首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Administration of substance P and kassinin into the solitary tract nucleus of anesthetized rats induced a dose-dependent increase in ventilation, tidal volume, inspiratory muscle activity, and a decrease in the mean blood pressure and heart rate. Microinjections of peptides caused a decrease in ventilatory response to hypoxia and an inhibition of the Breuer-Hering reflex. The data obtained suggest involvement of tachykinins in the respiratory and circulatory control via the solitary tract nucleus.  相似文献   

2.
We investigated the respiratory effects of 10-(13)-10(-4) M bombesin microinjected into the solitary tract nucleus of adult anaesthetized rats. Bombesin markedly increased ventilation, tidal volume and electric activity of inspiratory muscles. The respiratory response was most pronounced when bombesin administered in mean concentrations (10(-10)-10(-7) M). We found that the respiratory effects ofbombesin could be based on its capacity for inhibition of Hering-Breuer inspiratory termination reflex at the level of the solitary tract nucleus. These results in aggregate with pattern of the distribution of endogenous bombesin and its receptors in the solitary tract nucleus area suggest the involvement of bombesin in the respiratory control via dorsal structures of the respiratory center.  相似文献   

3.
In acute experiments on urethane-anesthetized rats, the respiratory effects ofmicroinjections of 10(-5), 10(-8) and 10(-10) M gastrin-releasing peptide (GRP) into the solitary tract nucleus were investigated. It was found that microinjections of the neuropeptide induced an increase in tidal volume, amplitude of diaphragm and external intercostal muscles firing activity and in expiratory duration. The most obvious respiratory responses observed when 10(-8) M GRP was used, while 10(-10) M GRP appeared to be sub-threshold and didn't alter the breathing pattern and activity of inspiratory muscles. In some experiments, where the blood pressure and the heart rate was monitored alone with breathing pattern, these parameters did not change after GRP microinjections into the solitary tract nucleus. The obtained data together with particularities of the distribution of GRP receptors in the brainstem suggest the possibility of GRP involvement into the respiratory control mechanisms at the level of solitary tract nucleus.  相似文献   

4.
Regulatory polypeptide leptin, apart from its well-known hypothalamic effects, stimulates ventilation. The present study on anaesthetised rats was undertaken to elucidate the respiratory effects of 10(-10)-10(-4) M leptin microinjected into the solitary tract nucleus, containing a high concentration of leptin receptors. Injections of 10(-8)-10(-4) M leptin induced dose-dependent increase in ventilation, tidal volume and electric activity of inspiratory muscles; 10(-6) M leptin additionally induced a short-term increase in respiratory frequency and a shortening of both inspiratory and expiratory duration. The respiratory responses to leptin is also characterised by appearance of sighs: deep and prolonged inspirations associated with an augmented burst in the activity of the inspiratory muscles and prolonged post-sigh inter-burst interval. The results taken together with evidence of high concentration of specific leptin ObRb-receptor in the solitary tract nucleus suggest involvement of endogenous leptin in the control of breathing via dorsal structures of the respiratory center.  相似文献   

5.
On frontal brainstem slices of rat by means of whole-clamp recordings, we investigated effects of TRH (10(-8) [symbol: see text]) on membrane potential and firing pattern of the neurones in ventrolateral area of the solitary tract nucleus and pre-Botzinger complex. TRH induced a membrane depolarisation and an increase in spontaneous activity of the respiratory centre neurones. After TRH administration, a shortening of time intervals between the beginning of bursts was found in bursting neurones of the pre-Botzinger complex. In some silent neurones, TRH elicited appearance of firing activity, so the silent neurones of the solitary tract nucleus were transformed into tonic while the silent pre-Botzinger complex neurones were transformed into bursting ones. Thus, there is a direct regulatory effect of TRH on the respiratory centre neurones at the level of their membrane.  相似文献   

6.
Li Q  Song G 《生理学报》2001,53(5):401-404
实验在10只成年家兔上进行,斜方体后核(RTN)内微量注入霍乱毒素β亚单位耦合辣根过氧化酶(CB-HRP)后,在脑桥Koelliker-Fuse 核,臂旁内侧核及臂旁外侧核观察到大量HRP标记神经元,在延髓孤束核腹外侧区,疑核和后疑核,面神经后核的腹侧及内侧区观察到少数HRP标记神经元,在面神经后核,疑核及后疑核区域观察到大量HRP顺行标记末梢纤维,实验结果表明,RTN和脑桥及延髓的呼吸相关结构之间存在纤维联系。  相似文献   

