共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial inhibitory effects of nitrite: inhibition of active transport, but not of group translocation, and of intracellular enzymes. 总被引:7,自引:1,他引:7
下载免费PDF全文

Nitrite inhibited active transport of proline in Escherichia coli but not group translocation of sugar via the phosphoenolpyruvate:phosphotransferase system. These results were consistent with previous results that nitrite inhibits active transport, oxygen uptake, and oxidative phosphorylation in aerobic bacteria. Nitrite also inhibited aldolase (EC 4.1.2.13) from E. coli, Pseudomonas aeruginosa, Streptococcus faecalis, and rabbit muscle. Thus, these various data showed that nitrite has more than one site of attack in the bacterial cell. These data also indicated that nitrite is inhibitory to a wide range of physiological types of bacteria. 相似文献
2.
Differential effects of phosphatidylinositol 3-kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport 总被引:7,自引:0,他引:7
Somwar R Niu W Kim DY Sweeney G Randhawa VK Huang C Ramlal T Klip A 《The Journal of biological chemistry》2001,276(49):46079-46087
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin. 相似文献
3.
Bacterial lipopolysaccharide activates protein kinase C, but not intracellular calcium elevation, in human peripheral T cells 总被引:1,自引:0,他引:1
The increase of intracellular free calcium concentration ([Ca(2+)](i)) and protein kinase C (PKC) activity are two major early mitogenic signals to initiate proliferation of human peripheral T cells. Bacterial lipopolysaccharide (LPS) is nonmitogenic in human T cells. However, in the presence of monocytes, LPS becomes mitogenic to proliferate T cells. The aim of this study was to define the incompetency of LPS on two mitogenic signals in human peripheral T cells. T cells were isolated from human peripheral blood. [Ca(2+)](i) and pH(i) were determined by loading the cells with the fluorescent dyes, Fura-2 acetoxymethyl ester (Fura-2/AM) and 2',7'-bis(2-carboxyethyl)-5-(and 6)carboxyfluorescein acetoxymethyl ester (BCECF/AM). PKC activity was determined by protein kinase assay and cell proliferation was estimated from the incorporation of [(3)H]-thymidine. The results indicated that (1) LPS (10 microg/ml) stimulated PKC activity significantly within 5 min, reached a plateau at 30 min, and maintained that level for at least 2 h; and (2) LPS stimulated cytoplasmic alkalinization but did not affect the levels of [Ca(2+)](i) and [(3)H]-thymidine incorporation into T cells. Moreover, the combination of calcium ionophore A23187 with LPS significantly stimulated [(3)H]-thymidine incorporation into T cells. Thus, the results demonstrate that LPS failed to proliferate T cells, probably because of a lack of the machinery necessary to stimulate the mitogenic signal on [Ca(2+)](i) elevation. 相似文献
4.
Smith U Carvalho E Mosialou E Beguinot F Formisano P Rondinone C 《Biochemical and biophysical research communications》2000,268(2):315-320
We identified 1-(5 chloronaphthalenesulfonyl)-1H-hexahydro-1, 4-diazepine, also known as ML-9, as a powerful inhibitor of PKB activity in different cells as well as of recombinant PKB. It also inhibits other downstream serine/threonine kinases, such as PKA and p90 S6 kinase, but not upstream tyrosine phosphorylation or PI3-kinase activation in response to insulin. We compared the effects of ML-9 and wortmannin on several insulin-stimulated effects in isolated rat fat cells. Both ML-9 and wortmannin inhibited glucose transport and GLUT4/IGF II receptor translocation to the plasma membrane. In contrast, only wortmannin inhibited the antilipolytic effect and PDE3B activation by insulin. Thus, ML-9 inhibits PKB but not PI3-kinase activation in response to insulin and is useful to differentiate between these effects. Both PI3-kinase and PKB are important for glucose transport and intracellular protein translocation while PKB does not appear to play an important role for the antilipolytic effect or activation of PDE3B in response to insulin. 相似文献
5.
Shortened cytoplasmic domain affects intracellular transport but not nuclear localization of a viral glycoprotein 总被引:9,自引:0,他引:9
Herpes simplex virus (HSV) buds from the inner nuclear membrane of the infected cells. The glycoprotein gB-1 of HSV contains a stretch of 69 hydrophobic amino acids near the COOH terminus and a 109-amino acid cytoplasmic domain. By oligonucleotide-directed mutagenesis, five gB-1 mutants were constructed which either lack a cytoplasmic tail or contained 3, 6, 22, or 43 amino acids in the cytoplasmic tail. When expressed in COS cells all of the mutant glycoproteins were synthesized but the rate of intracellular transport and the appearance at the cell surface of the mutant gB-1 protein lacking the cytoplasmic tail or containing 3 and 6 amino acids in the cytoplasmic domain was drastically reduced. The wild-type gB-1 as well as all of the mutants in the cytoplasmic tail were, however, located on the nuclear envelope. These results suggest that the cytoplasmic domain of the glycoprotein gB may play a role in intracellular transport but not in the nuclear localization. 相似文献
6.
