首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pentose sugars can be an important energy source for ruminal bacteria, but there has been relatively little study regarding the regulation of pentose utilization and transport by these organisms. Selenomonas ruminantium, a prevalent ruminal bacterium, actively metabolizes xylose and arabinose. When strain D was incubated with a combination of glucose and xylose or arabinose, the hexose was preferentially utilized over pentoses, and similar preferences were observed for sucrose and maltose. However, there was simultaneous utilization of cellobiose and pentoses. Continuous-culture studies indicated that at a low dilution rate (0.10 h-1) the organism was able to co-utilize glucose and xylose. This co-utilization was associated with growth rate-dependent decreases in glucose phosphotransferase activity, and it appeared that inhibition of pentose utilization was due to catabolite inhibition by the glucose phosphotransferase transport system. Xylose transport activity in strain D required induction, while arabinose permease synthesis did not require inducer but was subject to repression by glucose. Since an electrical potential or a chemical gradient of protons drove xylose and arabinose uptake, pentose-proton symport systems apparently contributed to transport.  相似文献   

2.
Populations of indigenous Bradyrhizobium japonicum serocluster 123 and serogroups 110 and 138 were studied after various sugars were added to their soil habitat. Loam soil with approximately 104 cells of each group per g of soil were amended every 3 days with 0.1% glucose, sucrose, arabinose, xylose, or galactose. Enumerations of the populations were made every 12 days by immunofluorescence assay. Each B. japonicum population in the sugar-treated soils increased by about 1 log during the first 12 days, to a maximum of about 106 cells by day 36 or 48, irrespective of the sugar added. Maximum growth rates were similar for each group and occurred during the 12-day incubation period. The most rapid growth was in response to arabinose, with a mean generation time of about 3.0 days. Other mean doubling times were 4.0 days with glucose and galactose treatments, 4.5 days with xylose treatment, and 5.4 days with sucrose amendment. These data provide the first direct evidence that indigenous soil rhizobia can compete successfully with other soil bacteria for readily available substrates in soil in the absence of host legume roots or other rhizospheres. The growth rates in soil of the specific B. japonicum populations studied were nearly the same with a given sugar treatment but varied considerably with different sugars. The mean generation times of 3 to 5 days are among the first reported growth rates for heterotrophic bacteria in natural soil.  相似文献   

3.
Abstract The rumen bacterium Butyrivibrio fibrisolvens strain D1 co-utilized xylose and glucose in batch culture, but there was a marked preference for glucose over arabinose. When both pentoses were provided, xylose was preferred over arabinose. Strain D1 co-utilized a combination of either pentose and cellobiose, but preferred pentoses over maltose. Pentose sugars were depleted less rapidly in the presence of sucrose than controls containing only pentose. In contrast, B. fibrisolvens strain A38 exhibited a strong preference for disaccharides, including maltose, over either xylose or arabinose. Theoretical maximum growth yields for strain D1v in single-substrate continuous culture were highest for sucrose and cellobiose and the maintenance energy coefficient for arabinose was at least 3.8-fold greater than for other substrates. We suggest that B. fibrisolvens may have evolved a mechanism to utilize certain sugars before arabinose in order to avoid this high maintenance energy expenditure.  相似文献   