7.
In experiments on conscious rats it was found that preliminary microinjection of 100 nl 100 microM glutamic acid to the rostral commissural part of the solitary tract nucleus or to the caudal ventrolateral medulla increased a rise in colonic temperature induced by systemically applied endotoxin (3 microg/kg Escherichia coli lipopolysaccharide, i.p.) as compared to animals with intrabulbar injection of vehicle (control group). Preliminary microinjection of glutamate to the caudal commissural part of the solitary tract nucleus levelled the endotoxin-induced temperature response. After glutamate treatment of the caudal ventrolateral medulla there was a significant decrease in the noradrenaline content and decrease in the adrenaline level in the caudal (not significant) and rostral ventrolateral medulla (significant), as well as a small rise in noradrenergic activity at the solitary tract nucleus as compared to control animals. The post-mortem measurement of the optical density of brainstem tissues revealed its significant attenuation at the solitary tract nucleus and caudal ventrolateral medulla after glutamate as compared with these structures after vehicle. The involvement of monoaminergic systems of both structures under study in the initiation and control of temperature responses during endotoxemia is suggested.  相似文献   

8.
We studied the effects of opioid peptide leu-enkephaline, a specific antagonist of acetylcholine receptors atropine, and non-selective opiate antagonist naloxone on synaptic transmission and responses evoked by acetylcholine in semicircular organs of the frog. A decrease in frequency of acetylcholine (0.1-5.0 microM) responses under leu-enkephaline (10 nM) id not differ from the frequency decline induced by leu-enkephaline alone. Atropine (1 microM) left the response to leu-enkephaline intact while blocking the excitatory effect of acetylcholine. No modification of the acetylcholine response under leu-enkephaline was observed in the presence of naloxone (1 microM). The findings suggest that no interaction exists between the acetylcholine-mediated excitatory action on resting activity in the isolated semicircular canal preparation and the suppressive action of leu-enkephaline.  相似文献   

9.
The efferent connections of the rostral nucleus of the solitary tract (NTS) in the rat were studied by anterograde transport of Phaseolus vulgaris leucoagglutinin. Rostral to the injection site, fibers travel through the rostral parvocellular reticular formation and deflect medially or laterally around the motor trigeminal nucleus, giving off few terminals in these nuclei and terminate in the parabrachial nucleus. Moderate projections to the peritrigeminal zone, including the intertrigeminal nucleus and the dorsal subcoeruleus nucleus, were observed. Caudally to the injection site, dense innervations from the rostral nucleus of the solitary tract were detected in the parvocellular reticular formation ventral and caudal to the injection site and in the intermediate and ventral medullary reticular formation. The rostral central and ventral subdivisions of the NTS up to the level where the nucleus of the solitary tract abuts the fourth ventricle and the hypoglossal nucleus, receive moderate input from the rostral nucleus of the solitary tract. In general, the projections from the rostral nucleus of the solitary tract were bilateral with an ipsilateral predominance. The caudal part of the nucleus of the solitary tract, the dorsal motor nucleus of the vagus and the facial nucleus were not labeled. It is concluded that medullary rNTS projections participate in oral motor behavior and autonomic control of abdominal organs.  相似文献   

10.
In frontal brainstem slices of Wistar rats, the whole-cell patch-clamp recordings showed the effect of opioid peptide leu-enkephalin (10 nM-1 microM) on membrane potential and spontaneous activity pattern of neurons in two divisions of the respiratory center, ventro-lateral area of the solitary tract nucleus, and the pre-B?tzinger complex. Leu-enkephalin induced a membrane hyperpolarization of the respiratory centre neurons and reduction of the spike activity level in spontaneously active units. After administration of leu-enkephalin, a decrease in frequency of bursts was found in bursting cells of the pro-B?tzinger complex; in two cases, there was a transition of bursting activity to tonic one. The data suggest that the mechanism of the central respiratory activity of leu-enkephalin is based on its direct action at the level of membrane of the respiratory centre neurons.  相似文献   

