首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated, they could not be recovered.  相似文献   

2.
The effects of ethanol on reactor performance were studied in a small, 5-cm packed height, "differential" type immobilized cell reactor. Lactose utilizing yeast cells, Kluyveromyces fragilis, were absorbed to a porous adsorbant sponge matrix in a gas continuous reactor. Step changes in the feed ethanol concentration to the column (10-130 g/L) were used to test the reactor response over extended periods of time (about 30-50 h per dosage level) followed by a return to basal zero inlet ethanol feed. Effluent cell density and effluent cell viability were measured at intervals. An inhibitory response in ethanol productivity to feed dosage ethanol levels above 20 g/L was detected almost immediately, with a near steady state response noted within 2.5 h of initiating the dosage. Feed ethanol levels above 50 g/L resulted in a subsequent gradual decrease in reactor productivity over time, which was associated with a decrease in the fraction of viable shed cells in the reactor effluent. The reactor response to a step removal of the ethanol inhibition was also monitored. Quick and complete rebounding of the fermentation rate to the original basal rate was noted following dosage concentrations of under 50 g/L ethanol. Recovery rates slowed following ethanol dosage levels above 50 g/L. Viable shed cell density improved overtime during the slow recovery periods. Growth rates (as determined by shed cell density) were more strongly inhibited than productivity. Growth responded more slowly to changes in ethanol environment as growth rates at 30 h fell to about 40% of the rates measured 7.5 h after initiation of a dosage level. It is concluded that ethanol contributions to cell injury and death (and consequent ICR performance degradation) may be more important than ethanol inhibition of productivity rates in the long-term operation of immobilized cell reactors at ethanol concentrations over 50 g/L.  相似文献   

3.
The viable fraction of immobilized cells in a bioreactor may be critical in predicting long-term or steady-state reactor performance. The assumption of near 100% viable cells in a bioreactor may not be valid for portions of immobilized cell reactors (ICRs) characterized by conditions resulting in appreciable death rates. A mathematical model of an adsorbed cell type ICR is presented in which a steady-state viable cell fraction is predicted, based on the assumptions of no cell accumulation in the reactor and a random loss of cells from the reactor. Data on cell death rates, cell growth rates, and productivity rates as functions of temperature, substrate, and ethanol concentration for the lactose utilizing yeast K. fragillis were incorporated into this model. The steady-state reactor viable cell fraction as predicted by this model is a strong function of both temperature and ethanol concentration. For example, a stable 20% viable fraction of the immobilized cells is predicted in ICR locations experiencing continuous conditions of either 30 g/L ethanol at 40 degrees C, or 95 g/L ethanol at 25 degrees C. Steady-state ICR "plug flow" concentration profiles and column productivities are predicted at three operating temperatures, 20, 30, and 40 degrees C using two different models for ethanol inhibition of productivity. These profiles suggest that the reactor operating temperature should be low if higher outlet ethanol concentrations are desired. Three reactor design strategies are presented to maximize the viable cell fraction and improve long-term ethanol productivity in ICR's: (1) reducing outlet ethanol concentrations, (2) rotating segments of an ICR between high and low ethanol environments, and (3) simultaneous removal of the ethanol produced from the reactor as it is formed.  相似文献   