The Ras/MAPK pathway regulates synaptic plasticity and cell survival in neurons of the central nervous system. Here, we show that KRas, but not HRas, acutely translocates from the plasma membrane (PM) to the Golgi complex and early/recycling endosomes in response to neuronal activity. Translocation is reversible and mediated by the polybasic-prenyl membrane targeting motif of KRas. We provide evidence that KRas translocation occurs through sequestration of the polybasic-prenyl motif by Ca2+/calmodulin (Ca2+/CaM) and subsequent release of KRas from the PM, in a process reminiscent of GDP dissociation inhibitor-mediated membrane recycling of Rab and Rho GTPases. KRas translocation was accompanied by partial intracellular redistribution of its activity. We conclude that the polybasic-prenyl motif acts as a Ca2+/CaM-regulated molecular switch that controls PM concentration of KRas and redistributes its activity to internal sites. Our data thus define a novel signaling mechanism that differentially regulates KRas and HRas localization and activity in neurons. 相似文献
7.
J P Piau G Gacon S Chouaib 《Biochemical and biophysical research communications》1989,161(3):1299-1305
We have recently reported on the effect of PGE2 on T cell activation and suggested that their immunosuppressive effect may involve the PKC activation pathway. In the present study, we further investigated the potential interference of PGE2 with PHA induced signaling in T lymphocytes. We demonstrate that the PHA mediated increase in IP3, the putative mobilizer of intracellular Ca2+, is slightly affected following cell incubation with PGE2. Treatment of cell culture with the tumor promoter TPA abrogates the suppressive activity of PGE2 whereas exogenous diacylglycerol (1,2-diolein) has only a marginal effect. This suggests that PGE2 affect PKC activity at sites distal to IP3 and DG generation. We also demonstrate that the PGE2 suppressive effect on T lymphocyte activation is not related to an inhibition of PKC translocation. 相似文献
8.
Lipid microdomains,lipid translocation and the organization of intracellular membrane transport (Review) 总被引:1,自引:0,他引:1
Eukaryotic cells contain hundreds of different lipid species that are not uniformly distributed among their membranes. For example, sphingolipids and sterols form gradients along the secretory pathway with the highest levels in the plasma membrane and the lowest in the endoplasmic reticulum. Moreover, lipids in late secretory organelles display asymmetric transbilayer arrangements with the aminophospholipids concentrated in the cytoplasmic leaflet. This lipid heterogeneity can be viewed as a manifestation of the fact that cells exploit the structural diversity of lipids in organizing intracellular membrane transport. Lipid immiscibility and the generation of phase-separated lipid domains provide a molecular basis for sorting membrane proteins into specific vesicular pathways. At the same time, energy-driven aminophospholipid transporters participate in membrane deformation during vesicle biogenesis. This review will focus on how selective membrane transport relies on a dynamic interplay between membrane lipids and proteins. 相似文献
9.
Inhibition, but not uncoupling, of respiratory energy coupling of three bacterial species by nitrite 总被引:3,自引:0,他引:3
下载免费PDF全文

The effect of nitrite on respiratory energy coupling of three bacteria was studied in light of a recent report that nitrite acted as an uncoupling agent with Paracoccus denitrificans grown under denitrifying conditions. Our determinations of proton translocation stoichiometry of Pseudomonas putida (aerobically grown), Pseudomonas aeruginosa, and P. denitrificans (grown both aerobically and under denitrifying conditions) showed nitrite inhibition of proton-to-oxidant stoichiometry, but not uncoupling. Nitrite both reduced the H+/O ratio and decreased the rate of proton resorption. Increased proton resorption rates, characteristic of authentic uncoupling agents, were not observed. The lack of enhanced proton permeability due to nitrite was verified via passive proton permeability assays. The H+/O ratio of P. aeruginosa increased when growth conditions were changed from aerobic to denitrifying. This suggested the induction of an additional coupling site in the electron transport chain of denitrifying P. aeruginosa. 相似文献
10.
