首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The AAA+ family of proteins play fundamental roles in all three kingdoms of life. It is thought that they act as molecular chaperones in aiding the assembly or disassembly of proteins or protein complexes. Recent structural studies on a number of AAA+ family proteins have revealed that they share similar structural elements. These structures provide a possible link between nucleotide binding/hydrolysis and the conformational changes which are then amplified to generate mechanical forces for their specific functions. However, from these individual studies it is far from clear whether AAA+ proteins in general share properties in terms of nucleotide induced conformational changes. In this study, we analyze sequence conservation within the AAA+ family and identify two subfamilies, each with a distinct conserved linker sequence that may transfer conformational changes upon ATP binding/release to movements between subdomains and attached domains. To investigate the relation of these linker sequences to conformational changes, molecular dynamics (MD) simulations on X-ray structures of AAA+ proteins from each subfamily have been performed. These simulations show differences in both the N-linker peptide, subdomain motion, and cooperativity between elements of quaternary structure. Extrapolation of subdomain movements from one MD simulation enables us to produce a structure in close agreement with cryo-EM experiments.  相似文献   

2.
Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the Drosophila melanogaster origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes.  相似文献   

3.
《Journal of molecular biology》2009,385(2):368-29346
Regulatory inactivation of DnaA is dependent on Hda (homologous to DnaA), a protein homologous to the AAA+ (ATPases associated with diverse cellular activities) ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 Å resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174 and 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation that promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type of mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel β-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP-bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda.  相似文献   

4.
5.
The RuvB hexamer is the chemomechanical motor of the RuvAB complex that migrates Holliday junction branch-points in DNA recombination and the rescue of stalled DNA replication forks. The 1.6 A crystal structure of Thermotoga maritima RuvB together with five mutant structures reveal that RuvB is an ATPase-associated with diverse cellular activities (AAA+-class ATPase) with a winged-helix DNA-binding domain. The RuvB-ADP complex structure and mutagenesis suggest how AAA+-class ATPases couple nucleotide binding and hydrolysis to interdomain conformational changes and asymmetry within the RuvB hexamer implied by the crystallographic packing and small-angle X-ray scattering in solution. ATP-driven domain motion is positioned to move double-stranded DNA through the hexamer and drive conformational changes between subunits by altering the complementary hydrophilic protein- protein interfaces. Structural and biochemical analysis of five motifs in the protein suggest that ATP binding is a strained conformation recognized both by sensors and the Walker motifs and that intersubunit activation occurs by an arginine finger motif reminiscent of the GTPase-activating proteins. Taken together, these results provide insights into how RuvB functions as a motor for branch migration of Holliday junctions.  相似文献   

6.
AAA+ adenosine triphosphatases (ATPases) are molecular machines that perform a wide variety of cellular functions. For instance, they can act in vesicle transport, organelle assembly, membrane dynamics and protein unfolding. In most cases, the ATPase domains of these proteins assemble into active ring-shaped hexamers. As AAA+ proteins have a common structure, a central issue is determining how they use conserved mechanistic principles to accomplish specific biological actions. Here, we review the features and motifs that partially define AAA+ domains, describe the cellular activities mediated by selected AAA+ proteins and discuss the recent work, suggesting that various AAA+ machines with very different activities employ a common core mechanism. The importance of this mechanism to human health is demonstrated by the number of genetic diseases caused by mutant AAA+ proteins.  相似文献   

7.
8.
Pontin and reptin belong to the AAA+ family, and they are essential for the structural integrity and catalytic activity of several chromatin remodeling complexes. They are also indispensable for the assembly of several ribonucleoprotein complexes, including telomerase. Here, we propose a structural model of the yeast pontin/reptin complex based on a cryo-electron microscopy reconstruction at 13 A. Pontin/reptin hetero-dodecamers were purified from in vivo assembled complexes forming a double ring. Two rings interact through flexible domains projecting from each hexamer, constituting an atypical asymmetric form of oligomerization. These flexible domains and the AAA+ cores reveal significant conformational changes when compared with the crystal structure of human pontin that generate enlarged channels. This structure of endogenously assembled pontin/reptin complexes is different than previously described structures, suggesting that pontin and reptin could acquire distinct structural states to regulate their broad functions as molecular motors and scaffolds for nucleic acids and proteins.  相似文献   

