首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
The energy metabolism of an anaerobic obligate thermophile, Clostridium thermocellum, has been examined as a function of incubation temperature using 31P NMR spectroscopy. Specifically investigated were the generation and availability of ATP as a function of temperature, activation energies for key processes in energy metabolism including formation of a pH gradient across the cell membrane, transport of key nutrients, and initial steps in glycolysis, and the existence of a membrane phase transition in the intact organism. Cells generate ATP via glycolysis at all temperatures examined; hence, limitation of the energy supply is not directly responsible for the lack of growth of this organism at low temperatures. Estimations of activation energies show a distinct hierarchy in the ATP-utilizing reactions examined. Conservation of ATP hydrolysis energy as delta pH has the lowest activation energy (less than or equal to 4 kcal/mol), two transport processes exhibit 10 kcal/mol activation energies, and early phosphorylation steps in glycolysis have significantly higher activation energies (approximately 25 kcal/mol). Neither the membrane-bound ATPase responsible for formation of the pH gradient nor the permease involved in phosphate transport shows evidence of a change in behavior around the phase transition temperature determined for extracted lipids of C. thermocellum. Line widths of inorganic phosphate do show a break in behavior around 35-40 degrees C. Possible explanations for this behavior are discussed.  相似文献   

2.
Ethanol inhibition of glucose catabolism in Zymomonas mobilis was investigated using 31P NMR spectroscopy in vivo and of perchloric acid extracts from cell suspensions incubated with 0, 5 and 10% (w/v) ethanol. In vivo 31P NMR experiments revealed slower glucose utilization and decreased levels of nucleoside triphosphates in the presence of 10% ethanol as compared to controls. Using 31P NMR spectroscopy of perchloric acid extracts, intracellular accumulation of 3.4 mM 3-phosphoglycerate was found when 10% ethanol was present in the medium. No accumulation of this metabolite occurred in cells incubated with 0 and 5% ethanol. Enzyme assays confirmed that phosphoglycerate-mutase and enolase were inhibited 31 and 40%, respectively, in the presence of 10% ethanol in the test system. Therefore, under the conditions used the decrease in the fermentative activity of Z. mobilis at high ethanol concentrations is due to inhibition of phosphoglycerate-mutase and enolase.Abbreviation KDPG 2-keto-3-deoxy-6-phosphogluconate  相似文献   

3.
31P NMR spectra were obtained from suspensions of Candida utilis, Saccharomyces cerevisiae and Zygosaccharomyces bailii grown aerobically on glucose. Direct introduction of substrate into the cell suspension, without interruption of the measurements, revealed rapid changes in pH upon addition of the energy source. All 31P NMR spectra of the yeasts studied indicated the presence of two major intracellular inorganic phosphate pools at different pH environments. The pool at the higher pH was assigned to cytoplasmic phosphate from its response to glucose addition and iodoacetate inhibition of glycolysis. After addition of substrate the pH in the compartment containing the second phosphate pool decreased. A parallel response was observed for a significant fraction of the terminal and penultimate phosphates of the polyphosphate observed by 31P NMR. This suggested that the inorganic phosphate fraction at the lower pH and the polyphosphates originated from the same intracellular compartment, most probably the vacuole. In this vacuolar compartment, pH is sensitive to metabolic conditions. In the presence of energy source a pH gradient as large as 0.8 to 1.5 units could be generated across the vacuolar membrane. Under certain conditions net transport of inorganic phosphate across the vacuolar membrane was observed during glycolysis: to the cytoplasm when the cytoplasmic phosphate concentration had become very low due to sugar phosphorylation, and into the vacuole when the former concentration had become high again after glucose exhaustion.Non-Standard Abbreviations NMR nuclear magnetic resonance - ppm parts per million - PP polyphosphate - Pi,c cytoplasmic inorganic phosphate - Pi,v vacuolar inorganic phosphate - pHin,c cytoplasmic pH - pHin,v vacuolar pH - FCCP carbonyl p-trifluoromethoxyphenylhydrazone  相似文献   

4.
Clostridium thermocellum is an anaerobic thermophilic bacterium which degrades cellulose and ferments the resulting glucose, cellobiose, and cellodextrins predominantly to ethanol. However, relatively little information was available on carbohydrate uptake by this bacterium. Washed cells internalized intact oligomers as large as cellopentaose. Since cellobiose and cellodextrin phosphorylase activities were detected in the cytosol and were not associated with cell membranes, phosphorylation of carbohydrates occurred intracellularly. Kinetic studies indicated that cellobiose and larger cellodextrins were taken up by a common uptake system while glucose entered via a separate mechanism. When cells were treated with metabolic inhibitors including iodoacetate and arsenate, the uptake of radiolabeled glucose or cellobiose was reduced by as much as 90%, and this reduction was associated with a 95% decline in intracellular ATP content. A combination of the ionophores nigericin and valinomycin abolished the proton-motive force but only slightly decreased transport and ATP. These results suggested that the two modes of carbohydrate transport in C. thermocellum were ATP dependent. This work is the first demonstration of cellodextrin transport by a cellulolytic bacterium.  相似文献   

