首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
跨损伤合成的DNA聚合酶——一类新的DNA聚合酶   总被引:1,自引:0,他引:1  
细胞虽然拥有多种修复途径,但有些DNA损伤仍不可避免地会逃避修复而在基因组上保留下来,细胞跨损伤DNA合成的分子机制一直是DNA修复中主要的未解决问题之一.最近通过对一类结构相关性UmuC/DinB蛋白质超家族成员的研究发现它们具有DNA聚合酶功能.这类新发现的DNA聚合酶不同于经典的复制性DNA聚合酶,它们能以易误/突变(error-prone/mutagenic)或无误(error-free)方式进行跨损伤(translesion)DNA合成,并且从细菌到人在进化上功能保守.  相似文献   

2.
The circular DNA of hepatitis B Dane particles, which serves as the primer/template for an endogenous DNA polymerase, was analyzed by electrophoresis before and after a polymerase reaction and after digestion by restriction endonuclease or single-strand-specific endonuclease S1. The unreacted molecules extracted from the particles were electrophoretically heterogeneous, and treatment with S1 nuclease produced double-stranded linear DNA ranging in length from 1,700 to 2,800 base pairs (bp). After an endogenous DNA polymerase reaction, two discrete species of DNA molecules were found: a circular form and a linear form 3,200 bp long. The reaction resulted in a population of molecules with an elongated and more homogeneous double-stranded region. These results suggest that the circular molecules in Dane particles have single-stranded regions of varying lengths that are made double stranded during the DNA polymerase reaction. The endogenous DNA polymerase was found to initiate apparently at random in a region spanning more than a third of the molecule. Analysis of restriction endonuclease cleavage fragments of the fully elongated DNA revealed that although the molecules were of a uniform length, they were somewhat heterogeneous in sequence. The sum of the sizes of the 10 major endonuclease Hae III-generated fragments, detected by ethidium bromide, was 3,880 bp. Two additional fragments (B and G) detected by autoradiography after an endogenous DNA polymerase reaction with (32)P-labeled deoxynucleoside triphosphates made the total 4,910 bp.  相似文献   

3.
We transformed primary hamster brain cells with four isolates of JC virus and JC virus DNA. Several properties of these transformants were characterized and compared to those of simian virus 40 transformants isolated under identical conditions.  相似文献   

4.
The DNA polymerase processivity factor of the Epstein-Barr virus, BMRF1, associates with the polymerase catalytic subunit, BALF5, to enhance the polymerase processivity and exonuclease activities of the holoenzyme. In this study, the crystal structure of C-terminally truncated BMRF1 (BMRF1-ΔC) was solved in an oligomeric state. The molecular structure of BMRF1-ΔC shares structural similarity with other processivity factors, such as herpes simplex virus UL42, cytomegalovirus UL44, and human proliferating cell nuclear antigen. However, the oligomerization architectures of these proteins range from a monomer to a trimer. PAGE and mutational analyses indicated that BMRF1-ΔC, like UL44, forms a C-shaped head-to-head dimer. DNA binding assays suggested that basic amino acid residues on the concave surface of the C-shaped dimer play an important role in interactions with DNA. The C95E mutant, which disrupts dimer formation, lacked DNA binding activity, indicating that dimer formation is required for DNA binding. These characteristics are similar to those of another dimeric viral processivity factor, UL44. Although the R87E and H141F mutants of BMRF1-ΔC exhibited dramatically reduced polymerase processivity, they were still able to bind DNA and to dimerize. These amino acid residues are located near the dimer interface, suggesting that BMRF1-ΔC associates with the catalytic subunit BALF5 around the dimer interface. Consequently, the monomeric form of BMRF1-ΔC probably binds to BALF5, because the steric consequences would prevent the maintenance of the dimeric form. A distinctive feature of BMRF1-ΔC is that the dimeric and monomeric forms might be utilized for the DNA binding and replication processes, respectively.  相似文献   