4.
Continuous production of a recombinant murine granulocyte-macrophage colony-stimulating factor (MuGM-CSF) by immobilized yeast cells, Saccharomyces cerevisiae strain XV2181 (a/a, Trp1) containing plasmid palphaADH2, in a fluidized bed bioreactor was studied at a 0.03 h(-1) dilution rate and various particle loading rates ranging from 5% to 33% (v/v). Cells were immobilized on porous glass beads fluidized in an air-lift draft tube bioreactor. A selective medium containing glucose was used to start up the reactor. After reaching a stable cell concentration, the reactor feed was switched to a rich, nonselective medium containing ethanol as the carbon source for GM-CSF production. GM-CSF production increased initially and then dropped gradually to a stable level. During the same period, the fraction of plasmid-carrying cells declined continuously to a lower level, depending on the particle loading. The relatively stable GM-CSF production, despite the large decline in the fraction of plasmid-carrying cells, was attributed to cell immobilization. As the particle loading rate increased, the plasmid stability also increased. Also, as the particle loading increased from 5% to 33%, total cell density in the bioreactor increased from 16 to 36 g/L, and reactor volumetric productivity increased from 0.36 to 1.31 mg/L.h. However, the specific productivity of plasmid-carrying cells decreased from 0.55 to 0.07 mg/L.g cell. The decreased specific productivity at higher particle loading rates was attributed to reduced growth efficiency caused by nutrient limitations at higher cell densities. Both the reactor productivity and specific cell productivity increased by two- to threefold or higher when the dilution rate was increased from 0.03 to 0.07 h(-1). (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
6.
Pseudomonas oleovorans is able to accumulate poly(3-hydroxyalkanoates) (PHAs) under conditions of excess n-alkanes, which serve as sole energy and carbon source, and limitation of an essential nutrient such as ammonium. In this study we aimed at an efficient production of these PHAs by growing P. oleovorans to high cell densities in fed-batch cultures.To examine the efficiency of our reactor system, P. oleovorans was first grown in batch cultures using n-octane as growth substrate and ammonia water for pH regulation to prevent ammonium limiting conditions. When cell growth ceased due to oxygen limiting conditions, a maximum cell density of 27 g .L(-1) dry weight was obtained. When the growth temperature was decreased from the optimal temperature of 30 degrees -18 degrees C, cell growth continued to a final cell density of 35 g . L(-1) due to a lower oxygen demand of the cells at this lower incubation temperature.To quantify mass transfer rates in our reactor system, the volumetric oxygen transfer coefficient (k(L)a) was determined during growth of P. oleovorans on n-octane. Since the stirrer speed and airflow were increased during growth of the organism, the k(L)a also increased, reaching a constant value of 0.49 s(-1) at maximum airflow and stirrer speed of 2 L . min(-1) and 2500 rpm, respectively. This k(L)a value suggests that oxygen transfer is very efficient in our stirred tank reactor.Using these conditions of high oxygen transfer rates, PHA production by P. oleovorans in fed-batch cultures was studied. The cells were first grown batchwise to a density of 6 g . L(-1), after which a nutrient feed, consisting of (NH(4))(2)SO(4) and MgSO(4), was started. The limiting nutrient ammonium was added at a constant rate of 0.23 g NH(4) (+) per hour, and when after 38 h the feed was stopped, a biomass concentration of 37.1 g . L(-1) was obtained. The Cellular PHA content was 33% (w/w), which is equal to a final PHA yield of 12.1 g . L(-1) and an overall PHA productivity of 0.25 g PHA produced per liter medium per hour. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
Recycle batch fermentations using immobilized cells of Propionibacterium acidipropionici were studied for propionate production from whey permeate, de-lactose whey permeate, and acid whey. Cells were immobilized in a spirally wound fibrous sheet packed in a 0.5-L column reactor, which was connected to a 5-L stirred tank batch fermentor with recirculation. The immobilized cells bioreactor served as a breeder for these recycle batch fermentations. High fermentation rates and conversions were obtained with these whey media without nutrient supplementation. It took approximately 55 h to ferment whey permeate containing approximately 45 g/L lactose to approximately 20 g/L propionic acid. Higher propionate concentrations can be produced with various concentrated whey media containing more lactose. The highest propionic acid concentration obtained with the recycle batch reactor was 65 g/L, which is much higher than the normal maximum concentration of 35 to 45 g/L reported in the literature. The volumetric productivity ranged from 0.22 g/L . h to 0.47 g/L . h, depending on the propionate concentration and whey medium used. The corresponding specific cell productivity was 0.033 to 0.07 g/L . g cell. The productivity increased to 0.68 g/L . h when whey permeate was supplemented with 1% (w/v) yeast extract. Compared with conventional batch fermentation, the recycle batch fermentation with the immobilized cell bioreactor allows faster fermentation, produces a higher concentration of product, and can be run continually without significant downtime. The process also produced similar fermentation results with nonsterile whey media. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
Venus J 《Biotechnology journal》2006,1(12):1428-1432
Originally, lactic acid was produced from pure substrates like glucose. Increasingly, however, agricultural feedstocks such as grains and green biomass are also being used as raw materials for the biotechnological production of lactic acid. A high-productivity lactic acid bacterium strain was selected, process parameters were optimized for the batch fermentation on a laboratory scale, and its performance at cultivation on a barley hydrolysate medium together with different supplements was examined. The present results for the cultivation of the Lactobacillus paracasei on complex nutrient broth are in the same range as those for another strain of the same species with pure glucose, de Man, Rogosa and Sharpe medium (MRS) minerals, peptone and yeast extract. Under these conditions, this strain was able to accumulate more than 100 g lactate/L in the MRS medium. Medium optimization experiments showed that the main part of the nitrogen-containing nutrients in the medium (peptone, yeast extract) can be replaced by protein extracts from green biomass (lucerne green juice). The green juice after pressing fresh biomass contains a series of nitrogen-containing compounds and inorganic salts, which are essential for cell growth. Thus, on laboratory scale, we have demonstrated that it is possible to substitute synthetic nutrients by renewable resources like cereals and green biomass without any loss of productivity. This high biomass concentration together with the number of living cells could increase the productivity to higher levels compared to the well-adapted synthetic nutrients of MRS.  相似文献   