5.
Subcellular compartments, such as the vacuole in yeast, play important roles in cell metabolism and in cell response to external conditions. Concentrations of inorganic phosphate and pH values of the vacuole and cytoplasm were determined for anaerobic Saccharomyces cerevisiae cells based upon (31)P NMR spectroscopy. A new approach allows the determination of these values for the vacuole in cases when the resonance for inorganic phosphate in the cytoplasm overlaps with the resonance for inorganic phosphate in the vacuole. The intracellular inorganic phosphate resonance was first decomposed into two components by computer analysis. The assignments of the components were determined from in vivo correlations of P(i) chemical shift and the chemical shifts of the cytoplasmic sugar phosphates, and the pH dependency of the resonance of pyrophosphate and the terminal phosphate of poly-phosphate (PP(1)) which reside in the vacuole. An in vivo correlation relating PP(1) and P(i) (vac) chemical shifts was established from numerous evaluations of intracellular compositions for several strains of S. cerevisiae. This correlation will aid future analysis of (31)P NMR spectra of yeast and will extend NMR studies of compartmentation to cellular suspensions in phosphate-containing medium. Application of this method shows that both vacuolar and extracellular P(i) were phosphate reserves during glycolysis in anaerobic S. cerevisiae. Net transport of inorganic phosphate across the vacuolar membrane was not correlated with the pH gradient across the membrane.  相似文献   

6.
(31)P NMR spectroscopy offers a possibility to obtain a survey of all low-molecular-weight phosphorylated compounds in yeast. The yeast cells have been extracted using chloroform into a neutral aqueous phase. The use of high fields and the neutral pH extracts, which are suitable for NMR analysis, results in well-resolved (31)P NMR spectra. Two-dimensional NMR experiments, such as proton-detected heteronuclear single quantum ((1)H-(31)P HSQC) and (31)P correlation spectroscopy ((31)P COSY), have been used to assign the resonances. In the phosphomonoester region many of the signals could be assigned to known metabolites in the glycolytic and pentose phosphate pathways, although some signals remain unidentified. Accumulation of ribulose 5-phosphate, xylulose 5-phosphate, and ribose 5-phosphate was observed in a strain lacking transketolase activity when grown in synthetic complete medium. No such accumulation occurred when the cells were grown in yeast-peptone-dextrose medium. Trimetaphosphate (intracellular concentration about 0.2 mM) was detected in both cold methanol-chloroform and perchloric acid extracts.  相似文献   

7.
The levels of intermediates of aerobic and anaerobic glycolysis were determined in perchloric acid extracts prepared from glycolyzing suspensions of Saccharomyces cerevisiae by 31P and 13C NMR spectroscopy. From 31P NMR measurements a small increase in the level of nucleoside triphosphates was found in derepressed cells upon oxygenation, while the ratio of nucleoside diphosphates to nucleoside triphosphates was a factor of 3 lower aerobically. Combined with the previous observation that the level of intracellular Pi is lower by a factor of 3 aerobically, this leads to the conclusion that the phosphate potential [NTP]/([NDP][Pi]) is lower by an order of magnitude during anaerobic glycolysis than during aerobic glycolysis. There was no correlation between the level of glucose 6-phosphate and the rate of glucose utilization. We used 13C NMR to determine the scrambling of the 13C label from C1 to C6 in fructose 1,6-bisphosphate (Fru-P2). There was more scrambling of the label during aerobic than during anaerobic glycolysis. Since the level of Fru-P2 did not change much upon oxygenation, this suggests that in aerobic glycolysis there is control of at least one enzyme in the lower part of the Embden-Meyerhof-Parnas pathway, below Fru-P2, which gives the 13C level more time to equilibrate between C1 and C6 of Fru-P2. Previous 13C NMR measurements of glucose utilization rates had shown a 2-fold reduction upon oxygenation, reflecting control in the early stages of the pathway.  相似文献   

