首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of the mitogen-activated protein kinase c-Jun NH2-terminal kinase-1 (JNK1) has never been investigated in hemostasis and thrombosis. Using two JNK inhibitors (SP600125 and 6o), we have demonstrated that JNK1 is involved in collagen-induced platelet aggregation dependent on ADP. In these conditions, JNK1 activation requires the coordinated signaling pathways of collagen receptors (alpha2beta1 and glycoprotein (GP)VI) and ADP. In contrast, JNK1 is not required for platelet adhesion on a collagen matrix in static or blood flow conditions (300-1500 s(-1)) involving collagen receptors (alpha2beta1 and GPVI). Importantly, at 1500 s(-1), JNK1 acts on thrombus formation on a collagen matrix dependent on GPIb-von Willebrand factor (vWF) interaction but not ADP receptor activation. This is confirmed by the involvement of JNK1 in shear-induced platelet aggregation at 4000 s(-1). We also provide evidence during rolling and adhesion of platelets to vWF that platelet GPIb-vWF interaction triggers alphaIIbbeta3 activation in a JNK1-dependent manner. This was confirmed with a Glanzmann thrombastenic patient lacking alphaIIbbeta3. Finally, in vivo, JNK1 is involved in arterial but not in venular thrombosis in mice. Overall, our in vitro studies define a new role of JNK1 in thrombus formation in flowing blood that is relevant to thrombus development in vivo.  相似文献   

2.
The mitogen-activated protein kinase (MAPK) cascade pathway plays an important role in regulating stress responses. The function of the c-Jun NH2-terminal kinase (JNK), a component of the MAPK cascade pathway, in Apis cerana cerana (Acc) remains unclear. Here, JNK was isolated and identified from Acc. Bioinformatics analyses revealed there is a typical serine/threonine protein kinase catalytic domain in the AccJNK protein. An expression profile analysis showed that AccJNK was significantly induced by pesticide treatments. To further explore the functional mechanisms of AccJNK, a yeast 2-hybrid screen was performed, activator protein-1 (AP-1) was screened as the interaction partner of AccJNK, and the interaction relationship was further verified by pull-down assay. Quantitative real-time polymerase chain reaction showed the expression pattern of AccAP-1 was similar to that of AccJNK. After a knockdown of AccJNK or AccAP-1 by RNA interference, the survival rate of Acc after pesticide treatments increased. Additionally, the expression levels of antioxidant-related genes and the activities of antioxidant enzymes increased, suggesting that the knockdown of AccJNK or AccAP-1 increased the antioxidant capacity of bees. Our study revealed that the JNK-mediated MAPK pathway responds to pesticide stress by altering the antioxidant capacity of Acc.  相似文献   

3.
Juneja J  Cushman I  Casey PJ 《PloS one》2011,6(11):e26085
Signaling through the heterotrimeric G protein, G12, via Rho induces a striking increase in breast cancer cell invasion. In this study, evidence is provided that the c-Jun NH(2)-terminal kinase (JNK) is a key downstream effector of G12 on this pathway. Expression of constitutively-active Gα12 or activation of G12 signaling by thrombin leads to increased JNK and c-Jun phosphorylation. Pharmacologic inhibition of JNK or knockdown of JNK expression by siRNA significantly decreases G12-induced JNK activation as well as the ability of breast cancer cells to invade a reconstituted basement membrane. Furthermore, expression of dominant-negative Rho or treatment of cells with an inhibitor of the Rho kinase, ROCK, reduces G12-induced JNK and c-Jun activation, and ROCK inhibitor treatment also inhibits G12-induced cellular invasion. JNK knockdown or ROCK inhibitor treatment has no effect on activation of Rho by G12. Taken together, our data indicate that JNK activation is required for G12-induced invasion of breast cancer cells and that JNK is downstream of Rho and ROCK on this pathway. This study implicates a G12-stimulated mitogen-activated protein kinase cascade in cancer cell invasion, and supports a role for JNK in cancer progression.  相似文献   

