首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal changes in several forms of nitrogen were investigatedin Coptis japonica, an evergreen rosette hemicryptophyte intemperate deciduous forest. The concentration of total nitrogenin rhizomes and roots decreased during the period of new shootgrowth from winter to spring. In the rhizomes, total solubleprotein stored by early summer decreased gradually until winter,coupled with an increase in free amino acids. Nitrogen was largelystored in free amino acids in the roots, especially during summer.The total soluble protein in current-year leaves decreased fromspring to summer and then increased during winter. The seasonalchanges in nitrogen components were coincident with the changein light-saturated photosynthetic rates recorded in a previousstudy. The ratio of total soluble protein to total nitrogendecreased from spring to summer and then increased from latesummer to winter in the current-year leaves. In contrast, chlorophyllcontent and the ratio of chlorophyll to total nitrogen werehigher in summer than in other seasons. The results indicatethat nitrogen was used in a manner that better utilizes thevery weak light in summer and the higher light intensities inother seasons. The major component of the free amino acid poolwas asparagine, in every organ throughout the season, exceptfor the senescent leaves. Since asparagine has a high N:C ratio,we suppose that the asparagine-dominated amino acid pool isadvantageous in the carbon-limited environment of the forestfloor.Copyright 1994, 1999 Academic Press Free amino acid composition, total nitrogen, total soluble protein, photosynthesis, evergreen hemicryptophyte  相似文献   

2.
《Phytochemistry》1986,25(8):1843-1846
The annual course of frost resistance and free proline content was studied in leaves at different stages of development of a woody species (Nothofagus dombeyi) from Southern Chile. The freezing resistance reached a minimum in late spring or summer and a maximum in the autumn-winter period. Adult and juvenile trees showed a similar degree of resistance; meanwhile, cold resistance was maximum at the seedling stage. Free proline levels and frost resistance in leaves changed throughout the seasonal cycle, increasing in winter and decreasing in summer. Artificial hardening caused changes in amino acid content of leaves; while valine, proline, lysine, histidine, serine and alanine increased upon hardening, aspartic acid, glutamic acid and arginine decreased. The nature of cold-induced metabolic adjustments is discussed as well as its ecological significance.  相似文献   

3.
During leaf senescence and abscission, total nitrogen in leaves of mulberry ( Morus alba L. ev. Shin-ichinose) declined substantially whereas total nitrogen in buds, bark and stem wood increased markedly, suggesting translocation of nitrogen from senescent leaves in the autumn. After leaf abscission the winter buds and stems remained almost unchanged with respect to fresh and dry weight and total nitrogen until bud break in spring. In burst buds these parameters then increased drastically during the new growth while they decreased markedly in stems. Free arginine in the stem bark accumulated in parallel with the accumulation of total nitrogen in buds and stems in the autumn. Accumulation of proline in the wood, bark and buds also started in October but continued even after leaf-fall, increasing until mid-January (wood), mid-February (bark) and the new growth (buds). Prior to and in the early stage of bud break, proline in bark and wood decreased significantly and arginine in stem bark decreased slightly. Simultaneously, proline and arginine in the dormancy-releasing buds and asparagine, aspartic acid and glutamic acid in the buds and stems increased appreciably, suggesting that this increase in free amino acids was mainly derived from free amino acids (proline and arginine) stored in stems. The resulting marked decrease in total nitrogen and the drastic increase in asparagine in the stems and sprouting buds/new shoots were primarily due to a breakdown of protein stored in stems.  相似文献   

4.
Seasonal changes in several forms of nitrogen were investigated in the evergreen chamaephyte Pachysandra terminalis Sieb. et Zucc. growing in temperate evergreen coniferous forest. After plants sprouted new shoots, nitrogen accumulated largely as proteins in the leaves from summer to late autumn and, additionally, during a short spring period in the following year. Proteins accumulated in the overwintered leaves decreased markedly in summer, indicating that they were used for new shoot growth. A similar change was found in Fraction 1 protein. This is consistent with the seasonal changes in photosynthetic capacity and carboxylation efficiency observed in previous studies. The allocation of nitrogen to Fraction 1 protein increased in the spring, presumably to utilize better the relatively high light intensity at the forest floor before leaf expansion of the understory deciduous plants. In contrast to protein nitrogen, soluble nitrogen was present largely in stems and rhizomes. Aspargine was the major component of the amino acid pool in all organs throughout the year, especially in stems in summer. Since asparagine has the highest N:C ratio (2N:4C), an amino acid pool dominated by asparagine is economic in the use of carbon and advantageous for the carbon-limited environment of the forest understory.  相似文献   