4.
Bacteria such as Escherichia coli will often consume one sugar at a time when fed multiple sugars, in a process known as carbon catabolite repression. The classic example involves glucose and lactose, where E. coli will first consume glucose, and only when it has consumed all of the glucose will it begin to consume lactose. In addition to that of lactose, glucose also represses the consumption of many other sugars, including arabinose and xylose. In this work, we characterized a second hierarchy in E. coli, that between arabinose and xylose. We show that, when grown in a mixture of the two pentoses, E. coli will consume arabinose before it consumes xylose. Consistent with a mechanism involving catabolite repression, the expression of the xylose metabolic genes is repressed in the presence of arabinose. We found that this repression is AraC dependent and involves a mechanism where arabinose-bound AraC binds to the xylose promoters and represses gene expression. Collectively, these results demonstrate that sugar utilization in E. coli involves multiple layers of regulation, where cells will consume first glucose, then arabinose, and finally xylose. These results may be pertinent in the metabolic engineering of E. coli strains capable of producing chemical and biofuels from mixtures of hexose and pentose sugars derived from plant biomass.The transporters and enzymes in many sugar metabolic pathways are conditionally expressed in response to their cognate sugar or a downstream pathway intermediate. While the induction of these pathways in response to a single sugar has been studied extensively (28), far less is known about how these pathways are induced in response to multiple sugars. One notable exception is the phenomenon observed when bacteria are grown in the presence of glucose and another sugar (10, 15). In such mixtures, the bacteria will often consume glucose first before consuming the other sugar, a process known as carbon catabolite repression (27). The classic example of carbon catabolite repression is the diauxic shift seen in the growth of Escherichia coli on mixtures of glucose and lactose, where the cells first consume glucose before consuming lactose. When the cells are consuming glucose, the genes in the lactose metabolic pathway are not induced, thus preventing the sugar from being consumed. A number of molecules participate in this regulation, including the cyclic AMP receptor protein (CRP), adenylate cyclase, cyclic AMP (cAMP), and EIIA from the phosphoenolpyruvate:glucose phosphotransferase system (PTS) (33). In addition to lactose, the metabolic genes for many other sugars are subject to catabolite repression by glucose in E. coli (27). While the preferential utilization of glucose is well known, it is an open question whether additional hierarchies exist among other sugars.Recently, substantial effort has been directed toward developing microorganisms capable of producing chemicals and biofuels from plant biomass (1, 34, 42). After glucose, l-arabinose and d-xylose are the next most abundant sugars found in plant biomass. Therefore, a key step in producing various chemicals and fuels from plant biomass will be the engineering of strains capable of efficiently fermenting these three sugars. However, one challenge concerns catabolite repression, which prevents microorganisms from fermenting these three sugars simultaneously and, as a consequence, may decrease the efficiency of the fermentation process. E. coli cells will first consume glucose before consuming either arabinose or xylose. As in the case of lactose, the genes in the arabinose and xylose metabolic pathways are not expressed when glucose is being consumed. In addition to glucose catabolite repression, a second hierarchy, between arabinose and xylose, appears to exist. Kang and coworkers have observed that the genes in the xylose metabolic pathway were repressed when cells were grown in a mixture of arabinose and xylose (21). Hernandez-Montalvo and coworkers also observed that E. coli utilizes arabinose before xylose (19). While a number of strategies exist for breaking the glucose-mediated repression of arabinose and xylose metabolism (8, 16, 19, 31), none exist for breaking the arabinose-mediated repression of xylose metabolism. Moreover, little is known about this repression beyond the observations made by these researchers.In this work, we investigate how the arabinose and xylose metabolic pathways are jointly regulated. We demonstrate that E. coli will consume arabinose before consuming xylose when it is grown in a mixture of the two sugars. Consistent with a mechanism involving catabolite repression, the genes in the xylose metabolic pathway are repressed in the presence of arabinose. We found that this repression is AraC dependent and is most likely due to binding by arabinose-bound AraC to the xylose promoters, with consequent inhibition of gene expression.  相似文献   

5.
Plant cells utilize various sugars as carbon sources for growth, respiration and biosynthesis of cellular components. Suspension-cultured cells of azuki bean (Vigna angularis) proliferated actively in liquid growth medium containing 1% (w/v) sucrose, glucose, fructose, arabinose or xylose, but did not proliferate in medium containing galactose or mannose. These two latter sugars thus appeared distinct from other sugars used as growth substrates. Galactose strongly inhibited cell growth even in the presence of sucrose but mannose did not, suggesting a substantial difference in their effects on cell metabolism. Analysis of intracellular soluble-sugar fractions revealed that galactose, but not mannose, caused a conspicuous decrease in the cellular level of sucrose with no apparent effects on the levels of glucose or fructose. Such a galactose-specific decrease in sucrose levels also occurred in cells that had been cultured together with glucose in place of sucrose, suggesting that galactose inhibits the biosynthesis, rather than uptake, of sucrose in the cells. By contrast, mannose seemed to be metabolically inert in the presence of sucrose. From these results, we conclude that sucrose metabolism is important for the heterotrophic growth of cells in plant suspension-cultures.  相似文献   