Jonas Nilsson Gustaf E. Rydell Jacques Le Pendu Göran Larson 《Glycoconjugate journal》2009,26(9):1171-1180
Noroviruses and norovirus virus-like particles (VLPs) exhibit strain specific patterns in their binding to ABH and Lewis histo-blood
group antigens. In this study we demonstrate for the first time specific binding of Norwalk virus VLPs to type 1 and type
2 chain glycosphingolipids (GSLs) carrying ABH and Lewis antigens. N-succinimidyl-3-tributylstannyl benzoate (ATE) was precursor labeled with 125I and then conjugated to VLPs. The 125I-VLPs were used in GSL thin-layer chromatogram binding assays and displayed binding to H type 1, Lewis b, A type 1, A Lewis
b GSLs but no binding to B type 1 or B Lewis b GSLs. For the type 2 chain GSLs the Norwalk VLPs bound to H type 2, Lewis y,
A type 2 and A Lewis y. In addition, the VLPs bound to several complex GSLs from blood group O and A, but not from blood group
B red blood cells. 相似文献
11.
12.
Morphine-6-beta-d-glucuronide (M6G) is an active metabolite of morphine with high analgesic potency despite a low blood-brain barrier (BBB) permeability. The aim of the study was to elucidate its transport mechanism across the BBB. We first checked if M6G was effluxed by the P-glycoprotein (P-gp), as previously reported by others. Second, we investigated the role of anionic transporters like the multidrug resistance-associated protein mrp1 and the glucose transporter GLUT-1. The brain uptake of [14C]M6G was measured by the in situ brain perfusion technique in wild-type and deficient mice [mdr1a(-/-) and mrp1(-/-)], with and without probenecid, digoxin, PSC833 or d-glucose. No difference was found between P-gp and mrp1 competent and deficient mice. The brain uptake of [14C]M6G co-perfused with probenecid in wild-type mice was not significantly different from that found in group perfused with [14C]M6G alone. The co-perfusion of [14C]M6G with digoxin or PSC833 was responsible of a threefold decrease of its uptake in mdr1a competent and deficient mice, suggesting that another transporter than P-gp and sensitive to digoxin and PSC833, may be involved. The co-perfusion of [14C]M6G with d-glucose revealed a threefold decrease in M6G uptake. In conclusion, P-gp and mrp1 are not involved in the transport of M6G at the BBB level in contrast to GLUT-1 and a digoxin-sensitive transporter (probably oatp2), which can actively transport M6G but with a weak capacity. 相似文献
13.
Clostridium perfringens type A enterotoxin (CPE) has been shown previously to inhibit the incorporation of radiolabeled precursors into acid-insoluble material but the mechanism of inhibition is unknown. It has also been shown that extracellular calcium is required for some CPE effects. In this report, it is shown that CPE completely and virtually simultaneously inhibits incorporation of precursors into RNA, DNA and protein in either the presence or absence of extracellular divalent cations and that changes in intracellular precursor levels did not consistently correlate with this CPE-induced inhibition of incorporation. These results strongly suggest that CPE can inhibit macromolecular synthesis, not just inhibit precursor transport. It is inferred from this that CPE can affect DNA and RNA synthesis, and possibly protein synthesis, by altering other cellular processes besides, or in addition to, precursor transport and these effects then lead to a shutdown of macromolecular synthesis. 相似文献
14.
J A Cardelli J M Bush D Ebert H H Freeze 《The Journal of biological chemistry》1990,265(15):8847-8853
Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes. 相似文献
15.
Food deprivation and adrenalectomy are associated with low concentrations of leptin in blood and the absence of obesity. Because leptin is known to cross the blood-brain barrier (BBB) by a saturable transport system, we examined whether fasting and adrenalectomy (ADX) also act at the BBB. Multiple-time regression analysis showed that fasting, but not ADX, significantly decreased the entry of leptin into mouse brain. After 3 days of food deprivation, the influx of leptin became indistinguishable from that of the vascular control (albumin); 5 h of refeeding significantly reversed this reduced rate of influx. Thus, the results indicate that the BBB provides a dynamic site for the regulation of physiological processes involving leptin. 相似文献
16.
Effect of monensin on intracellular transport and receptor-mediated endocytosis of lysosomal enzymes. 总被引:4,自引:0,他引:4
下载免费PDF全文

In cultured human fibroblasts we observed that monensin, a Na+/H+-exchanging ionophore, (i) inhibits mannose 6-phosphate-sensitive endocytosis of a lysosomal enzyme, (ii) enhances secretion of the precursor of cathepsin D, while inhibiting secretion of the precursors of beta-hexosaminidase, (iii) induces secretion of mature beta-hexosaminidase and mature cathepsin D, and (iv) inhibits carbohydrate processing in and proteolytic maturation of the precursors remaining within the cells; this last effect appears to be secondary to an inhibition of the transport of the precursors. If the treated cells are transferred to a monensin-free medium, about half of the accumulated precursors are secreted, and the intracellular enzyme is converted into the mature form. Monensin blocks formation of complex oligosaccharides in lysosomal enzymes. In the presence of monensin, total phosphorylation of glycoproteins is partially inhibited, whereas the secreted glycoproteins are enriched in the phosphorylated species. The suggested inhibition by monensin of the transport within the Golgi apparatus [Tartakoff (1980) Int. Rev. Exp. Pathol. 22, 227-250] may be the cause of some of the effects observed in the present study (iv). Other effects (i, ii) are rather explained by interference by monensin with the acidification in the lysosomal and prelysosomal compartments, which appears to be necessary for the transport of endocytosed and of newly synthesized lysosomal enzymes. 相似文献
17.