8.
31P-NMR measurements of saturation transfer have been used to measure phosphate consumption in respiratory competent cells of the yeast Saccharomyces cerevisiae. Measurements of oxygen consumption and maintenance of the cells in a metabolic steady state during the NMR experiments were facilitated by immobilisation of the cells in an agarose gel matrix which could be perfused in the NMR spectrometer. The contribution of glycolysis to the observed rate of phosphate consumption was estimated by simultaneously measuring glucose consumption and ethanol production in the perfusion buffer. The remaining phosphate consumption, which was attributed to flux through the reaction catalysed by the mitochondrial ATP synthase, combined with measurements of oxygen consumption allowed estimation of a P:O ratio (mol ATP synthesised:atoms oxygen consumed) which was close to 3.  相似文献   

9.
31P-NMR measurements of saturation transfer have been used to measure phosphate consumption in respiratory competent cells of the yeast Saccharomyces cerevisiae. Measurements of oxygen consumption and maintenance of the cells in a metabolic steady state during the NMR experiments were facilitated by immobilisation of the cells in an agarose gel matrix which could be perfused in the NMR spectrometer. The contribution of glycolysis to the observed rate of phosphate consumption was estimated by simultaneously measuring glucose consumption and ethanol production in the perfusion buffer. The remaining phosphate consumption, which was attributed to flux through the reaction catalysed by the mitochondrial ATP synthase, combined with measurements of oxygen consumption allowed estimation of a P:O ratio (mol ATP synthesised:atoms oxygen consumed) which was close to 3.  相似文献   

10.
The fermentation of cellulose and cellobiose by Clostridium thermocellum monocultures and C. thermocellum/Methanobacterium thermoautotrophicum cocultures was studied. All cultures were grown under anaerobic conditions in batch culture at 60 degrees C. When grown on cellulose, the coculture exhibited a shorter lag before initiation and growth and celluloysis than did the monoculture. Cellulase activity appeared earlier in the coculture than in the monoculture; however, after growth had ceased, cellulase activity was greater in the monoculture. Monocultures produced primarily ethanol, acetic acid, H2 and CO2. Cocultures produced more H2 and acetic acid and less ethanol than did the monoculture. In the coculture, conversion of H2 to methane was usually complete, and most of the methane produced was derived from CO2 reduction rather than from acetate conversion. Agents of fermentation stoppage were found to be low pH and high concentrations of ethanol in the monoculture and low pH in the coculture. Fermentation of cellobiose was more rapid than that of cellulose. In cellobiose medium, the methanogen caused only slight changes in the fermentation balance of the Clostridium, and free H2 was produced.  相似文献   

11.
The effects of valinomycin and nigericin on sugar chemotaxis in Spirochaeta aurantia were investigated by using a quantitative capillary assay, and the fluorescent cation, 3,3'-dipropyl-2,2'-thiodicarbocyanine iodide was used as a probe to study effects of chemoattractants on membrane potential. Addition of a chemoattractant, D-xylose, to cells in either potassium or sodium phosphate buffer resulted in a transient membrane depolarization. In the presence of valinomycin, the membrane potential of cells in potassium phosphate buffer was reduced, and the transient membrane depolarization that resulted from the addition of D-xylose was eliminated. Although there was no detectable effect of valinomycin on motility, D-xylose taxis of cells in potassium phosphate buffer was completely inhibited by valinomycin. In sodium phosphate buffer, valinomycin had little effect on membrane potential or D-xylose taxis. Nigericin is known to dissipate the transmembrane pH gradient of S. aurantia in potassium phosphate buffer. This compound did not dissipate the membrane potential or the transient membrane depolarization observed upon addition of D-xylose to cells in either potassium or sodium phosphate buffer. Nigericin did not inhibit D-xylose taxis in either potassium or sodium phosphate buffer. This study indicates that the membrane potential but not the transmembrane pH gradient of S. aurantia is somehow involved in chemosensory signal transduction.  相似文献   

12.
We studied physiological roles of the yeast vacuole in the phosphatemetabolism using 31P-in vivo nuclear magnetic resonance (NMR)spectroscopy. Under phosphate starvation wild-type yeast cellscontinued to grow for two to three generations, implying thatwild-type cells contain large phosphate pool to sustain thegrowth. During the first four hours under the phosphate starvedcondition, the cytosolic phosphate level was maintained almostconstant, while the vacuolar pool of phosphate decreased significantly.31P-NMR spectroscopy on the intact cells and perchloric acid(PCA) extracts showed that drastic decrease of polyphosphatetook place during this phase. In contrast,  相似文献   