9.
Summary A method for the continuous production of extracellular alpha amylase by surface immobilized cells of Bacillus amyloliquefaciens NRC 2147 has been developed. A large-pore, macroreticular anionic exchange resin was capable of initially immobilizing an effective cell concentration of 17.5 g DW/1 (based on a total reactor volume of 160 ml). The reactor was operated continuously with a nutrient medium containing 15 g/l soluble starch, as well as yeast extract and salts. Aeration was achieved by sparging oxygen enriched air into the column inlet. Fermentor plugging by cells was avoided by periodically substituting the nutrient medium with medium lacking in both soluble starch and yeast extract. This fermentor was operated for over 200 h and obtained a steady state enzyme concentration of 18700 amylase activity units per litre (18.7 kU/l), and an enzyme volumetric productivity of 9700 amylase activity units per litre per hour (9.7 kU/l-h). Parallel fermentations were performed using a 2 l stirred vessel fermentor capable of operation in batch and continuous mode. All fermentation conditions employed were identical to those of the immobilized cell experiments in order to assess the performance of the immobilized cell reactor. Batch stirred tank operation yielded a maximum amylase activity of 150 kU/l and a volumetric productivity of 2.45 kU/l-h. The maximum cell concentration obtained was 5.85 g DW/l. Continuous stirred tank fermentation obtained a maximum effluent amylase activity of 6.9 kU/l and a maximum enzyme volumetric productivity of 2.73 kU/l-h. Both of these maximum values were observed at a dilution rate of 0.345 l/h. The immobilized cell reactor was observed to achieve larger volumetric productivities than either mode of stirred tank fermentation, but achieved an enzyme activity concentration lower than that of the batch stirred tank fermentor.  相似文献   

10.
The conditions for batch and continuous production of ethanol, using immobilized growing yeast cells of Kluyveromyces lactis, have been optimized. Yeast cells have been immobilized in hydrogel copolymer carriers composed of polyvinyl alcohol (PVA) with various hydrophilic monomers, using radiation copolymerization technique. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves. The ethanol production of immobilized growing yeast cells with these hydrogel carriers was related to the monomer composition of the copolymers and the optimum monomer composition was hydroxyethyl methacrylate (HEMA). In this case by using batch fermentation, the superior ethanol production was 32.9 g L(-1) which was about 4 times higher than that of cells in free system. The relation between the activity of immobilized yeast cells and the water content of the copolymer carriers was also discussed. Immobilized growing yeast cells in PVA: HEMA (7%: 10%, w/w) hydrogel copolymer carrier, were used in a packed-bed column reactor for the continuous production of ethanol from lactose at different levels of concentrations (50, 100 and 150) g L(-1). For all lactose feed concentrations, an increase in dilution rates from 0.1 h(-1) to 0.3 h(-1) lowered ethanol concentration in fermented broth, but the volumetric ethanol productivity and volumetric lactose uptake rate were improved. The fermentation efficiency was lowered with the increase in dilution rate and also at higher lactose concentration in feed medium and a maximum of 70.2% was obtained at the lowest lactose concentration 50 g L(-1).  相似文献   

11.
An immobilized growing cell system was applied to the continuous L -isoleucine production by Serratia marcescens. In the new immobilized-cell systems using the carrageenan gel method. S. marcescens cells in the gel required nutrients and oxygen for growth, and the numbers of living cells per milliliter of gel increased to the levels of that of free cells in the liquid medium. This immobilized growing cell system exhibited high and stable activity for isoleucine production under steady-state conditions. Continuous isoleucine production was carried out by feeding the nutrient medium under aeration into a fluidized bed reactor containing the immobilized cells. In the continuous operation, an efficient production was maintained by automatically controlling the pH of the reaction mixture at 7.5. The productivity of isoleucine increased using multibed reactors. In a two-bed reactor system, the effluent L -isoleucine concentration reached 4.5 mg/ml at a retention time of 10 hr, and a steady state was maintained for longer than 30 days.  相似文献   