Combination of different PGPR strains with complementary characteristics as a mixture to reduce possible instability under fluctuating environment has been considered practical. However, PGPR mixtures do not always play synergistic roles in growth promotion or biological control as reflected in our previous findings and other publications. In this work, we accidentally discovered that a mixture containing two well compatible PGPR strains, Bacillus pumilus WP8 and Erwinia persicinus RA2, did not synergize in growth promotion or biological control of tomato bacterial wilt under field conditions. Considering the importance of PGPR biofilm formation in growth promotion and biocontrol activities, we hypothesized that this phenomenon may be related to inhibition of biofilm formation. In vitro experiments showed that biofilm-formation ability of WP8 was inhibited by both RA2 cells and filtered supernatants collected from RA2 cultures at 12 h (RA2-12) rather than 48 h (RA2-48), even at high-temperatures (within 100°C). An in vivo experiment derived from crystal violet staining yielded similar results. Using liquid chromatography-mass spectrometry (LC-MS), we compared primary and secondary metabolites of RA2 (namely RA2-12 and RA2-48) and found D-glutamine, abundant in RA2-12, as the putative inhibitory factor. Trace amounts of jasmonic acid together with viscous extracellular polysaccharides in RA2-48 likely promoted the rescue of robust biofilm formation. This work suggests that inhibition of biofilm formation should be considered in PGPR mixture development. 相似文献
18.
Membrane glycoprotein folding, oligomerization and intracellular transport: effects of dithiothreitol in living cells. 总被引:25,自引:2,他引:25
下载免费PDF全文

Using influenza hemagglutinin (HA0) and vesicular stomatitis virus G protein as model proteins, we have analyzed the effects of dithiothreitol (DTT) on conformational maturation and transport of glycoproteins in the secretory pathway of living cells. While DTT caused reduction of folding intermediates and misfolded proteins in the endoplasmic reticulum (ER), it did not affect molecules that had already acquired a mature trimeric conformation, whether present in the ER or elsewhere. The conversion to DTT resistance was therefore a pre-Golgi event. Reduction of folding intermediates was dependent on the intactness of the ER and on metabolic energy, suggesting cooperativity between DTT and ER folding factors. DTT did not inhibit most cellular functions, including ATP synthesis and protein transport within the secretory pathway. The results established DTT as an effective tool for analyzing the folding and compartmental distribution of proteins with disulfide bonds. 相似文献
19.
In frog skin, tachykinins stimulate the ion transport, estimated by measuring the short-circuit current (SCC) value, by interacting with NK1-like receptors. In this paper we show that Kassinin (NK2 preferring in mammals) increases the SCC, while Enterokassinin has no effect. Therefore, either 2 Pro residues or 1 Pro and 1 basic amino acid must be present in the part exceeding the C-terminal pentapeptide. Eledoisin (NK3 preferring in mammals) stimulation of SCC is reduced by CP99994 and SR48968 (NK1 and NK2 antagonists) and not affected by SB222200 (NK3 antagonist). None of the three antagonists affects Kassinin stimulation of SCC. 相似文献
20.
Akira Abe Keiko Yamada Terukatsu Sasaki 《Biochemical and biophysical research communications》1982,104(4):1386-1393
By the use of an assay that measures the transfer of [3H]galactosylceramide from donor to acceptor liposomes, a protein has been purified 1683-fold from pig brain. The most purified fraction was purified to homogeneity as judged by electrophoresis on 15% polyacrylamide gel in the presence of sodium dodecyl sulfate. The protein has a molecular weight of 23000 as determined by the gel electrophoresis and 18500 as estimated by gel filtration through Sephadex G-75. The protein accelerates the transfer of labeled glycolipids at the following relative rates: 100 for glucosylceramide, 43 for lactosylceramide, 17 for galactosyldiglyceride, and 15 for galactosylceramide. The lipid-transfer stimulated by the protein is specific to glycolipids; the protein does not accelerate the transfer of labeled phosphatidylcholine and phosphatidylethanolamine from donor to acceptor liposomes. 相似文献