首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thum  Ryan A. 《Hydrobiologia》2004,519(1-3):135-141
The phylogenetic relationships among the numerous genera of diaptomid copepods remain elusive due to difficulties in obtaining sufficient numbers of phylogenetically informative morphological characters for cladistic analysis. Molecular phylogenetic techniques offer high potential to resolve phylogenetic relationships in the absence of sufficient morphological characters because of the ease in which many characters can be unambiguously coded. I present the first molecular phylogeny for diaptomid copepod genera using 18S rDNA. Specifically, I test Light’s (1939) hypothesis regarding the interrelationships among the North American diaptomid genera. The 18S phylogeny is remarkably consistent with Light’s hypothesis. The endemic North American genera represent a monophyletic group exclusive of the non-endemic genera. Moreover, his hypothesized basal genus for the North America genera, Hesperodiaptomus, is the basal genus in this analysis. However, his Leptodiaptomus group is not reciprocally monophyletic with his Hesperodiaptomus group, but is rather a derived member of the latter group. Finally, the genus Mastigodiaptomus is found to be more closely allied with the non-endemic genera, as Light suggested. This phylogeny contributes heavily to the understanding of phylogenetic relationships among North American diaptomids and has large implications for the systematics of diaptomids in general. The use of 18S rDNA sequences in phylogenetic analyses of diaptomid copepods can be used to confirm the monophyly of recognized genera, the interrelationships among genera, and subsequent biogeographic interpretation of the family’s diversification. The use of molecular data, such as 18S rDNA sequences, to test phylogenetic hypotheses based on a very limited number of morphological characters will be a particularly useful approach to phylogenetic analysis in this system.  相似文献   

2.
Sequences of the first internal transcribed spacer rDNA were characterised for four veterinary important species of gastrointestinal nematodes from the genus Nematodirus. The sequence data were combined with previously published data of the second internal transcribed spacer to determine whether these rDNA regions provided a suitable number of informative characters to determine the phylogenetic relationships of species within the genus. A total of 32 alignment positions of the first internal transcribed spacer data set and 33 characters from the second internal transcribed spacer data set were informative in phylogenetic analyses. Irrespective of whether the data from each spacer were analysed separately or combined, only one most parsimonious tree was produced, with the relationships of the four species fully resolved. In addition, several regions of conservatism in the first internal transcribed spacer sequence among the four Nematodirus species suggests that this rDNA region may also provide phylogenetic information for higher taxonomic levels within the Molineoidea.  相似文献   

3.
Phylogeny of the Platyhelminthes and the evolution of parasitism   总被引:4,自引:0,他引:4  
Robust phylogenies provide the basis for interpreting biological variation in the light of evolution. Homologous features provide phylogenetically informative characters whereas homoplasious characters provide phylogenetic noise. Both provide evolutionary signal. We have constructed molecular and morphologically based phylogenies of the phylum Platyhelminthes using a recently revised morphological character matrix and complete 18S and two partial 28S rRNA gene sequences in order to evaluate the emergence and subsequent divergence of parasitic forms. In total we examine 65 morphological characters, 97 18S rDNA, 41 Dl domain 28S rDNA, and 49 D3-D6 domain 28S rDNA sequences. For the molecular data there were 748, 132 and 249 phylogenetically informative sites for the 18S, Dl and D3-D6 28S rDNA data sets respectively. Morphological and molecular phylogenetic solutions are incongruent but not incompatible, and using the principles of conditional combination (18S rDNA + morphology passing Templeton's test) they demonstrate: a single and relatively early origin for the parasitic Neodermata (including the cestodes, trematodes and monogeneans); sister-group status between the cestodes and monogeneans, and between these taxa and the trematodes (digeneans and aspidogastreans). The sister-group to the Neodermata is likely to be a large clade of neoophoran turbellarians, based on combined evidence, or a clade consisting of the Fecampiid + Urastomid turbellarians, based on morphological evidence alone. The combined evidence solution for the phylogeny of fiatworms based on 18S rDNA and morphology is used to interpret morphological and life-history data and to support a model for the evolution and radiation of neodermatan parasites in the group.  相似文献   

