首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hira T  Nakajima S  Eto Y  Hara H 《The FEBS journal》2008,275(18):4620-4626
Intraluminal L-phenylalanine (Phe) stimulates cholecystokinin (CCK) secretion in vivo and in vitro. However, the cellular mechanism by which CCK-producing enteroendocrine cells sense Phe is unknown. The calcium-sensing receptor (CaR) can sense amino acids, and is expressed in the gastrointestinal tract. In the present study, we examined whether CaR functions as a receptor for Phe in CCK-producing enteroendocrine cells. CCK secretion and intracellular Ca2+ concentration in response to Phe were measured in the murine CCK-producing enteroendocrine cell line STC-1 at various extracellular Ca2+ concentrations or after treatment with a CaR antagonist. At more than 20 mm, Phe induced dose-dependent CCK secretion and intracellular Ca2+ mobilization in STC-1 cells. In the presence of 3.0 mm extracellular Ca2+, 10 and 20 mm Phe induced significantly higher CCK secretion than under normal conditions (1.2 mm extracellular Ca2+). Intracellular Ca2+ mobilization, induced by 10 or 20 mm Phe, was also enhanced by increasing extracellular Ca2+ concentrations. In addition, intracellular Ca2+ mobilization induced by addition of extracellular Ca2+ was augmented by the presence of Phe. These results closely match the known CaR properties. Treatment with a specific CaR antagonist (NPS2143) completely inhibited Phe-induced CCK secretion and the latter phase of intracellular Ca2+ mobilization. CaR mRNA expression was demonstrated by RT-PCR in STC-1 cells, as well as in other mouse tissues including the kidney, thyroid, stomach and intestine. In conclusion, CaR functions as a receptor for Phe, stimulating CCK secretion in enteroendocrine STC-1 cells.  相似文献   

2.
3.
Effects of insulin excess and deficiency on glucose-dependent insulinotropic polypeptide (GIP) was examined in rats following insulinoma transplantation or streptozotocin (STZ) administration. Over 14 days, food intake was increased (p < 0.001) in both groups of rats, with decreased body weight (p < 0.01) in STZ rats. Non-fasting plasma glucose levels were decreased (p < 0.01) and plasma insulin levels increased (p < 0.001) in insulinoma-bearing rats, whereas STZ treatment elevated glucose (p < 0.001) and decreased insulin (p < 0.01). Circulating GIP concentrations were elevated (p < 0.01) in both animal models. At 14 days, oral glucose resulted in a decreased glycaemic excursion (p < 0.05) with concomitant elevations in insulin release (p < 0.001) in insulinoma-bearing rats, whereas STZ-treated rats displayed similar glucose-lowering effects but reduced insulin levels (p < 0.01). GIP concentrations were augmented in STZ rats (p < 0.05) following oral glucose. Plasma glucose and insulin concentrations were not affected by oral fat, but fat-induced GIP secretion was particularly (p < 0.05) increased in insulinoma-bearing rats. Exogenous GIP enhanced (p < 0.05) glucose-lowering in all groups of rats accompanied by insulin releasing (p < 0.001) effects in insulinoma-bearing and control rats. Both rat models exhibited increased (p < 0.001) intestinal weight but decreased intestinal GIP concentrations. These data suggest that circulating insulin has direct and indirect effects on the synthesis and secretion of GIP.  相似文献   

4.
ABSTRACT

The study was aimed to compare the satiating effect of various protein hydrolysates in rats and examine the underlying mechanism associated with the satiety hormones. Food intake and portal satiety hormone levels were measured in rats. Enteroendocrine cell-lines were employed to study the direct effect of protein hydrolysates on gut hormone secretions. The results showed that oral preload of wheat gluten hydrolysate (WGH) suppressed food intake greater and longer than other hydrolysates. The portal peptide-YY levels in WGH-treated rats at 2 h and 3 h were higher than those in control- and lactalbumin hydrolysate (LAH)-treated rats. In a distal enteroendocrine cell model, WGH more potently stimulated glucagon-like peptide-1 secretion than LAH, and the effect was largely enhanced by pepsin/pancreatin digestion of WGH. These results suggest WGH is potent in activating enteroendocrine cells to release satiety hormones leading to the prolonged suppression of food intake.  相似文献   