11.
TRH is a well-known respiratory active neuropeptide. To study neuronal mechanisms of its activity, we have tested the effects of TRH on the potassium A-current in neurons of the ventrolateral solitary tract nucleus and pre-Botzinger complex in voltage-clamp experiments on adult rat brain slices. A-current was present in the neurons and it was partially and reversibly blocked by administration of THR (10(-8) M) to the bath solution. The significant decrease in amplitude of A-current was accompanied by the increase in inactivation constant (t). The effect of TRH on A-current amplitude was simulated by 5 mM 4-aminopyridine. The results presented here indicate that the stimulatory effects of TRH on neurons of the respiratory centre can be at least partially explained by its ability to block the potassium A-current.  相似文献   

12.
The early phase of the biphasic ventilatory response to hypoxia in mammals is critically dependent on NMDA glutamate receptor activation within the nucleus of the solitary tract. However, the mechanisms underlying the subsequent development of the typical ventilatory roll-off are unclear and could underlie important roles in the functional and molecular adaptation to oxygen deprivation. Because the growth factor platelet-derived growth factor (PDGF)-BB can modulate the open channel probability of NMDA receptors by activating PDGF-beta receptors, its contribution to hypoxic ventilatory roll-off was examined. Administration of PDGF-BB, but not PDGF-AA, in the nucleus of the solitary tract was associated with significant attenuations of the early hypoxic ventilatory response in conscious rats. Furthermore, marked reductions in the magnitude of hypoxic ventilatory roll-off occurred in mice heterozygous for a mutation in the PDGF-beta receptor. Administration of a PDGF-beta receptor antagonist to wild-type littermates elicited similar declines in hypoxic ventilatory roll-off. The relative abundance of PDGF-beta receptors was confirmed in the nucleus of the solitary tract and other nuclei implicated in the hypoxic ventilatory response. In nucleus of the solitary tract lysates, PDGF-beta receptor tyrosine phosphorylation was temporally correlated with hypoxic ventilatory roll-off formation. Increased PDGF-B chain mRNA expression was induced by hypoxia in the nucleus of the solitary tract, and PDGF-B chain immunoreactivity colocalized with approximately 40% of nucleus of the solitary tract neurons, demonstrating hypoxia-induced c-Fos enhancements. Thus, PDGF-BB release and PDGF-beta receptor activation in the nucleus of the solitary tract are critical components of hypoxic ventilatory roll-off and may have important functional implications in processes underlying survival and acclimatization to hypoxic environments.  相似文献   

13.
We performed anatomical and physiological studies to determine the site and actions of sulfated cholecystokinin octapeptide (CCK8-S) on breathing. Peptide locations were determined by combined immunodetection of CCK8-S- containing synaptic varicosities and retrograde labeling of medullary neurons projecting to the ventral respiratory group. Retrogradely labeled neurons and CCK8-S immunolabeled varicosities overlapped within the nuclei of the solitary tract, ventral respiratory group, and the Kolliker-Fuse nucleus. Additional CCK8-S immunoreactive terminals were located in the rostroventrolateral medullary reticular nucleus, lateral paragigantocellular reticular nucleus, and the caudal pontine reticular nucleus. The respiratory effects of CCK8-S, which binds to CCK(A) and CCK(B) receptors, were examined by intravenous injection in adult rats and by bath application in the in vitro neonatal rat brainstem - spinal cord preparation. CCK8-S produced an increase in the mean amplitude of diaphragmatic electromyogram (EMG) of 28 +/- 35% (SD) and a decrease in mean respiratory interval of 13 +/- 4% in vivo. In vitro, CCK8-S significantly increased inspiratory duration and decreased respiratory interval, primarily by shortening expiratory duration. CCK8-unsulfated, a specific agonist for CCK(B) receptors, did not produce these effects. CCK8-S effects in the in vitro preparation were partially blocked by the CCK receptor antagonist lorglumide (final bath concentration 600 nM). These results suggest that CCK8-S modulates the respiratory rhythm via CCK(A) receptors within one or more medullary or pontine respiratory groups in both neonatal and adult rats.  相似文献   