4.
The Caucasigenini is an endemic radiation of hygromiid land snails from the Caucasus region. A phylogenetic analysis of morphological characters of the genitalia and the shell showed that the morphological characters are insufficient for resolving the relationships within the Caucasigenini. Convergences of the few parsimony informative characters in other groups of the Hygromiidae demonstrate that these characters are not reliable indicators of phylogenetic relationships. Phylogenetic analyses of sequences of cox1, 16S rDNA, 5.8S rDNA, ITS2 and 28S rDNA revealed several well‐supported groups. The relationships among these groups could not be resolved. It is likely that these groups originated in a rapid radiation during the uplift of the Caucasus. Based on the molecular phylogeny, we propose a new classification of the species of the Caucasigenini and establish a new genus, Lazicana gen. n.  相似文献   

5.
The phylogenetic potential of entire 26S rDNA sequences in plants   总被引:6,自引:1,他引:5  
18S ribosomal RNA genes are the most widely used nuclear sequences for phylogeny reconstruction at higher taxonomic levels in plants. However, due to a conservative rate of evolution, 18S rDNA alone sometimes provides too few phylogenetically informative characters to resolve relationships adequately. Previous studies using partial sequences have suggested the potential of 26S or large-subunit (LSU) rDNA for phylogeny retrieval at taxonomic levels comparable to those investigated with 18S rDNA. Here we explore the patterns of molecular evolution of entire 26S rDNA sequences and their impact on phylogeny retrieval. We present a protocol for PCR amplification and sequencing of entire (approximately 3.4 kb) 26S rDNA sequences as single amplicons, as well as primers that can be used for amplification and sequencing. These primers proved useful in angiosperms and Gnetales and likely have broader applicability. With these protocols and primers, entire 26S rDNA sequences were generated for a diverse array of 15 seed plants, including basal eudicots, monocots, and higher eudicots, plus two representatives of Gnetales. Comparisons of sequence dissimilarity indicate that expansion segments (or divergence domains) evolve 6.4 to 10.2 times as fast as conserved core regions of 26S rDNA sequences in plants. Additional comparisons indicate that 26S rDNA evolves 1.6 to 2.2 times as fast as and provides 3.3 times as many phylogenetically informative characters as 18S rDNA; compared to the chloroplast gene rbcL, 26S rDNA evolves at 0.44 to 1.0 times its rate and provides 2.0 times as many phylogenetically informative characters. Expansion segment sequences analyzed here evolve 1.2 to 3.0 times faster than rbcL, providing 1.5 times the number of informative characters. Plant expansion segments have a pattern of evolution distinct from that found in animals, exhibiting less cryptic sequence simplicity, a lower frequency of insertion and deletion, and greater phylogenetic potential.   相似文献   

6.
The evolution of genome size and ribosomal DNA (rDNA) locus organization was analysed in 23 diploid species of Chenopodium s.l., all of which share the same base chromosome number of x = 9. Phylogenetic relationships among these species were inferred from plastid and nuclear ribosomal internal transcribed spacer (nrITS) DNA sequences. The molecular phylogenetic analyses assigned all analysed species of Chenopodium s.l. to six evolutionary lineages, corresponding to the recent new generic taxonomic treatment of Chenopodium s.l. The distribution of rDNA loci for four species is presented here for the first time using fluorescence in situ hybridization (FISH) with 5S and 35S rDNA probes. Most of the 23 analysed diploid Chenopodium spp. possessed a single subterminally located 35S rDNA locus, except for three species which possessed two 35S rDNA loci. One or two 5S rDNA loci were typically localized subterminally on chromosomes, rarely interstitially. Analyses of rDNA locus numbers in a phylogenetic context resulted in the reconstruction of one locus each of 35S rDNA and 5S rDNA, both in subterminal positions, as the ancestral state. Genome sizes determined using flow cytometry were relatively small (2C value < 2.8 pg), ranging from 0.734 pg in C. schraderianum to 2.721 pg in C. californicum (nearly four‐fold difference), and were often conserved within major phylogenetic lineages, suggesting an adaptive value. The reconstructed ancestral genome size was small for all evolutionary lineages, and changes have probably coincided with the divergence of major lineages. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 218–235.  相似文献   