5.
The hormone cholecystokinin is produced by the enteroendocrine I cells in the intestine, and it plays an important role in a number of physiological processes including digestion and food intake. Recent data suggest that cholecystokinin gene expression and protein secretion are regulated by macronutrients. The mechanism involves a change in intracellular levels of cAMP and Ca+2, brought about by the activity of a number of nutrient-responsive G protein-coupled receptors, nutrient transporters, ion channels and intracellular enzymes. How these intracellular responses could lead to gene expression and protein secretion are discussed along with new directions for future investigation.  相似文献   

6.
We examined the effect of porcine gastrin-releasing peptide (GRP-27) and other analogous neuropeptides on cholecystokinin (CCK) secretion from the isolated perfused rat duodenum. GRP-27 stimulated CCK secretion in a monophasic pattern and in a dose-dependent manner ranging from 10(-9) M to 10(-6) M, and 10(-7) M of GRP-27 led to an increment of 442 +/- 120.8 fmol/3 min. The stimulatory effect of GRP-27 on CCK was not inhibited by 10(-5) M of atropine. 10(-7) M of neuromedin C and B, analogs of GRP, stimulated CCK secretion to increments of 382 +/- 64.1 and 289 +/- 47.2 fmol/3 min, respectively. Carbachol (10(-9) to 10(-6) M), VIP (10(-9)M), secretin (10(-9)M) and glucose (11 mM) did not stimulate CCK secretion, and the addition of atropine (10(-5)M) to them led to no significant changes. These results suggest that GRP may directly stimulate CCK secretion from the duodenum and work as a non-cholinergic, peptidergic neurotransmitter.  相似文献   

7.
Effects of nociceptin on thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) secretion in rats were studied. Nociceptin (150 microgram/kg) was injected intravenously and rats were serially decapitated after the injection. The effects of nociceptin on TRH release from the hypothalamus and TSH release from the anterior pituitary in vitro were also investigated. TRH and thyroid hormones were measured by individual radioimmunoassays. TSH was determined by enzyme immunoassay. TRH contents in the hypothalamus decreased significantly after nociceptin injection, whereas plasma TRH concentrations showed no changes. Plasma TSH concentrations increased significantly in a dose-related manner. The TRH release from the hypothalamus was enhanced significantly in a dose-related manner with the addition of nociceptin. The TSH release from the anterior pituitary in vitro was not affected by the addition of nociceptin. The plasma thyroxine and 3,3',5-triiodothyronine levels did not change significantly after nociceptin administration. The inactivation of TRH by plasma or hypothalamus in vitro after nociceptin injection did not differ from that of controls. The findings suggest that nociceptin acts on the hypothalamus to stimulate TRH and TSH secretion.  相似文献   

8.
One of the most promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with 1 of 3 adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards preclinical studies.  相似文献   

9.
Neurotensin (NT) stimulates pancreatic exocrine secretion in dogs and humans. The purpose of this study was to examine the effect of exogenous neurotensin on pancreatic exocrine secretion in rats. Five Sprague-Dawley male rats were prepared with pancreatic, gastric and duodenal fistulas. Bile was shunted into the duodenum in order to collect pure pancreatic juice. 24 h later, neurotensin (0.05, 0.1, 0.2, 0.3, 1.0 nmol/kg) was infused intravenously in a random fashion. Pancreatic juice was collected every 10 min, and the volume was recorded and protein and bicarbonate were measured. Neurotensin stimulated, in a dose-related manner, the pancreatic secretion of water, protein and bicarbonate. Neurotensin may be involved in the physiologic control of pancreatic secretion in rats.  相似文献   

10.
11.
T Takuma  T Ichida 《FEBS letters》1986,199(1):53-56
Phorbol myristate acetate (PMA), a potent activator of Ca2+- and phospholipid-dependent protein kinase (protein kinase C), evoked amylase release from rat parotid cells. In dose-response studies, PMA stimulated amylase release independently of db-cAMP, but potentiated the effect of carbachol. PMA and A23187, a Ca2+ ionophore, synergistically increased amylase release. The maximum effect of carbachol was further enhanced by PMA but not by A23187, suggesting that protein kinase C is not fully activated by the muscarinic-cholinergic agonist under the condition where calcium is fully utilized for amylase secretion.  相似文献   