5.
Kirsten murine sarcoma-leukemia virus (Ki-MSV[MLV]) was found to contain less RNase H per unit of viral DNA polymerase than avian Rous sarcoma virus (RSV). Upon purification by chromatography on Sephadex G-200 and subsequent glycerol gradient sedimentation the avian DNA polymerase was obtained in association with a constant amount of RNase H. By contrast, equally purified DNA polymerase of Ki-MSV(MLV) and Moloney [Mo-MSV(MLV)] lacked detectable RNase H if assayed with two homopolymer and phage fd DNA-RNA hybrids as substrates. On the basis of picomoles of nucleotides turned over, the ratio of RNase H to purified avian DNA polymerase was 1:20 and that of RNase H to purified murine DNA polymerase ranged between <1:2,800 and 5,000. Based on the same activity with poly (A).oligo(dT) the activity of the murine DNA polymerase was 6 to 60 times lower than that of the avian enzyme with denatured salmon DNA template or with avian or murine viral RNA templates assayed under various conditions (native, heat-dissociated, with or without oligo(dT) and oligo(dC) and at different template enzyme ratios). The template activities of Ki-MSV(MLV) RNA and RSV RNA were enhanced uniformly by oligo(dT) but oligo(dC) was much less efficient in enhancing the activity of MSV(MLV) RNA than that of RSV RNA. It was concluded that the purified DNA polymerase of Ki-MSV(MLV) differs from that of Rous sarcoma virus in its lack of detectable RNase H and in its low capacity to transcribe viral RNA and denatured salmon DNA. Some aspects of these results are discussed.  相似文献   

6.
My career pathway has taken a circuitous route, beginning with a Ph.D. degree in electrical engineering from The Johns Hopkins University, followed by five postdoctoral years in biology at Hopkins and culminating in a faculty position in biological sciences at the University of Southern California. My startup package in 1973 consisted of $2,500, not to be spent all at once, plus an ancient Packard scintillation counter that had a series of rapidly flashing light bulbs to indicate a radioactive readout in counts/minute. My research pathway has been similarly circuitous. The discovery of Escherichia coli DNA polymerase V (pol V) began with an attempt to identify the mutagenic DNA polymerase responsible for copying damaged DNA as part of the well known SOS regulon. Although we succeeded in identifying a DNA polymerase, one that was induced as part of the SOS response, we actually rediscovered DNA polymerase II, albeit in a new role. A decade later, we discovered a new polymerase, pol V, whose activity turned out to be regulated by bound molecules of RecA protein and ATP. This Reflections article describes our research trajectory, includes a review of key features of DNA damage-induced SOS mutagenesis leading us to pol V, and reflects on some of the principal researchers who have made indispensable contributions to our efforts.  相似文献   

7.
Hamster sarcoma virus (HaSV), a ribonucleic acid tumor virus, pelleted from tissue culture fluid manifests type C morphology by electron microscopy. However, if virus is first concentrated by polyethylene glycol or ammonium sulfate followed by density gradient banding, the virus shows a dramatically atypical barred core structure, termed "theta particles." This structure suggests a condensation of the ribonucleoprotein into a flat disc. Atypical particles are found with HaSV and not in similarly treated feline leukemia virus or Rauscher-murine leukemia virus. Differences in the composition of HaSV as compared with these other viruses may be responsible for the production of such particles.  相似文献   

8.
In tissue culture phosphonoacetic acid (PAA) specifically inhibited DNA synthesis of human cytomegalovirus (CMV), murine CMV, simian CMV, Epstein-Barr virus, and Herpesvirus saimiri. Fifty to one hundred micrograms per milliliter PAA completely inhibited viral DNA synthesis with no significant damage to host cell DNA synthesis. In vitro DNA polymerization assays showed that 10 μg/ml of PAA specifically inhibited partially purified human CMV-induced DNA polymerase, while little inhibition of host-cell DNA polymerase activity was found. The specific inhibition of herpes-group virus DNA synthesis with little toxicity to host cells suggests that PAA has great potential as an antiherpesvirus therapeutic agent.  相似文献   

9.
We have examined four of the nondefective parvoviruses for an associated DNA polymerase. Virions were purified from neuraminidase-treated infected-cell lysates by isopycnic centrifugation in CsCl or from infected cell material by CaCl(2) precipitation and centrifugation through sucrose into CsCl. Preparations of bovine parvovirus or Kilham rat virus obtained by the former procedure contained DNA polymerase activity but were not free of contaminating cellular proteins. The latter method produced viral preparations free of contaminating cellular proteins, and no DNA polymerase activity was detected in light infectious particles of H-1, LuIII, bovine parvovirus, or Kilham rat virus. Examination of levels of each cellular DNA polymerase in these preparations from each step of both purification procedures revealed that DNA polymerase beta had a greater tendency to copurify with bovine parvovirus and Kilham rat virus than did DNA polymerases alpha or gamma. Disruption of infectious virions obtained by the second purification method with detergents and sonic treatment did not result in the detection of a DNA polymerase activity. The biological activity and purity of each of the four different viruses obtained by the latter procedure were determined by hemagglutination and infectivity assays, polyacrylamide gel electrophoresis, and electron microscopy. In each case, the virions banding at a density of 1.39 to 1.41 g/cm(2) in CsCl were infectious and contained only the virion structural proteins. DNA polymerase activity was not detected in any of these preparations, and we have concluded that a virion-associated DNA polymerase is not required for productive infection with the nondefective parvoviruses.  相似文献   