6.
Sugars supplied to germinating seedlings of maize (Zea mays L.) regulate the secretion of polysaccharides by the outer cells of the root cap. The polysaccharide secreted by these cells adheres to the root tip as a droplet and the size of the droplet was used to quantitate polysaccharide secretion. The polysaccharide contains glucose, galacrose, and galacturonic acid residues with smaller quantities of mannose, arabinose, xylose, fucose and rhamnose. These sugars supplied to maize seedlings had marked effects on the rate of polysaccharide secretion by root tips. The effects on secretion were independent of the growth rates of the roots. Glucose, fucose and xylose increased droplet size 1.5–2 fold (as did sucrose, maltose, lacrose, fructose and ribose) whereas galactose, arabinose and galacturonic acid were inhibitory. Mannose increased dropler size 5–7 fold. The marked effect of mannose on polysaccharide secretion was due to an increased rate of secretion combined with a longer phase of extrusion of polysaccharide into the forming droplet. The effect of mannose was partially reversed by inorganic phosphate and other sugars (except for fucose which had no effect or promoted secretion in the presence of mannose). In contrast to sucrose, mannose stimulated secretion in a maize variety having a high sugar endosperm (high endogenous sugar). The results suggest that regulation of secretion by mannose is due to an alteration of normal sugar metabolism; whereas stimulation of secretion by sucrose and other sugars may be due to an increased availability of sugars for metabolism.  相似文献   

7.
Studies were carried out on the utilization of different sugars (glucose, fructose, arabinose, xylose, sucrose) and organic acids (acetic, citric, fumaric, propionic, succinic) by fast and slow growing bacteria isolated from the roots of pine seedlings (P. silvestris L.) inoculated with root-free, rhizosphere and mycorrhizosphere soil from nursery and mature pine forest. Sucrose among sugars and propionic acid among organic acids were the less frequently utilized compounds. Sugars were better carbon sources than organic acids. Proportion of isolates utilizing respective sugars or organic acids was, in general, significantly higher among fast growing bacteria as compared with slow growing ones. No significant differences in number of strains assimilating the appropiate sugars depending on their original habitat or kind of soil were observed. Such differences were noted for utilization of some organic acids. 3-factor ANOVA confirmed that the growth speed of bacteria at the moment of their isolation had the strongest effect on utilization of the compounds studied.  相似文献   

8.
Eight species of bifidobacteria were tested for their abilities to grow on a range of monosaccharides (glucose, arabinose, xylose, galactose and mannose). In contrast to the other sugars, glucose and galactose were utilized by all species and, in general, specific growth rates were highest on these sugars. Different substrate preferences were observed between species when the bacteria were grown in the presence of all five monosaccharides. For example, glucose and xylose were coutilized by Bifidobacterium longum, whereas glucose repressed uptake of all other sugars in B. bifidum and B. catenulatum. Galactose was the preferred substrate with B. pseudolongum. In B. angulatum, glucose and galactose were utilized simultaneously. B. breve did not grow on arabinose when this sugar provided the sole source of energy. However, glucose and arabinose were preferentially taken up during growth on sugar mixtures.  相似文献   

9.
The choice of "black rats", Rattus rattus L ., for common sugars - sucrose, jaggery, glucose, fructose and lactose are described. In laboratory colonies, the sugars were preferred in the order glucose > sucrose > jaggery > fructose > lactose; but in another sequence - sucrose > jaggery > glucose > fructose > lactose, in the free living colonies. The discrepancy is accounted for by the characteristics of sugars which influence consummatory behaviour in the two situations.  相似文献   

10.
A Death  L Notley    T Ferenci 《Journal of bacteriology》1993,175(5):1475-1483
The level of LamB protein in the outer membrane of Escherichia coli was derepressed in the absence of a known inducer (maltodextrins) under carbohydrate-limiting conditions in chemostats. LamB protein contributed to the ability of the bacteria to remove sugar from glucose-limited chemostats, and well-characterized lamB mutants with reduced stability constants for glucose were less growth competitive under glucose limitation than those with wild-type affinity. In turn, wild-type bacteria were less growth competitive than lamB mutants with enhanced sugar affinity. In contrast to an earlier report, we found that LamB- bacteria were less able to compete in carbohydrate-limited chemostats (with glucose, lactose, arabinose, or glycerol as the carbon and energy sources) when mixed with LamB+ bacteria. The transport Km for [14C]glucose was affected by the presence or affinity of LamB, but only in chemostat-grown bacteria, with their elevated LamB levels. The pattern of expression of LamB and the advantage it confers for growth on low concentrations of carbohydrates are consistent with a wider role in sugar permeation than simply maltosaccharide transport, and hence the well-known maltoporin activity of LamB is but one facet of its role as the general glycoporin of E. coli. A corollary of these findings is that OmpF/OmpC porins, present at high levels in carbon-limited bacteria, do not provide sufficient permeability to sugars or even glycerol to support high growth rates at low concentrations. Hence, the sugar-binding site of LamB protein is an important contributor to the permeability of the outer membrane to carbohydrates in habitats with low extracellular nutrient concentrations.  相似文献   