4.
5.
Cholestatic liver disorders are accompanied by the hepatic accumulation of cytotoxic bile acids that induce cell death. Increases in cAMP protect hepatocytes from bile acid-induced apoptosis by a cAMP-guanine exchange factor (cAMP-GEF)/phosphoinositide-3-kinase (PI3K)/Akt pathway. The aim of these studies was to identify the downstream substrate in this pathway and to determine at what level in the apoptotic cascade cytoprotection occurs. Since inhibitory phosphorylation of glycogen synthase kinase-3 (GSK) occurs downstream of PI3K/Akt and this phosphorylation has been implicated in cell survival, we conducted studies to determine whether GSK was downstream in cAMP-GEF/PI3K/Akt-mediated cytoprotection. Our results show that treatment of hepatocytes with the cAMP-GEF-specific analog, 4-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cAMP, results in PI3K-dependent phosphorylation of GSK. Direct chemical inhibition of GSK in rat hepatocytes or human HUH7-NTCP cells with several structurally and functionally distinct inhibitors including bromoindirubin-3'-oxime (BIO), maleimides (SB216763, SB415286), thiadiazolidine derivatives, and LiCl attenuates apoptosis induced by glycochenodeoxycholate (GCDC). In addition, genetic silencing of the GSK β isoform with small interfering RNA attenuates GCDC apoptosis in HUH7-NTCP cells. Adenoviral inhibition of the Rap1 blocks both cAMP-GEF-mediated cytoprotection against GCDC-induced apoptosis and Akt/GSK3β phosphorylation. GCDC-induced phosphorylation of the proapoptotic kinase, c-Jun NH(2)-terminal kinase (JNK) is inhibited by GSK inhibition or cAMP-GEF activation. GCDC-induced apoptosis is accompanied by phosphorylation of the endoplasmic reticulum stress markers pIEF2α and IRE-1, and pretreatment with the cAMP-GEF analog or GSK inhibitors prevents this phosphorylation. Collectively, our results support the presence of a cAMP/cAMP-GEF/Rap1/PI3K/Akt/GSKβ survival pathway in hepatocytes that inhibits bile acid-induced JNK phosphorylation.  相似文献   

6.
Ginsenoside Re (Re), a compound derived from Panax ginseng, shows an antidiabetic effect. However, the molecular basis of its action remains unknown. We investigated insulin signaling and the antiinflammatory effect by Re in 3T3-L1 adipocytes and in high-fat diet (HFD) rats to dissect its anti-hyperglycemic mechanism. Glucose uptake was measured in 3T3-L1 cells and glucose infusion rate determined by clamp in HFD rats. The insulin signaling cascade, including insulin receptor (IR) beta-subunit, IR substrate-1, phosphatidylinositol 3-kinase, Akt and Akt substrate of 160 kDa, and glucose transporter-4 translocation are examined. Furthermore, c-Jun NH(2)-terminal kinase (JNK), MAPK, and nuclear factor (NF)-kappaB signaling cascades were also assessed. The results show Re increases glucose uptake in 3T3-L1 cells and glucose infusion rate in HFD rats. The activation of insulin signaling by Re is initiated at IR substrate-1 and further passes on through phosphatidylinositol 3-kinase and downstream signaling cascades. Moreover, Re demonstrates an impressive suppression of JNK and NF-kappaB activation and inhibitor of NF-kappaBalpha degradation. In conclusion, Re reduces insulin resistance in 3T3-L1 adipocytes and HFD rats through inhibition of JNK and NF-kappaB activation.  相似文献   