13.
The identity of a number of phosphorus-containing metabolites present in Synechocystis sp. PCC 6308 has been confirmed by 31P NMR spectroscopy. The presence of D-ribulose 1,5-bisphosphate (RuBP); DL-glyceraldehyde 3-phosphate (GlyP); D(−) 3-phosphoglyceric acid (3PGA); D-ribulose 5-phosphate (Ru5P); 6-phosphogluconic acid (6PGA); phosphoenolpyruvate (PEP); inorganic phosphate (Pi); uridine diphosphoglucose (UDPG); ADP and ATP were demonstrated by the pH dependence of their 31P NMR chemical shifts in spectra of perchloric acid cell extracts. Intracellular pH of cells was determined to be 7.5–7.7. Received: 20 September 1996 / Accepted: 26 October 1996  相似文献   

14.
The novel phosphorylated pyrrolidine diethyl(2-methylpyrrolidin-2-yl)phosphonate (DEPMPH) was evaluated as a (31)P NMR probe of the pH changes associated with ischemia/reperfusion of rat isolated hearts and livers. In vitro titration curves indicated that DEPMPH exhibited a 4-fold larger amplitude of chemical shift variation than inorganic phosphate yielding an enhanced NMR sensitivity in the pH range of 5.0-7.5 that allowed us to assess pH variations of less than 0.1 pH units. At the non-toxic concentration of 5 mm, DEPMPH distributed into external and cytosolic compartments in both normoxic organs, as assessed by the appearance of two resonance peaks. An additional peak was observed in normoxic and ischemic livers, assigned to DEPMPH in acidic vesicles (pH 5.3-5.6). During severe myocardial ischemia, a third peak corresponding to DEPMPH located in ventricular and atrial cavities appeared (pH 6.9). Mass spectrometry and NMR analyses of perchloric extracts showed that no significant metabolism of DEPMPH occurred in the ischemic liver. Reperfusion with plain buffer resulted in a rapid washout of DEPMPH from both organs. It was concluded that the highly pH-sensitive DEPMPH could be of great interest in noninvasive ex vivo studies of pH gradients that may be involved in many pathological processes.  相似文献   

15.
M Merle  I Pianet  P Canioni  J Labouesse 《Biochimie》1992,74(9-10):919-930
Rat astroglial cells in primary culture (95% enrichment) and C6 glioma cells were adapted to grow on microcarrier beads. In vivo 31P NMR spectra were collected from cell-covered beads perfused in the NMR tube. The NMR-visible phosphorylated metabolite contents of both cell types were determined using saturation factors calculated from the values of longitudinal relaxation times determined for C6 cells using progressive saturation experiments. On the other hand, the amounts of phosphorylated metabolites in cells were determined from proton decoupled 31P NMR spectra of cell perchloric acid extracts. The results indicate that the NTP and Pi contents of the normal and tumoral cells were similar, whereas the PCr level was higher in C6 cells and the NDP and phosphomonoester levels higher in astrocytes. The comparison of 1H NMR spectra of cell perchloric acid extracts evidenced larger inositol and alanine contents in C6 cells, whereas larger taurine and choline (and choline derivatives) contents were found in astrocytes. The Glu/Gln ratio was very different, 3.5 and 1 in C6 cells and astrocytes, respectively. In both cases, the more intense resonance in the 1H NMR spectrum was assigned to glycine. Based on the comparison of the metabolite content of a tumoral and a normal cell of glial origin, this work emphasizes the usefulness of a multinuclear NMR study in characterizing intrinsic differences between normal and tumoral cells.  相似文献   

16.
In a previous study, 31P NMR revealed that an intracellular acidification occurred during the respiratory burst of P388 D1 macrophages, but this NMR technique could not provide information about the localization of this event in cells. However, using a fluorescent pH-dependent probe, it was confirmed that this transient pH decrease does not occur in the cytosol but more probably occurs in relation to the function of endocytic vesicles. A 31P NMR study allowed us to evidence a transient increase in ADP phosphorylation at the beginning of the respiratory burst, possibly in connection with the initiation of the oxidase complex involved in superoxide anion production. A 13C NMR study of perchloric acid extracts from in vivo primed cells revealed an increase in glucose consumption due to Con A triggering. Sugar phosphates, which must be considered markers of the hexose monophosphate shunt involved in the respiratory burst, were also observed upon this activation process.  相似文献   