11.
Summary The amounts of glucose, fructose, sucrose, arabinose/galactose, raffinose/stachyose and starch were investigated in the outer sapwood, innermost sapwood, transition zone and heartwood of four stems of Pinus sylvestris L. The samples were taken in October and the determination of the compounds was done enzymatically. It was not possible to distinguish arabinose from galactose and raffinose from stachyose. The amounts of glucose, fructose and sucrose were greatest in the outer sapwood and decreased gradually towards the innermost sapwood and the heartwood. In the outermost heartwood glucose, fructose and sucrose were only present in trace amounts. Raffinose/stachyose showed highest concentrations in the outer sapwood and decreased towards the heartwood. In contrast, the concentrations of arabinose/galactose increased towards the heartwood and the greatest amount was found in the inner heartwood. When identified by thin-layer chromatography (TLC), arabinose was found to be present in greater amounts than galactose. The amount of starch decreased markedly towards heartwood. However, the amounts of sugars in all the studied stems was very variable. The changes in the amounts of carbohydrates in the different zones of the stems and the possible relationships of these phenomena with heartwood formation are discussed.  相似文献   

12.
The effects of sugars (xylose, arabinose, fucose, fructose, galactose, glucose, sorbitol, maltose, sucrose, and lactose; 0-20% w/v) on the properties of the pressure-induced gel from a whey protein isolate (20%, 800 MPa, 30 degrees C, 10 min) were studied. All the sugars decreased the hardness, breaking stress and water-holding capacity of the gel at the same concentration of 55.5 mM. Increasing the sugar content changed the microstructure of the gel from a honeycomb-like structure to a stranded structure, while the strand thickness was progressively reduced. These results suggest that sugars decreased the degree of intermolecular S-S bonding of proteins and non-covalent interaction, and restrained the phase separation during gelation under high pressure.  相似文献   

13.
The activity in the gustatory nerve from the anterior part of the tongue, the chorda tympani proper nerve, has been recorded during stimulation of the tongue of a New World monkey, Saguinus midas tamarin. A series of 0.3 M sugars and 0.07 M NaCl, 0.07 M sucrose, 0.004 M acetic acid and 0.00005 M quinine hydrochloride were used as taste stimuli. The concentrations of the last four stimuli were the same as those earlier found to be the lowest concentrations at which this monkey in behavioural experiments discriminates between them and water. The records showed that these threshold concentrations all elicited a neural response. Further, the neural activities during stimulation with the series of 0.3 M sugars were recorded. Using the amplitudes of the responses as a measure, the order between them was found to be fructose greater than glucose greater than lactose greater than arabinose greater than sucrose = galactose greater than raffinose. This order was discussed and related with the order found in behavioural experiments. With both methods, fructose seemed to be the strongest stimulus, but then the order among the sugars differed.  相似文献   

14.
Ultrasonic vocalizations were recorded from 10-day-old albinorats while they were isolated from their dam and siblings. Eachrat received a 1.0% BW intra-oral infusion of sucrose, fructose,glucose or lactose at a concentration range of 0.22–0.66M for 3 min and their vocalizations were determined during theinfusion and for an additional 7 min. Sucrose, fructose andglucose all significantly reduced vocalizations to about 50%of baseline levels, whereas lactose, the milk sugar, was ineffective.Moreover, the dose–response function was flat for thethree effective sugars. In a second experiment, the effectsof these sugars on heat escape latency were measured. Sucrose,fructose and glucose each elevated the latency with which infantrats removed a paw from a 48°C surface; lactose did not.These findings of lactose ineffectiveness and the flat dose-responsefunction for the other three sugars exactly parallel those obtainedfor human newborns. Their implications are discussed.  相似文献   