12.
Ghrelin stimulates gastric acid secretion and motility in rats   总被引:49,自引:0,他引:49  
Ghrelin, a novel growth-hormone-releasing peptide, was discovered in rat and human stomach tissues. However, its physiological and pharmacological actions in the gastric function remain to be determined. Therefore, we studied the effects of rat ghrelin on gastric functions in urethane-anesthetized rats. Intravenous administrations of rat ghrelin at 0.8 to 20 microgram/kg dose-dependently increased not only gastric acid secretion measured by a lumen-perfused method, but also gastric motility measured by a miniature balloon method. The maximum response in gastric acid secretion was almost equipotent to that of histamine (3 mg/kg, i.v.). Moreover, these actions were abolished by pretreatment with either atropine (1 mg/kg, s.c.) or bilateral cervical vagotomy, but not by a histamine H(2)-receptor antagonist (famotidine, 1 mg/kg, s.c.). These results taken together suggest that ghrelin may play a physiological role in the vagal control of gastric function in rats.  相似文献   

13.
14.
Summary. Several reports have shown that nitric oxide (NO) stimulates glucose-induced insulin secretion in the pancreas of normal rat but the effect of L-arginine (a NO donor) on insulin secretion from the pancreas of diabetic pancreas is unknown. Fragments of pancreatic tissue from normal and diabetic rats were incubated for 45 min in Krebs solution containing 100 mM L-arginine. The supernatant was subsequently analyzed for the insulin content using radioimmunoassay technique. L-arginine evoked large increases in insulin secretion from the pancreas of diabetic rat. The insulin secreted from the pancreas of diabetic rat was numerically but not significantly lower compared to that of normal rat pancreas. In conclusion, L-arginine, a nitric oxide donor stimulates insulin secretion from the pancreas of diabetic rats. Received October 3, 2000 Accepted November 10, 2000  相似文献   

15.
There are reports that both interleukin-1 beta and interleukin-6 (IL-6) stimulate the release of adrenocorticotropin through stimulation of hypothalamic corticotropin-releasing factor. We established a primary culture system for hypothalamic neurons producing gonadotropin-releasing hormone (GnRH) and examined whether IL-6 stimulated their GnRH secretion. We demonstrated immunohistochemically that some of these neurons contained GnRH-like immunoreactivity. In primary cultures of these GnRH neurons, we found that the calcium ionophore A23187 stimulated GnRH secretion in a dose- and time-dependent manner. These hypothalamic cells secreted IL-6 spontaneously, producing about 10 ng/l in 24 h, and their IL-6 secretion was significantly stimulated by E2 at 10(-9)-10(-8) mol/l. This stimulatory effect was observed within 3 h. IL-6 also stimulated the release of GnRH in a dose- and time-dependent manner, and these effects of IL-6 were significantly blocked by anti-IL-6 antiserum. These results suggest that the central action of IL-6 on the GnRH neurons may be an important physiological event in the hypothalamus.  相似文献   

16.
The effect of delta-9-tetrahydrocannabinol (THC) on rat Sertoli cell function was investigated. THC significantly increased ABP secretion by 1.5- to 2.1-fold but did not consistently enhance the stimulation of ABP induced by FSH, testosterone or dibutyryl cyclic AMP. ABP was measured by steady-state polyacrylamide gel electrophoresis, DEAE Bio-Gel and immunoassay; all three methods gave similar results. The minimal concentration of THC that stimulated ABP was 10 ng/ml; maximal stimulation was observed with 100-200 ng/ml. This effect was specific since THC did not affect gamma glutamyl transpeptidase activity or the secretion of plasminogen activator, lactate and transferrin. This observation that THC affects ABP secretion specifically is the first report of any differential effect of a drug on Sertoli cell secretion.  相似文献   