7.
Dinoflagellates of the genus Alexandrium are known producers of paralytic shellfish toxins. Species within the genus have similar phenotypes making morphological identification problematical. The use of Alexandrium rDNA sequence data is therefore increasing, resulting in the improved resolution of evolutionary relationships by phylogenetic inferences. However, the true branching pattern within Alexandrium remains unresolved, with minimal support shown for the main phylogentic branch. The aim of this study is to improve phylogenetic resolution via a concatenated rDNA approach with a broad sample of taxa, allowing inference of the evolutionary pattern between species and toxins. 27 Alexandrium strains from 10 species were tested with HPLC for PSP toxin presence and additionally sequenced for 18S, ITS1, 5.8S, ITS2 and 28S rDNA before being phylogenetically inferred together with all available orthologous sequences from NCBI. The resulting alignment is the largest to date for the genus, in terms of both inferred characters and taxa, thus allowing for the improved phylogenetic resolution of evolutionary patterns there in. No phylogenetic pattern between PSP producing and non-producing strains could be established, however the terminal tamarense complex was shown to produce more PSP analogues than basal clades. Additionally, we distinguish a high number of polymorphic regions between the two copies of A. fundyense rDNA, thus allowing us to demonstrate the presence of chimeric sequences within GenBank, as well as a possible over estimation of diversification within the tamarense complex.  相似文献   

8.
Previous studies of the phylogeny of land plants based on analysis of 18S ribosomal DNA (rDNA) sequences have generally found weak support for the relationships recovered and at least some obviously spurious relationships, resulting in equivocal inferences of land plant phylogeny. We hypothesized that greater sampling of both characters and taxa would improve inferences of land plant phylogeny based on 18S rDNA sequences. We therefore conducted a phylogenetic analysis of complete (or nearly complete) 18S rDNA sequences for 93 species of land plants and 7 green algal relatives. Parsimony analyses with equal weighting of characters and characters state changes and parsimony analyses weighting (1) stem bases half as much as loop bases and (2) transitions half as much as transversions did not produce substantially different topologies. Although the general structure of the shortest trees is consistent with most hypotheses of land plant phylogeny, several relationships, particularly among major groups of land plants, appear spurious. Increased character and taxon sampling did not substantially improve the performance of 18S rDNA in phylogenetic analyses of land plants, nor did analyses designed to accommodate variation in evolutionary rates among sites. The rate and pattern of 18S rDNA evolution across land plants may limit the usefulness of this gene for phylogeny reconstruction at deep levels of plant phylogeny. We conclude that the mosaic structure of 18S rDNA, consisting of highly conserved and highly variable regions, may contain historical signal at two levels. Rapidly evolving regions are informative for relatively recent divergences (e.g., within angiosperms, seed plants, and ferns), but homoplasy at these sites makes it difficult to resolve relationships among these groups. At deeper levels, changes in the highly conserved regions of small-subunit rDNAs provide signal across all of life. Because constraints imposed by the secondary structure of the rRNA may affect the phylogenetic information content of 18S rDNA, we suggest that 18S rDNA sequences be combined with other data and that methods of analysis be employed to accommodate these differences in evolutionary patterns, particularly across deep divergences in the tree of life.  相似文献   