7.
Here, we identified caspase-2, protein kinase C (PKC)delta, and c-Jun NH2-terminal kinase (JNK) as key components of the doxorubicin-induced apoptotic cascade. Using cells stably transfected with an antisense construct for caspase-2 (AS2) as well as a chemical caspase-2 inhibitor, we demonstrate that caspase-2 is required in doxorubicin-induced apoptosis. We also identified PKCdelta as a novel caspase-2 substrate. PKCdelta was cleaved/activated in a caspase-2-dependent manner after doxorubicin treatment both in cells and in vitro. PKCdelta is furthermore required for efficient doxorubicin-induced apoptosis because its chemical inhibition as well as adenoviral expression of a kinase dead (KD) mutant of PKCdelta severely attenuated doxorubicin-induced apoptosis. Furthermore, PKCdelta and JNK inhibition show that PKCdelta lies upstream of JNK in doxorubicin-induced death. Jnk-deficient mouse embryo fibroblasts (MEFs) were highly resistant to doxorubicin compared with wild type (WT), as were WT Jurkat cells treated with SP600125, further supporting the importance of JNK in doxorubicin-induced apoptosis. Chemical inhibitors for PKCdelta and JNK do not synergize and do not function in doxorubicin-treated AS2 cells. Caspase-2, PKCdelta, and JNK were furthermore implicated in doxorubicin-induced apoptosis of primary acute lymphoblastic leukemia blasts. The data thus support a sequential model involving caspase-2, PKCdelta, and JNK signaling in response to doxorubicin, leading to the activation of Bak and execution of apoptosis.  相似文献   

8.
9.
Stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK), which belongs to the family of mitogen-activated protein kinase (MAPK), is activated by many types of cellular stress or extracellular signals. Recent studies, including the analysis with knockout cells and mice, have led towards understanding the molecular mechanism of stress-induced SAPK/JNK activation and the physiological roles of SAPK/JNK in embryonic development and immune responses. Two SAPK/JNK activators, SEK1 and MKK7, are required for full activation of SAPK/JNK, which responds to various stimuli in an all-or-none manner in mouse embryonic stem (ES) cells. SAPK/JNK activation plays essential roles in organogenesis during mouse development by regulating cell proliferation, survival or apoptosis and in immune responses by regulating cytokine gene expression. Furthermore, SAPK/JNK is involved in regulation of mRNA stabilization, cell migration, and cytoskeletal integrity. Thus, SAPK/JNK has a wide range of functions in mammalian cells.  相似文献   

10.
11.
Chlamydophila pneumoniae is known to be associated with atherosclerosis. Recent studies have reported that components of Chlamydophila pneumoniae (chlamydophilal antigens) induce foam cell formation in macrophages. However, the mechanism of foam cell formation induced by chlamydophilal antigens has yet to be elucidated. In this paper, we first found that mitogen-activated protein kinases including extracellular signal-regulated kinase, p38 and c-Jun NH2 terminal kinase are phosphorylated after stimulation by chlamydophilal antigens. We then showed that chlamydophilal antigens induce foam cell formation mainly via c-Jun NH2 terminal kinase. Finally, we demonstrated that foam cell formation and phosphorylation of mitogen-activated protein kinases induced by chlamydophilal antigens are mainly recognized through Toll-like receptor 2. These results collectively indicated that chlamydophilal antigens induce foam cell formation mainly via Toll-like receptor 2 and c-Jun NH2 terminal kinase.  相似文献   

12.
Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-beta induced apoptosis and the loss of mitochondrial membrane potential (delta psi m) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-beta-induced loss of delta psi m, suggesting that the interaction of IFN-beta-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-beta induced a sustained activation of c-Jun NH2-terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-beta-induced apoptosis and loss of delta psi m were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-beta-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-beta but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-beta-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein.  相似文献   

13.
14.
Poliovirus (PV) is the causal agent of paralytic poliomyelitis, a disease that involves the destruction of motor neurons associated with PV replication. In PV-infected mice, motor neurons die through an apoptotic process. However, mechanisms by which PV induces cell death in neuronal cells remain unclear. Here, we demonstrate that PV infection of neuronal IMR5 cells induces cytochrome c release from mitochondria and loss of mitochondrial transmembrane potential, both of which are evidence of mitochondrial outer membrane permeabilization. PV infection also activates Bax, a proapoptotic member of the Bcl-2 family; this activation involves its conformational change and its redistribution from the cytosol to mitochondria. Neutralization of Bax by vMIA protein expression prevents cytochrome c release, consistent with a contribution of PV-induced Bax activation to mitochondrial outer membrane permeabilization. Interestingly, we also found that c-Jun NH(2)-terminal kinase (JNK) is activated soon after PV infection and that the PV-cell receptor interaction alone is sufficient to induce JNK activation. Moreover, the pharmacological inhibition of JNK by SP600125 inhibits Bax activation and cytochrome c release. This is, to our knowledge, the first demonstration of JNK-mediated Bax-dependent apoptosis in PV-infected cells. Our findings contribute to our understanding of poliomyelitis pathogenesis at the cellular level.  相似文献   