15.
Growth of galactose-adapted cells of Streptococcus lactis ML(3) in a medium containing a mixture of glucose, galactose, and lactose was characterized initially by the simultaneous metabolism of glucose and lactose. Galactose was not significantly utilized until the latter sugars had been exhausted from the medium. The addition of glucose or lactose to a culture of S. lactis ML(3) growing exponentially on galactose caused immediate inhibition of galactose utilization and an increase in growth rate, concomitant with the preferential metabolism of the added sugar. Under nongrowing conditions, cells of S. lactis ML(3) grown previously on galactose metabolized the three separate sugars equally rapidly. However, cells suspended in buffer containing a mixture of glucose plus galactose or lactose plus galactose again consumed glucose or lactose preferentially. The rate of galactose metabolism was reduced by approximately 95% in the presence of the inhibitory sugar, but the maximum rate of metabolism was resumed upon exhaustion of glucose or lactose from the system. When presented with a mixture of glucose and lactose, the resting cells metabolized both sugars simultaneously. Lactose, glucose, and a non-metabolizable glucose analog (2-deoxy-d-glucose) prevented the phosphoenolpyruvate-dependent uptake of thiomethyl-beta-d-galactopyranoside (TMG), but the accumulation of TMG, like galactose metabolism, commenced immediately upon exhaustion of the metabolizable sugars from the medium. Growth of galactose-adapted cells of the lactose-defective variant S. lactis 7962 in the triple-sugar medium was characterized by the sequential metabolism of glucose, galactose, and lactose. Growth of S. lactis ML(3) and 7962 in the triple-sugar medium occurred without apparent diauxie, and for each strain the patterns of sequential sugar metabolism under growing and nongrowing conditions were identical. Fine control of the activities of preexisting enzyme systems by catabolite inhibition may afford a satisfactory explanation for the observed sequential utilization of sugars by these two organisms.  相似文献   

16.
Li J  Ren N  Li B  Qin Z  He J 《Bioresource technology》2008,99(14):6528-6537
Monosaccharides (e.g. glucose and fructose) are produced from the hydrolyzation of macromolecules, such as starch, cellulose, hemicellulose and lignin, which are abundant in various industrial wastewaters. The elucidation of anaerobic activated sludge microbial community utilizing monosaccharides will lay an important foundation for the industrialization of biohydrogen production. In this study, the hydrogen production by a mixed microbial culture on four monosaccharides (glucose, fructose, galactose and arabinose) was investigated in a batch cultures. The mixed microbial culture was obtained from anaerobic activated sludge in a continuous stirred-tank reactor (CSTR) after 29 days of acclimatization. The results indicated that glucose had the highest specific hydrogen production rate of 358 mL/g.g mixed liquid volatile suspended solid (MLVSS), while arabinose had the lowest hydrogen production rate of 28 mL/g.gMLVSS. Glucose also possessed the highest specific conversion rate to hydrogen of 82 mL/g glucose, while fructose had the highest specific conversion rate to liquid product of 443 mg/g fructose. Arabinose had the lowest conversion rates to both liquid products and hydrogen. Metabolic pathways and fermentation products were the major reasons for the difference in hydrogen production from these four monosaccharides. The complex fermentation pathways of arabinose reduced its hydrogen production efficiency and a long acclimation period (over 68 h) was required before the anaerobic activated sludge could effectively utilize arabinose in batch cultures.  相似文献   

17.
L Pine  M W Reeves 《Microbios》1978,21(85-86):185-212
Various sugars were tested for their effect on the differential rate of synthesis of M protein during the growth of Streptococcus pyogenes strain 0055 M12T12. In a semisynthetic medium alone, a high rate of M protein synthesis occurred with glucose as a substrate; decreasing rates of synthesis occurred with sucrose and trehalose, in that order, although the rates of growth were approximately equal with all sugars. A period of derepressed synthesis of M protein occurred in the lag phase of growth and in the stationary period as the substrates were being depleted. Although glucose inhibited the utilization of other sugars, diauxie was not apparent from the growth curves. However, synthesis of M protein followed strong diauxie curves with a reduction in rate of synthesis during the utilization of the second sugar. With glucose as a substrate, 2-deoxyglucose showed a strong permanent repression of M protein synthesis, whereas both glucose and 2-deoxyglucose caused temporary repression when sucrose was the substrate. Horse serum increased the rate of synthesis of M protein in a manner very similar to that caused by adding cyclic AMP, although quantitative analyses suggested that cyclic AMP, per se, was not the effector in horse serum. Addition of Todd Hewitt broth permitted the organisms to grow on phosphorylated sugars. Although the rates of growth on phosphorylated sugars were similar to that obtained with glucose, M protein was not synthesized when a phosphorylated sugar was the sole substrate. The addition of phosphorylated sugars with glucose or sucrose as substrates strongly repressed the synthesis of M protein with glucose-1-phosphate and with fructose 1,6-diphosphate repressing M protein synthesis the most. Clearly, M protein synthesis, which was not required for growth, was preferentially induced by glucose as compared to the other sugars and was dependent upon the metabolic route by which glucose was utilized.  相似文献   

