turn structure formation promoted by the YUNR motif. Since the YUNR U-turn motif is present in the recognition units of many antisense/target pairs, the motif is likely to be a generally employed enhancer of RNA pairing rates. This suggestion is consistent with the re-interpretation of the mutational analyses of several antisense control systems including RNAI/RNAII of ColE1, CopA/CopT of R1 and RNA-IN/RNA-OUT of IS10.  相似文献   

18.
The YAG/ consensus sequence at the 3' end of introns (the slash indicates the location of the 3' splice site) is essential for catalysis of the second step of pre-mRNA splicing. Little is known about the interactions formed by these three nucleotides in the spliceosome. Although previous observations have suggested that the G of the YAG/ interacts with the first nucleotide of the /GUA consensus sequence at the 5' end of the intron, additional interactions have not been identified. Here we report several striking genetic interactions between A+3 of the 5' /GUA with Y-3 of the 3' YAG/ and G50 of the highly conserved ACAGAG motif in U6 snRNA. Two mutations in U6 G50 of the ACAGAG can weakly suppress two mutations in A+3 of the 5' /GUA. This suppression is significantly enhanced upon the inclusion of a specific mutation Y-3 in the 3' YAG/. RNA analysis confirmed that the severe splicing defect observed in A+3 and Y-3 double mutants can be rescued to near wild-type levels by the mutations in U6 G50. The contributions of each mutation to the genetic interaction and the strong position specificity of suppression, combined with previous findings, support a model in which the 5' /GUA and the GAG of U6 function in binding the 3' YAG/ during the second catalytic step.  相似文献   

19.
The crystal structure of a self-complementary RNA duplex r(GGGCGCUCC)2with non-adjacent G*U and U*G wobble pairs separated by four Watson-Crick base pairs has been determined to 2.5 A resolution. Crystals belong to the space group R3; a = 33.09 A,alpha = 87.30 degrees with a pseudodyad related duplex in the asymmetric unit. The structure was refined to a final Rworkof 17.5% and Rfreeof 24.0%. The duplexes stack head-to-tail forming infinite columns with virtually no twist at the junction steps. The 3'-terminal cytosine nucleosides are disordered and there are no electron densities, but the 3' penultimate phosphates are observed. As expected, the wobble pairs are displaced with guanine towards the minor groove and uracil towards the major groove. The largest twist angles (37.70 and 40.57 degrees ) are at steps G1*C17/G2*U16 and U7*G11/C8*G10, while the smallest twist angles (28.24 and 27.27 degrees ) are at G2*U16/G3*C15 and C6*G12/U7*G11 and conform to the pseudo-dyad symmetry of the duplex. The molecule has two unequal kinks (17 and 11 degrees ) at the wobble sites and a third kink at the central G5 site which may be attributed to trans alpha (O5'-P), trans gamma (C4'-C5') backbone conformations. The 2'-hydroxyl groups in the minor groove form inter-column hydrogen bonding, either directly or through water molecules.  相似文献   

20.
Schroeder SJ  Turner DH 《Biochemistry》2000,39(31):9257-9274
Optical melting experiments were used to determine the thermodynamic parameters for oligoribonucleotides containing small asymmetric internal loops. The results show a broad range of thermodynamic stabilities, which depend on loop size, asymmetry, sequence, closing base pairs, and length of helix stems. Imino proton NMR experiments provide evidence for possible hydrogen bonding in GA and UU mismatches in some asymmetric loops. The stabilizing effects of GA, GG, and UU mismatches on the thermodynamic stability of internal loops vary depending on the size and asymmetry of the loop. The dependence of loop stability on Watson-Crick closing base pairs may be explained by an account of hydrogen bonds. Models are presented for approximating the free energy increments of 2 x 3 and 1 x 3 internal loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号