9.
文章基于速足目现生主要类群18S rDNA、28S rDNA和COI基因序列,采用贝叶斯法、邻接法和最大简约法,尝试构建速足目的分子系统树;结合形态特征和化石记录,主要对速足目各超科级分类阶元的系统发育关系进行探讨。结果表明,速足目现生超科Bairdiacea、Darwinulacea、Cypridacea和Cytheracea均为单系群,支持形态学上关于上述4个超科的的界定;3种基因均支持形态学上Darwinulacea和Cypridacea具有较近的亲缘关系的观点。18S rDNA序列分析在较显著水平上支持Darwinulacea和Bairdiacea为姐妹群,Darwinulacea可能从Bairdia-cea中的一支演化而来;Bairdiacea和Darwinulacea组成的分支是Cypridacea的姐妹群,支持将三者合并为Bairdio-copina亚目的观点;Cytheracea是Cypridacea(Darwinulacea Bairdiacea)的姐妹群,可提升为Cytheracopina亚目。  相似文献   

10.
The phylogenetic relationships and taxonomic affinities of coccidia with isosporan-type oocysts have been unclear as overlapping characters, recently discovered life cycle features, and even recently discovered taxa. continue to be incorporated into biological classifications of the group. We determined the full or partial 18S ribosomal RNA gene sequences of three mammalian Isospora spp., Isospora felis, Isospora ohioensis and Isospora suis , and a Sarcocystis sp. of a rattlesnake, and used these sequences for a phylogenetic analysis of the genus Isospora and the cyst-forming coccidia. Various alveolate 18S rDNA sequences were aligned and analyzed using maximum parsimony to obtain a phylogenetic hypothesis for the group. The three Isospora spp. were found to be most closely related to Toxoplasma gondii and Neospora caninum. This clade in turn formed the sister group to the Sarcocystis spp. included in the analysis. The results confirm that the genus Isospora does not belong to the family Eimeriidae, but should be classified together with the cyst-forming coccidia in the family Sarcocystidae. Furthermore, there appear to be two lineages within the Sarcocystidae. One lineage comprises Isospora and the Toxoplasma/Neospora clade which share the characters of having a proliferative phase of development preceding gamogony in the definitive host and an exogenous phase of sporogony. The other lineage comprises the Sarcocystis spp. which have no proliferative phase in the definitive host and an endogenous phase of sporogony.  相似文献   

11.
Rhabdiasidae Railliet, 1915 is a globally distributed group of up to 100 known species of nematodes parasitic in amphibians and reptiles. This work presents the results of a molecular phylogenetic analysis of 36 species of Rhabdiasidae from reptiles and amphibians from six continents. New DNA sequences encompassing partial 18S rDNA, ITS1, 5.8S rDNA, ITS2 and partial 28S rDNA regions of nuclear ribosomal DNA were obtained from 27 species and pre-existing sequences for nine species were incorporated. The broad taxonomic, host and geographical coverage of the specimens allowed us to address long-standing questions in rhabdiasid systematics, evolution, geographic distribution, and patterns of host association. Our analysis demonstrated that rhabdiasids parasitic in snakes are an independent genus sister to the rest of the Rhabdiasidae, a status supported by life cycle data. Based on the combined evidence of molecular phylogeny, morphology and life cycle characteristics, a new genus Serpentirhabdias gen. nov. with the type species Serpentirhabdias elaphe (Sharpilo, 1976) comb. nov. is established. The phylogeny supports the monophyly of Entomelas Travassos, 1930, Pneumonema Johnston, 1916 and the largest genus of the family, Rhabdias Stiles and Hassall, 1905. DNA sequence comparisons demonstrate the presence of more than one species in the previously monotypic Pneumonema from Australian scincid lizards. The distribution of some morphological characters in the genus Rhabdias shows little consistency within the phylogenetic tree topology, in particular the apical structures widely used in rhabdiasid systematics. Our data suggest that some of the characters, while valuable for species differentiation, are not appropriate for differentiation among higher taxa and are of limited phylogenetic utility. Rhabdias is the only genus with a cosmopolitan distribution, but some of the lineages within Rhabdias are distributed on a single continent or a group of adjacent zoogeographical regions. Serpentirhabdias, Entomelas and Pneumonema show rather strict specificity to their host groups. The evolution of the Rhabdiasidae clearly included multiple host switching events among different orders and families of amphibians as well as switching between amphibians and squamatan reptiles. Only a few smaller lineages of Rhabdias demonstrate relatively strict associations with a certain group of hosts.  相似文献   