14.
Previously, we reported that cytochrome oxidase (CO) activity in the rat pre-B?tzinger complex (PBC) exhibited a plateau on postnatal days (P) 3-4 and a prominent decrease on P12 (Liu and Wong-Riley, J Appl Physiol 92: 923-934, 2002). These changes were correlated with a concomitant reduction in the expression of glutamate and N-methyl-d-aspartate receptor subunit 1 and an increase in GABA, GABAB, glycine receptor, and glutamate receptor 2. To determine whether changes were limited to the PBC, the present study aimed at examining the expression of CO in a number of brain stem nuclei, with or without known respiratory functions from P0 to P21 in rats: the ventrolateral subnucleus of the solitary tract nucleus, nucleus ambiguus, hypoglossal nucleus, nucleus raphe obscurus, dorsal motor nucleus of the vagus nerve, medial accessory olivary nucleus, spinal nucleus of the trigeminal nerve, and medial vestibular nucleus (MVe). Results indicated that, in all of the brain stem nuclei examined, CO activity exhibited a general increase with age from P0 to P21, with MVe having the slowest rise. Notably, in all of the nuclei examined except for MVe, there was a plateau or decrease at P3-P4 and a prominent rise-fall-rise pattern at P11-P13, similar to that observed in the PBC. In addition, there was a fall-rise-fall pattern at P15-P17 in these nuclei, instead of a plateau pattern in the PBC. Our data suggest that the two postnatal periods with reduced CO activity, P3-P4 and especially P12, may represent common sensitive periods for most of the brain stem nuclei with known or suspected respiratory control functions.  相似文献   

15.
This paper examines the distribution of fibers and cell bodies containing alpha-neo-endorphin in the cat brain stem by using an indirect immunoperoxidase technique. A high or moderate density of immunoreactive cell bodies was found in the superior central nucleus, nucleus incertus, dorsal tegmental nucleus, nucleus of the trapezoid body, and in the laminar spinal trigeminal nucleus, whereas a low density of such perikarya was observed in the inferior colliculus, nucleus praepositus hypoglossi, dorsal nucleus of the raphe, nucleus of the brachium of the inferior colliculus, and in the nucleus of the solitary tract. The highest density of immunoreactive fibers was found in the substantia nigra, dorsal motor nucleus of the vagus, nucleus coeruleus, lateral tegmental field, marginal nucleus of the brachium conjunctivum, and in the inferior and medial vestibular nuclei. These results indicate that alpha-neo-endorphin is widely distributed in the cat brain stem and suggest that the peptide could play an important role in several physiological functions, e.g., those involved in respiratory, cardiovascular, auditory, and motor mechanisms.  相似文献   

16.
Previously, we reported that the expression of cytochrome oxidase in a number of brain stem nuclei exhibited a plateau or reduction at postnatal day (P) 3-4 and a dramatic decrease at P12, against a general increase with age. The present study examined the expression of glutamate, N-methyl-D-aspartate receptor subunit 1 (NMDAR1), GABA, GABAB receptors, glycine receptors, and glutamate receptor subunit 2 (GluR2) in the ventrolateral subnucleus of the solitary tract nucleus, nucleus ambiguus, hypoglossal nucleus, medial accessory olivary nucleus, dorsal motor nucleus of the vagus, and cuneate nucleus, from P2 to P21 in rats. Results showed that 1) the expression of glutamate increased with age in a majority of the nuclei, whereas that of NMDAR1 showed heterogeneity among the nuclei; 2) GABA and GABAB expressions decreased with age, whereas that of glycine receptors increased with age; 3) GluR2 showed two peaks, at P3-4 and P12; and 4) glutamate and NMDAR1 showed a significant reduction, whereas GABA, GABAB receptors, glycine receptors, and GluR2 exhibited a concomitant increase at P12. These features were present but less pronounced in hypoglossal nucleus and dorsal motor nucleus of the vagus and were absent in the cuneate nucleus. These data suggest that brain stem nuclei, directly or indirectly related to respiratory control, share a common developmental trend with the pre-Botzinger complex in having a transient period of imbalance between inhibitory and excitatory drives at P12. During this critical period, the respiratory system may be more vulnerable to excessive exogenous stressors.  相似文献   