10.
We studied the infectivity of endogenous ecotropic murine leukemia virus genomes contained in high-molecular-weight DNA prepared from virus-free cells of the AKR-2B line, and from RF, BALB/c, B6, and (BALB/c x B6)F(1) mouse embryo cells. When DNA prepared from virus-free AKR-2B cells was transfected into NIH-3T3 cells, no virus-positive cultures were observed, a result consistent with previous reports. However, when DNAs from virus-free AKR-2B cells or virus-free cells containing the RF/J or BALB/c ecotropic proviruses were transfected into chicken embryo cells that were then cocultivated with SC-1 (mouse) cells, virus-positive cultures were recovered. The specific infectivities of the AKR provirus(es) contained in virus-free cells and the molecularly cloned Akv-1 provirus were similar when chicken embryo cells were used as primary recipients. Virus-positive cultures were also observed when secondary mouse embryo cells were used as recipients for DNA from virus-free AKR-2B and RF/J cells. The transfected chicken embryo-SC-1 cultures produced XC-positive murine leukemia virus that is N-tropic. Virus-positive recipient cultures were observed 10- to 100-fold more frequently when AKR-2B DNA was used than when BALB/c DNA was used as the donor DNA. Our studies indicate that some nonexpressed ecotropic murine leukemia virus proviruses are activated upon transfection into chicken embryo cells. Such studies suggest that there are different factors governing the expression of murine leukemia virus after transfection into established cell lines (NIH-3T3) and into nonestablished secondary cultures (chicken and mouse).  相似文献   

11.
Rauscher leukemia virus deoxyribonucleic acid polymerase is reversibly inactivated by 6 m guanidine-hydrochloride. Gel filtration in 6 m guanidine-hydrochloride reveals that the viral deoxyribonucleic acid polymerase consists of a single polypeptide chain of approximately 70,000 molecular weight.  相似文献   

12.
The relatedness of the RNAs of the three avian systems, including six avian leukosis-sarcoma viruses, four reticuloendotheliosis viruses, and the microsome fraction of normal uninfected chicken embryo cells, containing RNA and a DNA polymerase have been studied by nucleic acid hybridization. All six avian leukosis-sarcoma viruses have closely related nucleotide sequences; and all four reticuloendotheliosis viruses have closely related nucleotide sequences. But, almost no similarities were detected between the RNAs of avian leukosis-sarcoma viruses and reticuloendotheliosis viruses. The RNA template of the endogenous RNA-directed DNA polymerase activity of normal uninfected chicken cells had no detectable relationship to RNAs of avian leukosis-sarcoma and reticuloendotheliosis viruses.  相似文献   

13.
14.
Mutations in the IN domain of retroviral DNA may affect multiple steps of the virus life cycle, suggesting that the IN protein may have other functions in addition to its integration function. We previously reported that the human immunodeficiency virus type 1 IN protein is required for efficient viral DNA synthesis and that this function requires specific interaction with other viral components but not enzyme (integration) activity. In this report, we characterized the structure and function of the Moloney murine leukemia virus (MLV) IN protein in viral DNA synthesis. Using an MLV vector containing green fluorescent protein as a sensitive reporter for virus infection, we found that mutations in either the catalytic triad (D184A) or the HHCC motif (H61A) reduced infectivity by approximately 1,000-fold. Mutations that deleted the entire IN (DeltaIN) or 34 C-terminal amino acid residues (Delta34) were more severely defective, with infectivity levels consistently reduced by 10,000-fold. Immunoblot analysis indicated that these mutants were similar to wild-type MLV with respect to virion production and proteolytic processing of the Gag and Pol precursor proteins. Using semiquantitative PCR to analyze viral cDNA synthesis in infected cells, we found the Delta34 and DeltaIN mutants to be markedly impaired while the D184A and H61A mutants synthesized cDNA at levels similar to the wild type. The DNA synthesis defect was rescued by complementing the Delta34 and DeltaIN mutants in trans with either wild-type IN or the D184A mutant IN, provided as a Gag-IN fusion protein. However, the DNA synthesis defect of DeltaIN mutant virions could not be complemented with the Delta34 IN mutant. Taken together, these analyses strongly suggested that the MLV IN protein itself is required for efficient viral DNA synthesis and that this function may be conserved among other retroviruses.  相似文献   