5.
The changes of total nitrogen and free amino compounds wereexamined in leaves, bark and xylem tissues of olive tree duringa complete annual cycle. In leaves total nitrogen decreasedin spring/early-summer but reached the highest level in autumn-winterperiods. In bark tissues total nitrogen fluctuations were mainlyrelated to the periodical cambial activities. In xylem tissuestotal nitrogen was detected in low levels with no fluctuationsover the year. The free amino compounds in leaves showed seasonalpeaks during the spring and autumn stem elongations, while aconsiderable restriction of their levels was detected in summer.Glutamate, aspartate, proline, alanine, serine and -aminobutyrateare the predominant amino acids detected in leaves. Glutamateand aspartate increased considerably in spring and autumn periodsbut disappeared in summer. Proline remained almost unchangedover the year. Alanine, in addition to the spring and autumnfluctuations, also fluctuated in summer, -aminobutyrate wasdetected at highest levels in winter. In bark tissues, the patternof fluctuations and the composition of the free amino compoundswere similar to those of leaves. In xylem tissues free aminocompounds were detected in high levels over the year exceptfor the drops in spring and summer cambial activity periods.Xylem was the most important reservoir for the readily transportablesoluble nitrogen being accumulated during the maturing of theproduced new xylem. Arginine, glutamine, alanine, glutamate,aspartate, serine, -aminobutyrate and proline are the most prevalentamino compounds in xylem. Arginine and glutamine showed extensiveinterchanges. Arginine increased in autumn while glutamine andalanine showed low levels in the same period. Olive tree (Olea europaea L), amino acids  相似文献   

6.
模拟酸雨对杜仲叶氮代谢的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
 探讨了春夏两季模拟酸雨对杜仲(Eucommia ulmoides Oliv.)叶氮代谢的几个关键酶及相关物质含量的影响。结果表明:春夏两季杜仲叶硝酸还原酶(NR)、谷酰胺合成酶(GS)、谷氨酸脱氢酶(GDH)和谷丙转氨酶(GPT)活性在一定pH值酸雨胁迫下随酸雨pH值的降低而降低,夏季各酶活性下降率比春季高。杜仲叶可溶性蛋白质和总氮含量春夏两季也随酸雨pH值降低而降低(夏季可溶性蛋白含量与pH值呈正相关),总游离氨基酸含量则随pH值的降低而升高(二者呈负相关)。由此可见,酸雨对杜仲叶氮代谢产生了显著影响。  相似文献   

7.
Tephrosia purpurea Pers. was found to accumulate high proline content in dry habitat. The proline content was higher in shoots, especially in leaves, than in roots. Pod walls and young seeds showed the highest proline content. The proline content of young leaves was higher than that of mature and old leaves. During leaf senescencein vitro proline content increased rapidly upto 6 h and further decreased in leaves as well as in leachate. High proline content seems to be positively related with ‘survival capability’ of this plant.  相似文献   

8.
The present study analyses changes in nitrogen compounds, amino acid composition, and glutamate metabolism in the resurrection plant Sporobolus stapfianus during dehydration stress. Results showed that older leaves (OL) were desiccation-sensitive whereas younger leaves (YL) were desiccation-tolerant. OL lost their soluble protein more rapidly, and to a larger extent than YL. Enzymes of primary nitrogen assimilation were affected by desiccation and the decrease in the glutamine synthetase (GS, EC 6.3.1.2) and ferredoxin-dependent GOGAT (Fd-GOGAT, EC 1.4.7.1) activities was higher in OL than in YL, thus suggesting higher sensibility to dehydration. Moreover, YL showed higher total GS enzyme activity at the end of the dehydration stress and was shown to maintain high chloroplastic GS protein content during the entire stress period. Free amino acid content increased in both YL and OL between 88% and 6% relative water content. Interestingly, OL and YL did not accumulate the same amino acids. OL accumulated large amounts of proline and gamma-aminobutyrate whereas YL preferentially accumulated asparagine and arginine. It is concluded (i) that modifications in the nitrogen and amino acid metabolism during dehydration stress were different depending on leaf development and (ii) that proline and gamma-aminobutyrate accumulation in S. stapfianus leaves were not essential for the acquisition of desiccation tolerance. On the contrary, the accumulation of large amounts of asparagine and arginine in the YL during dehydration could be important and serve as essential nitrogen and carbon reservoirs useful during rehydration. In this context, the role of GS for asparagine accumulation in YL is discussed.  相似文献   