12.
A nuclear18S rDNA phylogeny for cryptomonad algae is presented, including 11 species yet to be investigated by molecular means. The phylogenetic positions of the cryptomonad genera Campylomonas and Plagioselmis are assessed for the first time. Campylomonas groups most closely with morphologically similar species with the same accessory pigment from the genus Cryptomonas. Plagioselmis groups with the genera Teleaulax and Geminigera forming a clade whose members are united by unusual thylakoid arrangement. Nuclear 18S rDNA phylogeny divides cryptomonads into seven major lineages, two of which consist of the monospecific genera Proteomonas and Falcomonas. Analysis of nuclear18S rDNA sequence supports suggestions that a Falcomonas‐like cryptomonad gave rise to all other blue‐green cryptomonads. New sequence from the plastid‐lacking cryptomonad genus Goniomonas is also included, and the order of divergence of the major cryptomonad lineages is discussed. The morphology, number, and pigmentation of the cryptomonad plastidial complex are congruent with nuclear 18S rDNA phylogenies. Host cell features, such as periplast type, furrow/gullet system, and cell shape, can be more variable and may be markedly different in species that are closely related by nuclear 18S rDNA phylogeny. Conversely, some species that are not closely related by molecular phylogeny may display a very similar, possibly primitive, periplast and furrow morphology.  相似文献   

13.
Phylogeny of Tunicata inferred from molecular and morphological characters   总被引:5,自引:0,他引:5  
The phylogeny of the Tunicata was reconstructed using molecular and morphological characters. Mitochondrial cytochrome oxidase I (cox1) and 18S rDNA sequences were obtained for 14 and 4 tunicate species, respectively. 18S rDNA sequences were aligned with gene sequences obtained from GenBank of 57 tunicates, a cephalochordate, and a selachian craniate. Cox1 sequences were aligned with the sequence of two ascidians and a cephalochordate obtained from GenBank. Traditional, morphological, life history, and biochemical characters of larval and adult stages were compiled from the literature and analyzed cladistically. Separate and simultaneous parsimony analyses of molecular and morphological data were carried out. Aplousobranch ascidians from three different families were included in a molecular phylogenetic analysis for the first time. Analysis of the morphological, life history, and biochemical characters results in a highly unresolved tree. Aplousobranchiata form a strongly supported monophylum in the analysis of the 18S rDNA data, the morphological data, and the combined data set. Cionidae is not included in the Aplousobranchiata but nests within the Phlebobranchiata. Appendicularia (=Larvacea) nest within the 'Ascidiacea' as the sister taxon of Aplousobranchiata in the parsimony analysis of the 18S rDNA data and the combined analysis. A potential morphological synapomorphy of Aplousobranchiata plus Appendicularia is the horizontal orientation of the larval tail. In the 18S rDNA and the combined analysis, Thaliacea is included in the 'Ascidiacea' as the sister group to Phlebobranchiata. Pyrosomatida is found to be the sister taxon to the Salpidae in analyses of 18S rDNA and combined data, whereas the analysis of the morphological data recovers a sister group relationship between Doliolidae and Salpidae. Results of cox1 analyses are incongruent with both the 18S rDNA and the morphological phylogenies. Cox1 sequences may evolve too rapidly to resolve relationships of higher tunicate taxa. However, the cox1 data may be useful at lower taxonomic levels.  相似文献   