9.
10.
A subgroup of the AAA+ proteins that reside in the endoplasmic reticulum and the nuclear envelope including human torsinA, a protein mutated in hereditary dystonia, is called the torsin family of AAA+ proteins. A multiple-sequence alignment of this family with Hsp100 proteins of known structure reveals a conserved cysteine in the C-terminus of torsin proteins within the Sensor-II motif. A structural model predicts this cysteine to be a part of an intramolecular disulfide bond, suggesting that it may function as a redox sensor to regulate ATPase activity. In vitro experiments with OOC-5, a torsinA homolog from Caenorhabditis elegans, demonstrate that redox changes that reduce this disulfide bond affect the binding of ATP and ADP and cause an attendant local conformational change detected by limited proteolysis. Transgenic worms expressing an ooc-5 gene with cysteine-to-serine mutations that disrupt the disulfide bond have a very low embryo hatch rate compared with wild-type controls, indicating these two cysteines are essential for OOC-5 function. We propose that the Sensor-II in torsin family proteins is a redox-regulated sensor. This regulatory mechanism may be central to the function of OOC-5 and human torsinA.  相似文献   

11.
RuvBL1 and RuvBL2, also known as Pontin and Reptin, are AAA+ proteins essential in small nucleolar ribonucloprotein biogenesis, chromatin remodelling, nonsense-mediated messenger RNA decay and telomerase assembly, among other functions. They are homologous to prokaryotic RuvB, forming single- and double-hexameric rings; however, a DNA binding domain II (DII) is inserted within the AAA+ core. Despite their biological significance, questions remain regarding their structure. Here, we report cryo-electron microscopy structures of human double-ring RuvBL1–RuvBL2 complexes at ∼15 Å resolution. Significantly, we resolve two coexisting conformations, compact and stretched, by image classification techniques. Movements in DII domains drive these conformational transitions, extending the complex and regulating the exposure of DNA binding regions. DII domains connect with the AAA+ core and bind nucleic acids, suggesting that these conformational changes could impact the regulation of RuvBL1–RuvBL2 containing complexes. These findings resolve some of the controversies in the structure of RuvBL1–RuvBL2 by revealing a mechanism that extends the complex by adjustments in DII.  相似文献   

12.
13.
p97 (also called VCP), a member of the AAA ATPase family, is involved in several cellular processes, including membrane fusion and extraction of proteins from the endoplasmic reticulum for cytoplasmic degradation. We have studied the conformational changes that p97 undergoes during the ATPase cycle by cryo-EM and single-particle analysis. Three-dimensional maps show that the two AAA domains, D1 and D2, as well as the N-domains, experience conformational changes during ATP binding, ATP hydrolysis, P(i) release and ADP release. The N-domain is flexible in most nucleotide states except after ATP hydrolysis. The rings formed by D1 and D2 rotate with respect to each other, and the size of their axial openings fluctuates. Taken together, our results depict the movements that this and possibly other AAA ATPases can undergo during an ATPase cycle.  相似文献   

14.
15.
Hexameric AAA+ ATPases induce conformational changes in a variety of macromolecules. AAA+ structures contain the nucleotide‐binding P‐loop with the Walker A sequence motif: GxxGxGK(T/S). A subfamily of AAA+ sequences contains Asn in the Walker A motif instead of Thr or Ser. This noncanonical subfamily includes torsinA, an ER protein linked to human dystonia and DnaC, a bacterial helicase loader. Role of the noncanonical Walker A motif in the functionality of AAA+ ATPases has not been explored yet. To determine functional effects of introduction of Asn into the Walker A sequence, we replaced the Walker‐A Thr with Asn in ClpB, a bacterial AAA+ chaperone which reactivates aggregated proteins. We found that the T‐to‐N mutation in Walker A partially inhibited the ATPase activity of ClpB, but did not affect the ClpB capability to associate into hexamers. Interestingly, the noncanonical Walker A sequence in ClpB induced preferential binding of ADP vs. ATP and uncoupled the linkage between the ATP‐bound conformation and the high‐affinity binding to protein aggregates. As a consequence, ClpB with the noncanonical Walker A sequence showed a low chaperone activity in vitro and in vivo. Our results demonstrate a novel role of the Walker‐A Thr in sensing the nucleotide's γ‐phosphate and in maintaining an allosteric linkage between the P‐loop and the aggregate binding site of ClpB. We postulate that AAA+ ATPases with the noncanonical Walker A might utilize distinct mechanisms to couple the ATPase cycle with their substrate‐remodeling activity.  相似文献   