15.
The RNA polymerase activity present in the cytoplasm of BHK cells infected with vaccinia virus is not affected by rifampicin or by alpha-amanitin.  相似文献   

16.
17.
Structure and Leukemogenic Activity of a Murine Leukemia Virus   总被引:6,自引:4,他引:2       下载免费PDF全文
Purified Friend viruses obtained from chronically infected tissue cultures were studied under the electron microscope in an effort to correlate the fine structure of the particles to their leukemogenic activity under varied experimental conditions, i.e., temperature treatments and exposure to Tween 80, amyl acetate, or ether. It was observed that an intact viral envelope was a prerequisite to leukemogenic activity as tested by intraperitoneal inoculation of newborn mice. It was also noted that the percentage of C particles was not increased after heating for 1 hr at 45 C (treatment which, however, completely inactivated the viruses). Digestion with ribonuclease indicated the presence of ribonucleic acid within the nucleoids of "enveloped A particles," which shows that these are not immature particles. The significance of the simultaneous presence of "enveloped A" and C particles is discussed.  相似文献   

18.
19.
The known archaeal family B DNA polymerases are unable to participate in the PCR in the presence of uracil. Here, we report on a novel archaeal family B DNA polymerase from Nanoarchaeum equitans that can successfully utilize deaminated bases such as uracil and hypoxanthine and on its application to PCR. N. equitans family B DNA polymerase (Neq DNA polymerase) produced λ DNA fragments up to 10 kb with an approximately 2.2-fold-lower error rate (5.53 × 10−6) than Taq DNA polymerase (11.98 × 10−6). Uniquely, Neq DNA polymerase also amplified λ DNA fragments using dUTP (in place of dTTP) or dITP (partially replaced with dGTP). To increase PCR efficiency, Taq and Neq DNA polymerases were mixed in different ratios; a ratio of 10:1 efficiently facilitated long PCR (20 kb). In the presence of dUTP, the PCR efficiency of the enzyme mixture was two- to threefold higher than that of either Taq and Neq DNA polymerase alone. These results suggest that Neq DNA polymerase and Neq plus DNA polymerase (a mixture of Taq and Neq DNA polymerases) are useful in DNA amplification and PCR-based applications, particularly in clinical diagnoses using uracil-DNA glycosylase.  相似文献   

20.
Sindbis virus was used as a probe to examine glycosylation processes in two different species of cultured cells. Parallel studies were carried out analyzing the carbohydrate added to Sindbis glycoprotein E2 when the virus was grown in chicken embryo cells and BHK cells. The Pronase glycopeptides of Sindbis glycoprotein E2 were purified by a combination of ion-exchange and gel filtration chromatography. Four glycopeptides were resolved, ranging in molecular weight from 1,800 to 2,700. Structures are proposed for each of the four glycopeptides, based on data obtained by quantitative composition analyses, methylation analyses, and degradation of the glycopeptides using purified exo- and endoglycosidases. The largest three glycopeptides (S1, S2, and S3) have similar structures but differ in the extent of sialylation. All three contain N-acetylglucosamine, mannose, galactose, and fucose, in a structure similar to oligosaccharides found on other glycoproteins. Glycopeptide S1 has two residues of sialic acid, whereas glycopeptides S2 and S3 contain 1 and 0 residues of sialic acid, respectively. The smallest glycopeptide, S4, contains only N-acetyglucosamine and mannose, and is also similar to mannose-rich oligosaccharides found on other glycoproteins. Each of the complex glycopeptides (S1, S2, or S3) from virus grown in BHK cells is indistinguishable from the corresponding glycopeptides derived from virus grown in chicken cells. Glycopeptide S4 is also very similar in size, composition, and sugar linkages from virus derived from the two hosts. These results suggest that chicken cells and BHK cells have similar glycosylation mechanisms and glycosylate Sindbis glycoprotein E2 in nearly identical ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号