14.
The traditional green algal genus Chlorella , which comprised coccoid algae surrounded by a smooth cell wall and reproducing solely by autosporulation, has proved to be polyphyletic and extremely diverse in phylogenetic terms. We studied a new subaerial Chlorella -like strain CAUP H7901 and morphological, ultrastructural, and molecular phylogenetic investigations indicated that it represents a new lineage of the trebouxiophycean Watanabea clade, dissimilar from other members of this group. The alga has globular coccoid cells with a single parietal pyrenoid-bearing chloroplast. The pyrenoid is transected by multiple radial thylakoid bands. The alga reproduces exclusively by means of asexual autospores of unequal size. In 18S rDNA sequence phylogenies, it was nested within the Watanabea clade close to lineages containing Chlorella saccharophila , Chlorella luteoviridis , Heveochlorella hainangensis , and two uncharacterized strains, but alternative positions within the Watanabea clade could not be rejected by an approximately unbiased (AU) test. Here we describe this organism as a new genus and species Kalinella bambusicola gen. et sp. nov. Furthermore, we describe Heterochlorella gen. nov. to accommodate a species previously referred to as Chlorella luteoviridis .  相似文献   

15.
This study represents the first formal morphological and combined (morphological and molecular) phylogenetic analyses of the order Ephemeroptera. Taxonomic sampling comprised 112 species in 107 genera, including 42 recognized families (all major lineages of Ephemeroptera). Morphological data consisted of 101 morphological characters. Molecular data were acquired from DNA sequences of the 12S, 16S, 18S, 28S and H3 genes. The Asian genus Siphluriscus (Siphluriscidae) was supported as sister to all other mayflies. The lineages Carapacea, Furcatergalia, Fossoriae, Pannota, Caenoidea and Ephemerelloidea were supported as monophyletic, as were many of the families. However, some recognized families (for example, Ameletopsidae and Coloburiscidae) and major lineages (such as Setisura, Pisciforma and Ephemeroidea among others) were not supported as monophyletic, mainly due to convergences within nymphal characters. Clade robustness was evaluated by multiple methods and approaches.  相似文献   

16.
The species diversity of the phylum Rotifera has been largely studied on the basis of morphological characters. However, cladistic relationships within this group are poorly resolved due to extensive homoplasy in morphological traits, substantial phenotypic plasticity and a poor fossil record. We undertook this study to determine if a phylogeny based on partial 18S rDNA, which included the helix E23 of 18S rDNA sequence, was concordant with established taxonomic relationships within the order Ploimida (class: Monogononta). We also estimated the level of polymorphism within clones and populations of Ploimida 'species'. Finally, we included the Cycliophora Symbion pandora as outgroup and the variable helix E23 region to examine the influence of their signal on the evolutionary relationships among Acanthocephala, Bdelloidea and Ploimida. Phylogenetic reconstruction was performed using maximum parsimony, neighbour joining and maximum likelihood methods. We found 1) that morphologically similar Ploimida 'species' show vastly different 18S E23 rDNA sequences; 2) inclusion of the helix E23 of 18S rDNA and its secondary structure analysis results in better resolution of family level relationships within the Ploimida; 3) an impact of Symbion pandora as an outgroup with inclusion of the helix E23 on the relationships between the Rotifera and the Acanthocephala; and 4) partial incongruence and differential substitution rate between conserved region and helix E23 region of the 18S rDNA gene depending on the taxomic group studied.  相似文献   

17.
In an effort to establish a suitable alternative to the widely used 18S rRNA system for molecular systematics of fungi, we examined the nuclear gene RPB2, encoding the second largest subunit of RNA polymerase II. Because RPB2 is a single-copy gene of large size with a modest rate of evolutionary change, it provides good phylogenetic resolution of Ascomycota. While the RPB2 and 18S rDNA phylogenies were highly congruent, the RPB2 phylogeny did result in much higher bootstrap support for all the deeper branches within the orders and for several branches between orders of the Ascomycota. There are several strongly supported phylogenetic conclusions. The Ascomycota is composed of three major lineages: Archiascomycetes, Saccharomycetales, and Euascomycetes. Within the Euascomycetes, plectomycetes, and pyrenomycetes are monophyletic groups, and the Pleosporales and Dothideales are distinct sister groups within the Loculoascomycetes. We confirm the placement of Neolecta within the Archiascomycetes, suggesting that fruiting body formation and forcible discharge of ascospores were characters gained early in the evolution of the Ascomycota. These findings show that a slowly evolving protein-coding gene such as RPB2 is useful for diagnosing phylogenetic relationships among fungi.  相似文献   