17.
Enteroendocrine cells are known primarily for their production of hormones that affect digestion, but they might also be implicated in sensing and neutralizing or expelling pathogens. We evaluate the expression of TLRs and the response to specific agonists in terms of cytokines, defensins, and hormones in enteroendocrine cells. The mouse enteroendocrine cell line STC-1 and C57BL/6 mice are used for in vitro and in vivo studies, respectively. The presence of TLR4, 5, and 9 is investigated by RT-PCR, Western blot, and immunofluorescence analyses. Activation of these receptors is studied evaluating keratinocyte-derived chemokine, defensins, and cholecystokinin production in response to their specific agonists. In this study, we show that the intestinal enteroendocrine cell line STC-1 expresses TLR4, 5, and 9 and releases cholecystokinin upon stimulation with the respective receptor agonists LPS, flagellin, and CpG-containing oligodeoxynucleotides. Release of keratinocyte-derived chemokine and beta-defensin 2 was also observed after stimulation of STC-1 cells with the three TLR agonists, but not with fatty acids. Consistent with these in vitro data, mice showed increased serum cholecystokinin levels after oral challenge with LPS, flagellin, or CpG oligodeoxynucleotides. In addition to their response to food stimuli, enteroendocrine cells sense the presence of bacterial Ags through TLRs and are involved in neutralizing intestinal bacteria by releasing chemokines and defensins, and maybe in removing them by releasing hormones such as cholecystokinin, which induces contraction of the muscular tunica, favoring the emptying of the distal small intestine.  相似文献   

18.
Adiponectin is a recently described mediator secreted by adipose tissue. Here we report the growth promoting and pro-inflammatory actions of adiponectin on colonic epithelial cancer cells. Full-length and globular adiponectin produced an identical stimulation of HT-29 cell growth that was blocked by inhibition of adenylate cyclase and protein kinase A and partially inhibited by a pan-specific protein kinase C inhibitor, but was unaffected by specific inhibition of extracellular signal-related kinase (ERK) or p38 MAP kinase. Globular adiponectin but not full-length adiponectin significantly increased the secretion and mRNA levels of IL-8, GM-CSF and MCP-1. Globular adiponectin doubled IL-1beta-stimulated IL-8 and GM-CSF secretion. Adiponectin-stimulated cytokine secretion was blocked by pharmacological inhibitors of NF-kappaB, ERK and p38 MAP kinase. Globular adiponectin increased phosphorylation of both ERK and p38 MAP kinase and increased the nuclear translocation of active NF-kappaB. Adiponectin has pro-proliferative and pro-inflammatory actions on colonic epithelial cells; these appear to be differentially activated by the adiponectin isoforms. Adiponectin may have a role in the regulation of gastrointestinal mucosal function, inflammation and colon carcinogenesis.  相似文献   

19.
The gastrointestinal tract is increasingly viewed as critical in controlling glucose metabolism, because of its role in secreting multiple glucoregulatory hormones, such as glucagon like peptide-1 (GLP-1). Here we investigate the molecular pathways behind the GLP-1- and insulin-secreting capabilities of a novel GPR119 agonist, Oleoyl-lysophosphatidylinositol (Oleoyl-LPI). Oleoyl-LPI is the only LPI species able to potently stimulate the release of GLP-1 in vitro, from murine and human L-cells, and ex-vivo from murine colonic primary cell preparations. Here we show that Oleoyl-LPI mediates GLP-1 secretion through GPR119 as this activity is ablated in cells lacking GPR119 and in colonic primary cell preparation from GPR119?/? mice. Similarly, Oleoyl-LPI-mediated insulin secretion is impaired in islets isolated from GPR119?/? mice. On the other hand, GLP-1 secretion is not impaired in cells lacking GPR55 in vitro or in colonic primary cell preparation from GPR55?/? mice. We therefore conclude that GPR119 is the Oleoyl-LPI receptor, upstream of ERK1/2 and cAMP/PKA/CREB pathways, where primarily ERK1/2 is required for GLP-1 secretion, while CREB activation appears dispensable.  相似文献   

20.
Somatostatin-like immunoreactivity (SLI) was extracted from the canine pancreas and purified by ion exchange, affinity chromatography and gel filtration. The 1600 dalton fraction, which is physicochemically similar to synthetic somatostatin was infused into the peripheral circulation of anesthetized rats and its effect upon gastric acid secretion was compared with that of synthetic somatostatin. Both synthetic somatostatin and pancreatic SLI in a dose of 7–8 μg/kg/h suppressed pentagastrin-stimulated gastric acid secretion. It is concluded that the highly purified 1600 dalton fraction of canine pancreatic SLI, like synthetic somatostatin, can exert biological activity upon the stomach of rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号