17.
The neuroanatomical basis of central cardiovascular control   总被引:7,自引:0,他引:7  
A brief review is given of some of the recent neuroanatomical studies of the central autonomic pathways. Two major points are discussed. 1) There are several descending inputs to the intermediolateral cell column that have recently been demonstrated; these include the A5 catecholamine cell group, certain of the raphe nuclei, the nucleus of the solitary tract, the K?lliker Fuse nucleus, and the paraventricular nucleus of the hypothalamus. 2) Certain nuclei of the brain that function as autonomic centers are extensively interconnected: the nucleus of the solitary tract, the parabrachial nucleus, the paraventricular nucleus of the hypothalamus, the central nucleus of the amygdala, and the bed nucleus of the stria terminalis. This network may play an important role in cardiovascular regulation and related neuroendocrine functions.  相似文献   

18.
We sought to identify amino acid neurotransmitter candidates within the nucleus of the solitary tract in rats. Twenty endogenous amino acids were quantified by reverse-phase HPLC with fluorescence detection (30-fmol limit). Micropunches (1 mm) of the intermediate area of the solitary nucleus were prepared, and the amino acid content determined. Of all the components measured, the putative transmitters Glu, Gly, gamma-aminobutyric acid, taurine, Asp, and Ala appeared in greatest concentrations. Bilateral micropunches superfused in vitro with buffered medium containing 56 mM potassium released Glu, gamma-aminobutyric acid, and Gly in a significant manner (p less than 0.05) compared with basal levels. With Glu, 78% was calcium-dependent and, therefore, presumably from nerve endings; 99% of gamma-aminobutyric acid and 42% of Gly were dependent on calcium. After removal of the nodose ganglion, a bilateral decrease in the calcium-dependent release of Glu and gamma-aminobutyric acid, but not Gly, was observed; decreases were significant ipsilateral to the site of ablation. We conclude that (a) Glu is a transmitter of primary afferents in the nucleus of the solitary tract; (b) glutamatergic afferents may interact with gamma-aminobutyric acid system(s) in this region; (c) Gly also may participate in the mediation and/or modulation of cardiovascular or other visceral reflexes; and (d) amino acid neurotransmission may play an integral role in the neurogenic control of arterial pressure.  相似文献   

19.
Airway obstruction in animals leads to compensation and avoidance behavior and elicits respiratory mechanosensation. The pattern of respiratory load compensation and neural activation in response to intrinsic, transient, tracheal occlusions (ITTO) via an inflatable tracheal cuff are unknown. We hypothesized that ITTO would cause increased diaphragm activity, decreased breathing frequency, and activation of neurons within the medullary and pontine respiratory centers without changing airway compliance. Obstructions were performed for 2-3 breaths followed by a minimum of 15 unobstructed breaths with an inflatable cuff sutured around the trachea in rats. The obstruction procedure was repeated for 10 min. The brains of obstructed and control animals were removed, fixed, sectioned, and stained for c-Fos. Respiratory pattern was measured from esophageal pressure (P(es)) and diaphragm electromyography (EMG(dia)). The obstructed breaths resulted in a prolonged inspiratory and expiratory time, an increase in EMG(dia) amplitude, and a more negative P(es) compared with control breaths. Neurons labeled with c-Fos were found in brain stem and suprapontine nuclei, with a significant increase in c-Fos expression for the occluded experimental group compared with the control groups in the nucleus ambiguus, nucleus of the solitary tract, lateral parabrachial nucleus, and periaqueductal gray matter. The results of this study demonstrate tracheal occlusion-elicited activation of neurons in brain stem respiratory nuclei and neural areas involved in stress responses and defensive behaviors, suggesting that these neurons mediate the load compensation breathing pattern response and may be part of the neural pathway for respiratory mechanosensation.  相似文献   

20.
In experiments on anaesthetized rats, the neuronal mechanisms underlying processing of the nociceptive information from the colon within the nucleus of the solitary tract were studied. In addition, the role of nitric oxide in these processes was estimated. Analysis of changes in c-fos expression revealed that nociceptive colorectal distension (CRD) resulted in activation of neurons mainly in the medial, commissural, parvicellular and dorsomedial subnuclei of the solitary tract nucleus. Non-noxious CRD evoked in these subdivisions weak phasic excitatory neuronal responses. Under noxious CRD, neurons with phasic (58%) and tonic (42%) responses were revealed. The phasic neuron responses were significantly enhanced in comparison with non-noxious CRD. Inhibition of the neuronal NO-syntheses resulted in significant decrease of neuron responses to noxious CRD and the number of cells with tonic reactions. Therefore, neurons with tonic responses may be directly related to NO-depended processing ofnociceptive information from colon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号