16.
We investigated a new archaeal member of the AAA+ protein family (ATPases associated with various cellular activities) which is found in all methanogenic archaea and the sulphate-reducer Archaeoglobus fulgidus. These proteins cluster to COG1223 predicted to form a subgroup of the AAA+ ATPases. The gene from A. fulgidus codes for a protein of 40 kDa monomeric molecular weight, which we overexpressed in Escherichia coli and purified to homogeneity. The protein forms ring-shaped complexes with a diameter of 125A as determined by electron microscopy. Using sedimentation equilibrium analysis we demonstrate that it assembles into hexamers over a wide concentration range both in presence and absence of ATP. As suggested by homology to other members of the AAA+ family, the complex binds and hydrolyzes ATP. Michaelis-Menten analysis revealed a k(cat) of 118 min(-1) and a K(M) of 1.4 mM at 78 degrees C. This hyperthermophilic archaeal ATPase is stable to 86 degrees C and the ATPase activity is maximal at this temperature. The protein is most homologous to the AAA-domain of FtsH from bacteria, while the N-terminal domain shows predicted structural homology to members of the CDC48 family of AAA proteins. Possible roles of this new AAA+ protein are discussed.  相似文献   

17.
18.
Members of the family of ATPases associated with various cellular activities (AAA+) typically form homohexameric ring complexes and are able to remodel their substrates, such as misfolded proteins or protein-protein complexes, in an ATP-driven process. The molecular mechanism by which ATP hydrolysis is coordinated within the multimeric complex and the energy is converted into molecular motions, however, is poorly understood. This is partly due to the fact that the oligomers formed by AAA+ proteins represent a highly complex system and analysis depends on simplification and prior knowledge. Here, we present nucleotide binding and oligomer assembly kinetics of the AAA+ protein ClpB, a molecular chaperone that is able to disaggregate protein aggregates in concert with the DnaK chaperone system. ClpB bears two AAA+ domains (NBD1 and NBD2) on one subunit and forms homohexameric ring complexes. In order to dissect individual mechanistic steps, we made use of a reconstituted system based on two individual constructs bearing either the N-terminal (NBD1) or the C-terminal AAA+ domain (NBD2). In contrast to the C-terminal construct, the N-terminal construct does not bind the fluorescent nucleotide MANT-dADP in isolation. However, sequential mixing experiments suggest that NBD1 obtains nucleotide binding competence when incorporated into an oligomeric complex. These findings support a model in which nucleotide binding to NBD1 is dependent on and regulated by trans-acting elements from neighboring subunits, either by direct interaction with the nucleotide or by stabilization of a nucleotide binding-competent state. In this way, they provide a basis for intersubunit communication within the functional ClpB complex.  相似文献   

19.
The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of a substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) in a substrate-engaged state at 3.6 Å resolution. Our data indicate that substrate interactions are mediated by the dual pore loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states. However, a closed AAA+ ring is maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. This structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding.  相似文献   

20.
The ATPase p97/VCP affects multiple events within the cell. These events include the alteration of both nuclear and mitotic Golgi membranes, the dislocation of ubiquitylated proteins from the endoplasmic reticulum and regulation of the NF-kappa b pathway. Here we present the crystal structure of full-length Mus musculus p97/VCP in complex with a mixture of ADP and ADP-AlF(x) at a resolution of 4.7 A. This is the first complete hexameric structure of a protein containing tandem AAA (ATPases associated with a variety of cellular activities) domains. Comparison of the crystal structure and cryo-electron microscopy (EM) reconstructions reveals large conformational changes in the helical subdomains during the hydrolysis cycle. Structural and functional data imply a communication mechanism between the AAA domains. A Zn(2+) occludes the central pore of the hexamer, suggesting that substrate does not thread through the pore of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号