9.
马玉心  蔡体久  宋丽萍  喻晓丽 《生态学报》2007,27(11):4596-4602
研究了自然生境下生长的兴安鹿蹄草(Pyrola dahurica(H.Andr.)Kom.)根状茎及叶片中渗透调节物质、膜脂过氧化产物在雪盖前后的变化。结果表明,在雪盖前期(10月1日~12月15日)兴安鹿蹄草根状茎及叶片中丙二醛(MDA)含量先增高,尔后下降,翌年春季雪盖后期(3月1日~4月15日)MDA含量明显低于雪盖前期,雪盖前期根状茎的丙二醛(MDA)含量低于叶片,雪盖后期高于叶片。可溶性糖、可溶性蛋白质含量在雪盖前期随着温度的下降而升高,11月中旬达到最大,尔后下降,脯氨酸含量先下降尔后升高。雪盖后期渗透调节物质含量高于雪盖前期,可溶性糖含量随气温的升高而下降,可溶性蛋白质与脯氨酸含量随气温升高而大幅度升高,而且成明显正相关。根状茎的可溶性糖含量在雪盖前期、雪盖后期低于叶片,可溶性蛋白质与脯氨酸含量在雪盖前期、雪盖后期高于叶片。兴安鹿蹄草主要通过渗透调节物质含量的变化来适应雪盖前期及雪盖后期低温环境而安全越冬。  相似文献   

10.
Drought-stressed flatpea (Lathyrus sylvestris L.) plants from8 to 22 weeks old were analysed for nitrogen, soluble proteinand free amino acids. An increase in nitrogen and free aminoacid concentrations and a decrease in soluble protein levelwere observed in roots of plants up to 16 weeks old. The cumulativeconcentration of free amino acids increased with drought stress.Tissue concentrations of 2, 4-diaminobutyric acid (1.6–2.6%of the dry weight) were highest in leaves. Levels increasedsteadily, nearly doubling, in leaves and stems between weeks10 and 16. Levels in drought-stressed leaves were, on average,11.9% higher than those of controls. Estimated concentrationsof a mixture of 4-aminobutyric acid and an unknown amino acidwere highest in stems, increased in this tissue with age andtended to increase in stems and leaves and decrease in rootsin response to water deficit. Levels of the mixture of homoserineand another unidentified amino acid were not influenced by ageor water status of the plants. Root concentrations of asparagine,arginine, glutamine, aspartate, and another prominent, unidentifiedamino acid increased with plant age and reached a peak at thetime of flowering (14 to 18 weeks). Only the concentration ofthe unknown compound was elevated following drought stress.Concentrations of valine, isoleucine, leucine, phenylalanine,and methionine also increased during this period and were elevatedin drought-stressed plants. Proline levels increased with plantage and drought stress, but proline accounted for only about10% of the total free amino acids in the drought-stressed plants. Key words: 2, 4-Diaminobutyric acid, drought, flatpea  相似文献   

11.
银杏黄酮苷和萜类内酯含量的季节变化   总被引:11,自引:0,他引:11  
以银杏(Ginkgo biloba L.)2年生实生苗和大树为试材,分析根、茎和叶中银杏黄酮苷及萜类内酯含量的季节变化规律。银杏叶中萜类内酯含量从春季起逐渐增加,至夏末秋初达最高值,随后逐渐减少;根和茎中萜类内酯含量的季节变化与叶中相类似,但在冬季休眠期维持较高含量,进入春季伴随叶的萌发生长降低到全年的最低点。银杏茎中萜类内酯含量最低,相当于叶含量的1/3和根含量的1/2。叶中白果内酯含量在总萜类内酯中所占比例较高,而在根和茎中所占比例则较低。随着树龄增加,银杏叶萜类内酯含量下降,这可能与萜类内酯合成能力下降有关。银杏黄酮苷含量在春季幼叶中最高,夏季和秋季相对较低且变化不明显;长枝叶中槲皮素较多,而短枝叶中山柰黄素较多。对不同季节和不同部位的不同成分含量的相关机理进行了讨论。  相似文献   