18.
The occurrence of salt‐, sugar‐sensitive neurones and a mechanoreceptor neurone in the antennal hair‐like gustatory sensilla of the click beetle Agriotes obscurus L. (Coleoptera, Elateridae) is demonstrated using the electrophysiological sensillum tip‐recording technique. The stimulating effect of 13 water soluble sugars at 100 mm is tested on the neurones of these sensilla. Sucrose and fructose are the two most stimulating sugars for the sugar‐sensitive neurone, evoking almost 30 spikes s?1 at 100 mm . The stimulating effect of arabinose, glucose, mannose, maltose and raffinose is three‐ to five‐fold lower, in the range 5.9–9.6 spikes s?1. The remaining six sugars, xylose, galactose, rhamnose, cellobiose, trehalose and lactose, have very low (<1 spikes s?1) or no ability to stimulate the sugar‐sensitive neurone. Concentration/response curves of the sugar‐sensitive neurone to sucrose, fructose and glucose at 0.01–100 mm overlap to a large extent in hibernating, cold reactivated and reproductively‐active beetles. A remarkable 9–50% decrease in the number of spikes evoked by 100 mm fructose and 10–100 mm sucrose occurs, however, in reproductively‐active beetles in June compared with beetles at the beginning of hibernation in October. These findings show that A. obscurus is capable of sensing a wide range sugars via their antennal gustatory sensilla.  相似文献   

19.
This research explores the impacts of a broad range of supplemental carbon sources on growth and development of Arabidopsis thaliana. Parameters measured include dark-germinated hypocotyl length, light-germinated root growth, rosette growth, chlorophyll concentration and anthocyanin content. Treatment sugars include sucrose, maltose, d-glucose, d-fructose, l-arabinose, l-fucose, d-galactose, d-mannose, l-rhamnose and d-xylose each supplied at 4, 20 or 100 mM. This comparison of the effect of different carbon sources on multiple parameters and under identical conditions showed that every carbon source had unique qualitative and quantitative effects on Arabidopsis growth and development. Root growth was particularly sensitive to supplemental carbon source. Growth on 100 mM sucrose, maltose, glucose or xylose stimulated root growth by ~100%. Growth on arabinose, fucose, galactose, mannose or rhamnose inhibited root growth by 50% or more. Several sugars that strongly inhibited root growth had either no effect (galactose and fucose) or a positive effect (arabinose) on hypocotyl elongation and rosette growth. Rhamnose was the only carbon source that inhibited hypocotyl elongation across all concentrations. Sucrose, maltose, glucose, fructose, arabinose or xylose stimulated rosette growth by ~50%. Chlorophyll content was strongly reduced by mannose while sucrose, glucose, galactose and rhamnose caused smaller reductions. Anthocyanin accumulation was strongly induced by both galactose and mannose. Only mannose impacted all parameters across all concentrations. Based on these data it can be concluded that the effect of each carbon source on Arabidopsis growth and development is specific in terms of both magnitude and the parameters impacted.  相似文献   

20.
Lignocellulosic biomass is the most abundant bioresource on earth containing polymers mainly consisting of d ‐glucose, d ‐xylose, l ‐arabinose, and further sugars. In order to establish this alternative feedstock apart from applications in food, we engineered Pseudomonas putida KT2440 as microbial biocatalyst for the utilization of xylose and arabinose in addition to glucose as sole carbon sources. The d ‐xylose‐metabolizing strain P. putida KT2440_xylAB and l ‐arabinose‐metabolizing strain P. putida KT2440_araBAD were constructed by introducing respective operons from Escherichia coli. Surprisingly, we found out that both recombinant strains were able to grow on xylose as well as arabinose with high cell densities and growth rates comparable to glucose. In addition, the growth characteristics on various mixtures of glucose, xylose, and arabinose were investigated, which demonstrated the efficient co‐utilization of hexose and pentose sugars. Finally, the possibility of using lignocellulose hydrolysate as substrate for the two recombinant strains was verified. The recombinant P. putida KT2440 strains presented here as flexible microbial biocatalysts to convert lignocellulosic sugars will undoubtedly contribute to the economic feasibility of the production of valuable compounds derived from renewable feedstock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号