15.
16.
Expression of a c-Jun NH(2)-terminal protein kinase (JNK), also known as stress-activated protein kinase (SAPK) in rodents, has been implicated in the ability of cells to respond to a variety of stressors. In nonmammalian cells, JNK participates in the regulation of cell volume in response to hyperosmotic stress. To explore the possibility that JNK may participate in the transduction of osmotic information in mammals, we evaluated the expression of JNK immunoreactivity in neuroendocrine cells of the supraoptic nucleus. Low basal expression of JNK-2 (SAPK-alpha) and JNK-3 (SAPK-beta) was seen in vivo and in vitro. During water deprivation, JNK-2 increased in the supraoptic nucleus but not in the cortex. Osmotic or glutamate receptor stimulation in vitro also resulted in an increase in JNK-2 that was tetrodotoxin (TTX) insensitive and paralleled by increased nuclear phospho-c-Jun immunoreactivity. A TTX-sensitive increase in JNK-3 was seen in smaller neurons. Thus different JNK pathways may mediate individual cellular responses to osmotic stress, with JNK-2 linked to osmotic and glutamate receptor stimulation in magnocellular neuroendocrine cells.  相似文献   

17.
Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.  相似文献   

18.
19.
We previously reported that c-Jun NH(2)-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1) functions as a putative scaffold factor in the JNK mitogen-activated protein kinase (MAPK) cascades. In that study we also found MEK1 and Raf-1, which are involved in the extracellular signal-regulated kinase (ERK) MAPK cascades, bind to JSAP1. Here we have defined the regions of JSAP1 responsible for the interactions with MEK1 and Raf-1. Both of the binding regions were mapped to the COOH-terminal region (residues 1054-1305) of JSAP1. We next examined the effect of overexpressing JSAP1 on the activation of ERK by phorbol 12-myristate 13-acetate in transfected COS-7 cells and found that JSAP1 inhibits ERK's activation and that the COOH-terminal region of JSAP1 was required for the inhibition. Finally, we investigated the molecular mechanism of JSAP1's inhibitory function and showed that JSAP1 prevents MEK1 phosphorylation and activation by Raf-1, resulting in the suppression of the activation of ERK. Taken together, these results suggest that JSAP1 is involved both in the JNK cascades, as a scaffolding factor, and the ERK cascades, as a suppressor.  相似文献   

20.
p57KIP2, a member of the Cip/Kip family of enzymes that inhibit several cyclin-dependent kinases, plays a role in many biological events including cell proliferation, differentiation, apoptosis, tumorigenesis and developmental changes. The human p57KIP2 gene is located in chromosome 11p15.5, a region implicated in sporadic cancers and Beckwith-Wiedemann syndrome. We here report that p57KIP2 physically interacts with and inhibits c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK). The carboxyl-terminal QT domain of p57KIP2 is crucial for the inhibition of JNK/SAPK. Overexpressed p57KIP2 also suppressed UV- and MEKK1-induced apoptotic cell death. p57KIP2 expression during C2C12 myoblast differentiation resulted in repression of the JNK activity stimulated by UV light. Furthermore, UV-stimulated JNK1 activity was higher in mouse embryonic fibroblasts derived from p57-/- mice than in the cells from wild-type mice. Taken together, these findings suggest that p57KIP2 modulates stress-activated signaling by functioning as an endogenous inhibitor of JNK/SAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号