12.
13.
马玉心  蔡体久  宋丽萍  喻晓丽 《生态学报》2007,27(11):4596-4602
研究了自然生境下生长的兴安鹿蹄草(Pyrola dahurica (H.Andr.) Kom.)根状茎及叶片中渗透调节物质、膜脂过氧化产物在雪盖前后的变化。结果表明,在雪盖前期(10月1日~12月15日)兴安鹿蹄草根状茎及叶片中丙二醛(MDA)含量先增高,尔后下降,翌年春季雪盖后期(3月1日~4月15日)MDA含量明显低于雪盖前期,雪盖前期根状茎的丙二醛(MDA)含量低于叶片,雪盖后期高于叶片。可溶性糖、可溶性蛋白质含量在雪盖前期随着温度的下降而升高,11月中旬达到最大,尔后下降,脯氨酸含量先下降尔后升高。雪盖后期渗透调节物质含量高于雪盖前期,可溶性糖含量随气温的升高而下降,可溶性蛋白质与脯氨酸含量随气温升高而大幅度升高,而且成明显正相关。根状茎的可溶性糖含量在雪盖前期、雪盖后期低于叶片,可溶性蛋白质与脯氨酸含量在雪盖前期、雪盖后期高于叶片。兴安鹿蹄草主要通过渗透调节物质含量的变化来适应雪盖前期及雪盖后期低温环境而安全越冬。  相似文献   

14.
Changes in the contents of ribulose 1,5-bisphosphate carboxylase(RuBPCase) and other cellular constituents were measured inthe leaves remaining on mulberry shoots after removal of thetop one-third of shoots (old) which had developed since thespring and shoots (young) which developed following shoot harveston 1 July. Top pruning of the young summer shoots increasedthe contents of chlorophyll, total soluble protein, RuBPCase,RNA and starch in the leaves. In the old shoots that had developedsince the spring, top-pruning in the late summer produced noappreciable change except in the content of RNA. The contentof RuBPCase of the young summer shoots doubled as a result oftop-pruning; this was the most conspicuous change in the cellularconstituents examined. The increase in RuBPCase protein accountedsatisfactorily for the increase in total soluble protein. Key words: RuBP carboxylase, shoot top-pruning, mulberry (Morus alba)  相似文献   

15.
花生叶片衰老过程中氮素代谢指标变化   总被引:22,自引:0,他引:22       下载免费PDF全文
以鲁花11和辐8707两个花生(Arachis hypogea L.)品种为材料,对大田条件下花生叶片衰老过程中N素代谢指标变化进行了研究,结果表明,花生叶叶片展开至衰老过程中,蛋白酶活性逐渐升高,叶中N含量逐渐降低;硝酸还原酶(NR)活性、叶绿素、游离氨基酸和可溶性蛋白质含量呈抛物线型变化,最先开始降低的是NR活性,其次是叶绿素含量,最后是游离氨基酸和可溶性蛋白质含量。  相似文献   

16.
Some metabolic changes of senescing turgid and water-stressedexcised rice leaves were compared under incubation in the dark.The decrease of the chlorophyll and protein level and the increaseof the -amino nitrogen were faster in the water-stressed leavesthan in the turgid leaves during the first two or three daysof incubation. However, the changes in levels of chlorophyll,protein and a-amino nitrogen were later retarded by water stress.The rate of decline in soluble sugar was more rapid in the turgidthan in the water-stressed leaves. In turgid leaves, there wasa slight but significant increase in the proline content inthe first day of incubation; subsequently, proline accumulatedrelatively rapidly, yet at a slower rate than in the stressedleaves. The activity of acid inorganic pyrophosphatase increased,but that of alkaline inorganic pyrophosphatase decreased duringthe senescence of both turgid and water-stressed leaves. Theenzyme activities are, therefore, due to two separate enzymeproteins. Water stress enhanced the increase of acid inorganicpyrophosphatase activity only during the first two days; itretarded the decrease of alkaline inorganic pyrophosphataseactivity at later stage of incubation. It is concluded that water stress does not accelerate all themetabolic changes associated with the senescence of excisedleaves. (Received January 24, 1981; Accepted March 27, 1981)  相似文献   