12.
Microbial oxidation of D-sorbitol tol-sorbose byAcetobacter suboxydans is of commercial importance since it is the only biochemical process in vitamin C synthesis. The main bottleneck in the batch oxidation of sorbitol to sorbose is that the process is severely inhibited by sorbitol. Suitable fed-batch fermentation designs can eliminate the inherent substrate inhibition and improve sorbose productivity. Fed-batch sorbose fermentations were conducted by using two nutrient feeding strategies. For fed-batch fermentation with pulse feeding highly concentrated sorbitol (600 g/L) along with other nutrients were fed intermittently in four pulses of 0.5 liter in response to the increased DO signal. The fed-batch fermentation was over in 24 h with a sorbose productivity of 13.40 g/L/h and a final sorbose concentration of 320.48 g/L. On the other hand, in fed-batch fermentation with multiple feeds, two pulse feeds of 0.5 liter nutrient medium containing 600 g/L sorbitol was followed by the addition of 1.5 liter nutrient medium containing 600 g/L sorbitol at a constant feed rate of 0.36 L/h till the full working capacity of the reactor. The fermentation was completed in 24 h with an enhanced sorbose productivity of 15.09 g/L/h and a sorbose concentration of 332.60 g/L. The sorbose concentration and productivity obtained by multiple feeding of nutrients was found to be higher than that obtained by pulse feeding and was therefore a better strategy for fed-batch sorbose fermentation.  相似文献   

13.
The productivity of immobilized yeast cell reactors varies with a number of parameters, including flow, amount and growth rate of yeast, bead size and type of medium. Variation of these parameters has a pronounced effect on reaction rate. This paper presents typical ranges for these productivities and demonstrates the patterns of changes that take place when bead size, flow and reaction medium are varied. Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for the production of ethanol. The productivity of immobilized yeast in a batch reactor (0.2 g ethanol/g yeast · h) was only two-thirds that of free cells suspended at an equivalent cell density (0.3 g ethanol/g yeast · h). Different flow rates and bead sizes were used to ‘optimize’ the productivity. The productivity of 3.34 mm beads at a flow rate of 8.8 litre h?1(superficial velocity: 0.12 cm s?1) was 95% higher than that at 1.0 l h?1. Maximum productivities of 0.34, 0.27, 0.22 g/g yeast· h were obtained (at a flow rate of 8.8 l h?1) for 9.2% yeast-immobilized beads of 3.34, 4.45 and 5.65 mm in diameter, respectively.  相似文献   

14.
Kinetics of ethanol fermentations in membrane cell recycle fermentors   总被引:1,自引:0,他引:1  
Ethanol fermentation by yeast was carried out in a cell filtration recycle system with a hollow-fiber membrane filter. Maximum biomass concentrations up to 210 g dry wt/L were obtained, but in normal operation concentrations they were between 100 and 150 g/L. The ethanol productivity using 14% glucose feed was 85 g/L h, with an ethanol concentration of 65 g/L and an ethanol yield of over 90%. The ethanol productivity and yeast growth rate decreased as the cell concentration increased beyond a certain level. The cell mass in the reactor was maintained by a proper manipulation of diluticn rate and bleed ratio depending on the growth rate.  相似文献   

15.
Statistics-based experimental design was used to investigate the effect of medium components (starch, peptone, ammonium sulfate, yeast extract, and CaCl2.2H2O) on hen's egg white lysozyme production by Aspergillus niger HEWL WT-13-16. A 2(5-1) fractional factorial design augmented with center points revealed that peptone, starch, and ammonium sulfate were the most significant factors, whereas the other factors were not important within the levels tested. The method of steepest ascent was used to approach the proximity of optimum. This task was followed by a central composite design to develop a response surface for medium optimization. The optimum medium composition for lysozyme production was found to be: starch 34 g L-1, peptone 34 g L-1, ammonium sulfate 11.9 g L-1, yeast extract 0.5 g L-1, and CaCl2.2H2O 0.5 g L-1. This medium was projected to produce, theoretically, 212 mg L-1 lysozyme. Using this medium, an experimental maximum lysozyme concentration of 209+/-18 mg L-1 verified the applied methodology.  相似文献   

16.
The effect of various nitrogen sources on cellulase biosynthesis by the mutant strain Trichoderma viride 44 was examined. This strain may utilized nitrogen in the nitrate, ammonium of organic form. When cultivating this strain, it appears advantageous to add to the nutrient medium yeast and yeast lyzates as well as their mixture with ammonium sulfate. Cellulase reached its maximum activity of 20.2, 21.5 and 23.2 mu/ml when grown on the medium containing ammonium phosphate, peptone and brewing yeast plus ammonium sulfate, respectively. It is useful to apply nitrogen in its organic forms in small quantities and in combination with mineral forms. The nitrogen presence in the medium is necessary only at the exponential stage of fungal growth. The lack of nitrogen in the stationary stage characterized by the maximum cellulase formation does not inhibit an increase in the enzyme activity.  相似文献   