18.
The phylogenetic relationships of Trypanosoma cruzi strains were inferred using maximum-likelihood from complete 18S rDNA sequences and D7-24Salpha rDNA regions from 20 representative strains of T. cruzi. For this we sequenced the 18S rDNA of 14 strains and the D7-24Salpha rDNA of four strains and aligned them to previously published sequences. Phylogenies inferred from these data sets identified four groups, named Riboclades 1, 2, 3, and 4, and a basal dichotomy that separated Riboclade 1 from Riboclades 2, 3, and 4. Substitution models and other parameters were optimized by hierarchical likelihood tests, and our analysis of the 18S rDNA molecular clock by the likelihood ratio test suggests that a taxa subset encompassing all 2,150 positions in the alignment supports rate constancy among lineages. The present analysis supports the notion that divergence dates of T. cruzi Riboclades can be estimated from 18S rDNA sequences and therefore, we present alternative evolutionary scenarios based on two different views of T. cruzi intraspecific divergence. The first assumes a faster evolutionary rate, which suggests that the divergence between T. cruzi I and II and the extant strains occurred in the Tertiary period (37-18 MYA). The other, which supports the hypothesis that the divergence between T. cruzi I and II occurred in the Cretaceous period (144-65 MYA) and the divergence of the extant strains occurred in the Tertiary period of the Cenozoic era (65-1.8 MYA), is consistent with our previously proposed hypothesis of divergence by geographical isolation and mammalian host coevolution.  相似文献   

19.
Checker mallows (Sidalcea, Malvaceae) constitute a western North American genus of annuals and perennials that have been regarded as taxonomically difficult because of complex patterns of morphological variation putatively stemming from hybridization and polyploidy. In recent molecular phylogenetic investigations extensive polymorphism was observed in the internal and external transcribed spacers (ITS and ETS) of 18S-26S nuclear ribosomal DNA for some Sidalcea samples. To resolve the evolutionary basis for this polymorphism and to readdress the evolutionary impact of hybridization in Sidalcea we cloned and sequenced the polymorphic DNAs and included the clones in phylogenetic analyses together with direct sequences of non-polymorphic samples. The positions of cloned spacer sequences in the phylogenetic trees suggest that S. reptans and two subspecies of S. malviflora may have been influenced by past hybridization with lineages of the "glaucescens" clade. Polymorphic sequence patterns in other taxa may be a result of extensive interbreeding within young clades, in keeping with the minimal sequence divergence, largely overlapping geographic distributions and morphology, and ploidy variation in these groups. Other possible explanations for polymorphic sequences in members of Sidalcea include slow concerted evolution relative to mutation rates, incomplete lineage sorting, and recent pseudogene formation.  相似文献   

20.
A remarkable diversity of life history strategies, geographic distributions, and morphological characters provide a rich substrate for investigating the evolutionary relationships of arhynchobdellid leeches. The phylogenetic relationships, using parsimony analysis, of the order Arhynchobdellida were investigated using nuclear 18S and 28S rDNA, mitochondrial 12S rDNA, and cytochrome c oxidase subunit I sequence data, as well as 24 morphological characters. Thirty-nine arhynchobdellid species were selected to represent the seven currently recognized families. Sixteen rhynchobdellid leeches from the families Glossiphoniidae and Piscicolidae were included as outgroup taxa. Analysis of all available data resolved a single most-parsimonious tree. The cladogram conflicted with most of the traditional classification schemes of the Arhynchobdellida. Monophyly of the Erpobdelliformes and Hirudiniformes was supported, whereas the families Haemadipsidae, Haemopidae, and Hirudinidae, as well as the genera Hirudo or Aliolimnatis, were found not to be monophyletic. The results provide insight on the phylogenetic positions for the taxonomically problematic families Americobdellidae and Cylicobdellidae, the genera Semiscolex, Patagoniobdella, and Mesobdella, as well as genera traditionally classified under Hirudinidae. The evolution of dietary and habitat preferences is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号