17.
研究冬季和夏季亚热带杉木幼苗在增温5 ℃和减少50%自然降水处理下叶片养分和代谢组分的变化.结果表明: 由于不同季节温度和水分差异,杉木叶片的养分和生理代谢组分在不同季节有不同的表现.冬季杉木叶片碳、氮、磷和钾含量显著高于夏季.夏季减少降水、增温处理对杉木叶片各类抗氧化酶活性均无显著影响,冬季减少降水处理分别显著降低超氧化物歧化酶活性20.7%和过氧化物酶活性17.8%.冬季增温后杉木叶片非酶促的抗坏血酸含量显著增加132.5%.冬季增温+减少降水处理降低杉木碳含量,促进渗透物质脯氨酸和氮含量的累积.夏季增温+减少降水处理显著提高杉木叶片碳含量3.3%.无论是冬季还是夏季,增温+减少降水处理对杉木叶片抗氧化系统无显著影响.植物对夏季增温的适应机制与冬季增温不同,杉木叶片的养分变化对同时增温+减少降水更加敏感.为了更好地管理种植林,以提高植物的生产力,在未来气候变化下,应提高植物对养分供需和对季节响应的关注.  相似文献   

18.
Tilsner J  Kassner N  Struck C  Lohaus G 《Planta》2005,221(3):328-338
Oilseed rape (Brassica napus L.) needs very high nitrogen fertilizer inputs. Significant amounts of this nitrogen are lost during early leaf shedding and are a source of environmental and economic concern. The objective of this study was to investigate whether the remobilization of leaf amino acids could be limiting for nitrogen use efficiency. Therefore, amino acid concentrations were analyzed in subcellular compartments of leaf mesophyll cells of plants grown under low (0.5 mM NO3) and high (4 mM NO3) nitrogen supply. With high nitrogen supply, young leaves showed an elevated amino acid content, mainly in vacuoles. In old leaves, however, subcellular concentrations were similar under high and low nitrogen conditions, showing that the excess nitrogen had been exported during leaf development. The phloem sap contained up to 650 mM amino acids, more than four times as much than the cytosol of mesophyll cells, indicating a very efficient phloem-loading process. Three amino acid permeases, BnAAP1, BnAAP2, and BnAAP6, were identified and characterized. BnAAP1 and BnAAP6 mediated uptake of neutral and acidic amino acids into Xenopus laevis oocytes at the actual apoplastic substrate concentrations. All three transporters were expressed in leaves and the expression was still detectable during leaf senescence, with BnAAP1 and BnAAP2 mRNA levels increasing from mature to old leaves. We conclude that phloem loading of amino acids is not limiting for nitrogen remobilization from senescing leaves in oilseed rape.  相似文献   

19.
采用营养液水培方法,以"雪美"品种甜瓜(Cucumis melo L.)为材料,研究了外源脯氨酸(Proline)对盐胁迫下甜瓜幼苗叶片和根系硝酸还原的影响。结果表明:(1)盐胁迫提高了甜瓜幼苗叶片和根系内铵态氮(NH4+-N)和可溶性蛋白含量;降低了硝态氮(NO-3-N)含量和硝酸还原酶(nitrate reductase,NR)活性。(2)外源施用脯氨酸明显地提高了盐胁迫下甜瓜幼苗叶片和根系内NO-3-N和可溶性蛋白含量;降低了盐胁迫下甜瓜幼苗叶片和根系内NH+4-N含量;增强了盐胁迫下甜瓜幼苗体内NR活性。研究结果表明,外源脯氨酸可以通过调节甜瓜幼苗体内硝酸还原酶活性和氮化合物含量来缓解盐胁迫对甜瓜幼苗植株的伤害。  相似文献   

20.
A series of experiments were conducted to characterize the water stress-induced changes in the activities of RuBP carboxylase (RuBPCO) and sucrose phosphate synthase (SPS), photosystem 2 activity, and contents of chlorophylls, carotenoids, starch, sucrose, amino acids, free proline, proteins and nucleic acids in mulberry (Morus alba L. cv. K-2) leaves. Water stress progressively reduced the activities of RuBPCO and SPS in the leaf extracts, the chlorophyll content, and PS2 activity in isolated chloroplasts. Plants exposed to drought showed lower content of starch and sucrose but higher total sugar content than control plants. While the soluble protein content decreased under water stress, the amino acid content increased. Proline accumulation (2.5-fold) was noticed in stressed leaves. A reduction in the contents of DNA and RNA was observed. Reduced nitrogen content was associated with the reduction in nitrate reductase activity. SDS-PAGE protein profile showed few additional proteins (78 and 92 kDa) in the water stressed plants compared to control plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号