17.
魏春  周祥山  张元兴 《微生物学通报》2008,35(10):1522-1526
对毕赤酵母胞内表达重组鲈鱼生长激素(rljGH)的发酵罐上生产进行了研究.建立了指数流加甲醇的策略并考察了不同比生长速率对rljGH生产的影响.结果表明,随着比生长速率的增加,平均比生产速率相应增加,但是胞内持续积累rljGH的时间减少.最大比rljGH产量(0.58 mg/g WCW)在比生长速率为0.029/h时获得.进一步考察了在诱导阶段添加硫酸铵、蛋白胨和酵母抽提物的影响.结果表明,添加硫酸铵和蛋白胨对于rljGH生产没有显著影响;添加2.5 g/L酵母抽提物有助于胞内rljGH的积累,并使胞内积累持续时间由17 h增加到23 h,提高了发酵稳定性.  相似文献   

18.
The performance of immobilized fungal cells on celite beads for the production of gibberrelic acid was investigated in flasks and 7-L stirred-tank reactor. Repeated incubations of immobilized fungal cells increased cell concentrations and volumetric productivity. The maximum volumetric productivity obtained in the immobilized-cell culture was 3-fold greater than that in suspended-cell culture. The concentration of cotton seed flour (CSF), amont the various nutrients supplied, most significantly influenced productivity and operational stability. Notably, insoluble components in CSF were found to be essential for production. CSF at 6 g/L with 60 g/L glucose was found to be optimal for gibberellic acid production and stable operation by preventing excessive cell growth.  相似文献   

19.
Acetone-butanol-ethanol (ABE) fermentation was performed continuously in an immobilized cell, trickle bed reactor for 54 days without, degeneration by maintaining the pH above 4.3. Column clogging was minimized by structured packing of immobilization matrix. The reactor contained two serial glass columns packed with Clostridium acetobutylicum adsorbed on 12- and 20-in.-long polyester sponge strips at total flow rates between 38 and 98.7 mL/h. Cells were initially grown at 20 g/L glucose resulting in low butanol (1.15 g/L) production encouraging cell growth. After the initial cell growth phase a higher glucose concentration (38.7 g/L) improved solvent yield from 13.2 to 24.1 wt%, and butanol production rate was the best. Further improvement in solvent yield and butanol production rate was not observed with 60 g/L of glucose. However, when the fresh nutrient supply was limited to only the first column, solvent yield increased to 27.3 wt% and butanol selectivity was improved to 0.592 as compared to 0.541 when fresh feed was fed to both columns. The highest butanol concentration of 5.2 g/L occurred at 55% conversion of the feed with 60 g/L glucose. Liquid product yield of immobilized cells approached the theoretical value reported in the literature. Glucose and product concentration profiles along the column showed that the columns can be divided into production and inhibition regions. The length of each zone was dependent upon the feed glucose concentration and feed pattern. Unlike batch fermentation, there was no clear distinction between acid and solvent production regions. The pH dropped, from 6.18-6.43 to 4.50-4.90 in the first inch of the reactor. The pH dropped further to 4.36-4.65 by the exit of the column. The results indicate that the strategy for long term stable operation with high solvent yield requires a structured packing of biologically stable porous matrix such as polyester sponge, a pH maintenance above 4.3, glucose concentrations up to 60 g/L and nutrient supply only to the inlet of the reactor.  相似文献   

20.
The nutritional requirements of Brettanomyces bruxellensis have been investigated. Batch culture and chemostat pulse techniques were used to identify growth-limiting nutrients. The study included determination of the essential components of the culture medium and quantification of the effects of the components. Among the components tested, ammonium sulfate and yeast extract had a significant effect on glucose consumption, growth, and ethanol production. However, if the ammonium sulfate concentration is above 2 g/L, an inhibitory effect on B. bruxellensis growth is observed. The yeast extract appears to be the most important and significant component for growth. The maximum amount of synthesized biomass is proportional to the concentration of yeast extract added to the culture broth (in the tested range). Magnesium and phosphate ions are probably not essential for B. bruxellensis. These ions appear to be supplied in sufficient amounts by the yeast extract in the culture medium. Brettanomyces bruxellensis appears to have very low nutritional requirements for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号