17.
Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2-deoxyglucose and incubated in sodium phosphate buffer were still able to transport serine, and this result indicated that the chemical sodium gradient was capable of driving transport. However, when the deenergized cells were treated with valinomycin and diluted into sodium phosphate to create both an artificial membrane potential and a chemical sodium gradient, rates of serine uptake were fivefold greater than in cells having only a sodium gradient. If deenergized cells were preloaded with sodium (no membrane potential or sodium gradient), there was little serine transport. Nigericin and monensin, ionophores capable of reversing sodium gradients across membranes, strongly inhibited sodium-dependent uptake of the three amino acids. Membrane vesicles loaded with potassium and diluted into either lithium or choline chloride were unable to transport serine, but rapid uptake was evident if sodium chloride was added to the assay mixture. Serine transport had an extremely poor affinity for sodium, and more than 30 mM was needed for half-maximal rates of uptake. Serine transport was inhibited by an excess of threonine, but an excess of alanine had little effect. Results indicated that S. bovis had separate sodium symport systems for serine or threonine and alanine, and either the membrane potential or chemical sodium gradient could drive uptake.  相似文献   

18.
The 31P-NMR spectrum of intact human peripheral blood lymphocytes contains a large unidentified peak in the phosphomonoester region. The pH dependency of the 31P-NMR chemical shift of this peak in perchloric acid extracts of peripheral blood lymphocytes was recorded. It was compared to the pH dependency of the chemical shift of phosphorylethanolamine, phosphorylcholine, and ribose 5-phosphate in model solutions. An excellent agreement was found between the behavior of phosphorylethanolamine and the unidentified peak. To further substantiate this assignment phosphorylethanolamine was added to extracts and the pH titrations were repeated. The added phosphorylethanolamine gave exactly the same chemical shift as the unidentified peak and no difference was observed with pH titrations. The concentration of phosphorylethanolamine in human peripheral blood lymphocytes was estimated by 31P NMR to be 2.4 mumol/10(9) cells (range 0.9-4.3/10(9) cells, n = 4).  相似文献   

19.
A quantitative analysis of the phosphorus-31 NMR spectra of excised perfused rat liver has been carried out at 80.9 MHz using a 30-mm sample cell. The results indicate that in liver from fed rats, all intracellular ATP is detected by NMR. In contrast, only the cytosolic fractions of Pi and ADP can be observed as indicated by careful analysis of spectra obtained from perchloric acid liver extracts and intact liver under valinomycin perfusion. In well-oxygenated perfused liver the ATP concentration is 7.4 mM. Values of 5.3 mM and 0.9 mM are found respectively for Pi and ADP concentrations in the cytosolic compartment. Cytosolic pH value (pHi) is 7.25 +/- 0.05 and free magnesium concentration 0.5 mM. Addition of 70 mM (0.4%) ethanol to the perfusate of a fed rat liver induces 25% and 38% reduction of ATP and Pi levels, respectively. A large amount of sn-glycerol 3-phosphate is synthesized (up to 11 mM) in the cytosol. After ethanol withdrawal, a large overshoot in cytosolic Pi is observed, which is indicative of a net uptake of Pi across the plasma membrane that occurred during ethanol oxidation. No significant pH variation is observed during ethanol infusion. In perfused liver of rats subjected to 48-h fasts, the concentrations of cytosolic phosphorylated metabolites are 5.3 mM, 0.8 mM and 11.5 mM for ATP, ADP and Pi, respectively. The perfusion of the liver with 70 mM ethanol does not change the adenine nucleotide levels, while the Pi content is decreased by 10%. During a 4-min hypoxia, induced by reducing the perfusion flow rate from 12 ml to 3 ml min-1 (100 g body weight)-1, ATP concentration decreases to 5.8 mM in the fed rat liver. Cytosolic Pi and ADP increase to 8.7 mM and 1.6 mM, respectively. The cytosolic pH evolves to more acidic values and reaches 7.02 +/- 0.05 at the end of the 4-min hypoxic period.  相似文献   

20.
The uptake of amino acids by isolated rat renal brush border membrane vesicles in a modified Krebs-Ringer bicarbonate buffer and a phosphate buffer was compared to the uptake in the standard membrane vesicle buffer, Tris-Hepes-mannitol. The uptake in the modified Krebs-Ringer bicarbonate buffer was similar to that in the Tris-Hepes-mannitol buffer. Removal of the ionic constituents other than NaCl and NaHCO3 in the modified Krebs-Ringer bicarbonate buffer (KCl, CaCl2, KH2PO4 and MgSO4) did not affect the amino acid uptake by the isolated membrane vesicles. The timed uptake of proline under sodium gradient conditions in a phosphate buffer had a markedly dampened overshoot. Kinetic analysis of the initial rate of proline uptake in a phosphate buffer compared to a Tris-Herpes-mannitol buffer showed two entry systems for proline in each buffer with similar Km values, but the maximal rate of transport (V) for each system in the phosphate buffer was much lower than that in the Tris-Hepes-mannitol buffer. From these data, phosphate buffer does not appear to be a suitable medium for the study of amino acid uptake by isolated brush border membrane vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号