首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of temperature alterations between 22 degrees C and 48 degrees C on basal and insulin-stimulated 2-deoxy-D-[1-14C]glucose uptake were examined in isolated rat adipocytes. A distinct optimum was found near physiological temperature for uptake in the presence of maximally effective insulin concentrations where insulin stimulation and hexose uptake were both conducted at each given assay temperature. Basal uptake was only subtly affected. Control and maximally insulin-stimulated cells incubated at 35 degrees C subsequently exhibited minimal temperature-sensitivity of uptake measured between 30 and 43 degrees C. The data are mostly consistent with the concept that insulin-sensitive glucose transporters are, after stimulation by insulin, functionally similar to basal transporters. Adipocyte plasma membranes were labelled with various spin- and fluorescence-label probes in lipid structural studies. The temperature-dependence of the order parameter S calculated from membranes labelled with 5-nitroxide stearate indicated the presence of a lipid phase change at approx. 33 degrees C. Membranes labelled with the fluorescence label 1,6-diphenylhexa-1,3,5-triene, or the cholesterol-like spin label nitroxide cholestane, reveal sharp transitions at lower temperatures. We suggest that a thermotropic lipid phase separation occurs in the adipocyte membrane that may be correlated with the temperature-dependence of hexose transport and insulin action in the intact cells.  相似文献   

2.
Conditions are described which allow the isolation of rat adipose-cell plasma membranes retaining a large part of the stimulatory effect of insulin in intact cells. In these membranes, the magnitude of glucose-transport stimulation in response to insulin was compared with the concentration of transporters as measured with the cytochalasin-B-binding assay or by immunoblotting with an antiserum against the human erythrocyte glucose transporter. Further, the substrate- and temperature-dependencies of the basal and insulin-stimulated states were compared. Under carefully controlled homogenization conditions, insulin-treated adipose cells yielded plasma membranes with a glucose transport activity 10-15-fold higher than that in membranes from basal cells. Insulin increased the transport Vmax. (from 1,400 +/- 300 to 15,300 +/- 3,400 pmol/s per mg of protein; means +/- S.E.M.; assayed at 22 degrees C) without any significant change in Km (from 17.8 +/- 4.4 to 18.9 +/- 1.4 nM). Arrhenius plots of plasma-membrane transport exhibited a break at 21 degrees C, with a higher activation energy over the lower temperature range. The activation energy over the higher temperature range was significantly lower in membranes from basal than from insulin-stimulated cells [27.7 +/- 5.0 kJ/mol (6.6 +/- 1.2 kcal/mol) and 45.3 +/- 2.1 kJ/mol (10.8 +/- 0.5 kcal/mol) respectively], giving rise to a larger relative response to insulin when transport was assayed at 37 degrees C as compared with 22 degrees C. The stimulation of transport activity at 22 degrees C was fully accounted for by an increase in the concentration of transporters measured by cytochalasin B binding, if a 5% contamination of plasma membranes with low-density microsomes was assumed. However, this 10-fold stimulation of transport activity contrasted with an only 2-fold increase in transporter immunoreactivity in membranes from insulin-stimulated cells. These data suggest that, in addition to stimulating the translocation of glucose transporters to the plasma membrane, insulin appears to induce a structural or conformational change in the transporter, manifested in an altered activation energy for plasma-membrane transport and possibly in an altered immunoreactivity as assessed by Western blotting.  相似文献   

3.
Insulin receptors in rat liver plasma membranes contain two alpha- and two beta-subunits held together by interchain disulphide bonds ([alpha beta]2 receptors). Affinity-labelled receptors were digested with chymotrypsin or elastase and then exposed to dithiothreitol before solubilization from membranes and SDS/polyacrylamide-gel electrophoresis. This resulted in partial reduction and isolation of Mr-225,000 alpha beta, Mr-200,000 alpha 1 beta, Mr-165,000 alpha beta 1 and Mr-145,000 alpha 1 beta 1 receptor halves containing intact (alpha, beta) or degraded (alpha 1, beta 1) subunits. The ability to identify half-receptor complexes containing intact or degraded subunits made it possible to assay each subunit simultaneously for insulin-induced proteolysis in isolated plasma membranes or during perfusion of rat liver in situ with insulin. In liver membranes, insulin binding increased the fraction of receptors containing degraded alpha-subunits to about one-third of the total population during 2 h of incubation at 23 degrees C. beta-Subunit proteolysis increased only minimally during this time. Plasma membranes isolated from livers perfused with insulin at 37 degrees C contained degraded alpha-subunits but only intact beta-subunits, showing that insulin induced cell-surface proteolysis of the binding, but not the kinase, domain of its receptor. Since previous observations [Lipson, Kolhatkar & Donner (1988) J. Biol. Chem 263, 10495-10501] have shown that receptors containing degraded alpha-subunits are internalized but do not recycle, it is possible that cell-surface degradation may play a role in the regulation of insulin-receptor number in hepatic tissue. Proteolysis of the beta-subunit is not a likely mechanism by which receptor-kinase activity may be attenuated under physiological conditions.  相似文献   

4.
The Escherichia coli membrane-bound D-lactate dehydrogenase and succinate dehydrogenase were assayed on the basis of the phenazine methosulfate- (PMS-) mediated reduction of the tetrazolium salt, MTT. An initial slower phase (lag) in the time-course of the reaction was observed and analyzed. The results were as follows. (1) The time lag in the assay of the D-lactate dehydrogenase was eliminated by preincubating the membranes with PMS plus D-lactate, with PMS plus succinate, or with PMS plus NADH (conditions which implicated PMS reduction). (2) When the D-lactate dehydrogenase was assayed by another method based on the measurement of the pyruvate formed, neither was a time lag observed nor was the enzyme activity affected by membrane preincubation with PMS plus D-lactate. (3) Although the superoxide radical was involved in MTT reduction, this radical seemed not to participate in the generation of the time lag. (4) Membranes whose D-lactate dehydrogenase activity had previously been destroyed by heating at 80 degrees C for 1 min, were able to prolong the time lag in MTT reduction when added to the assay medium for the D-lactate dehydrogenase from untreated membranes, whereas membranes previously heated at 100 degrees C instead of 80 degrees C did not have this effect. It was concluded that the E. coli membranes interfered in the dehydrogenase assay based on the PMS-mediated reduction of MTT. The time lag was interpreted as a period during which the interfering substance reacted with reduced PMS inhibiting the reduction of MTT.  相似文献   

5.
1. The camel has insulin receptors that by multiple function criteria are very similar to those of the other mammals (rabbit and rat) and non-mammals (chicken and pigeon), with sharp pH dependence to insulin binding at pH 7.2-7.6. 2. Equilibrium binding was faster at higher temperatures (24-37 degrees C) than at lower (4 degrees C). 3. Binding data yielded curvilinear Scatchard plots with half maximal displacement of 125I-insulin at 9 x 10(-9) M, 2.5 x 10(-9) M, 6.3 x 10(-10) M for camel, rabbit, pigeon and chicken respectively, suggesting differences in mammalian and non-mammalian liver membranes. 4. Autoradiogram patterns showed the presence of an identical subunit structure with Mr 74,000 for all membranes studied. Pigeon membrane showed a band with Mr 110,000, the absence of which in other membranes could be due to the degradation factor or the concentration of disuccinimidyl suberate (DSS).  相似文献   

6.
A method for solubilizing HMG-CoA reductase is described that reproducibly yielded approximately 190% of the activity assayed in rat liver microsomes. Optimal solubilization occurred when microsomal membranes were frozen at a fixed concentration, thawed, homogenized in a buffer containing 50% glycerol, and incubated at 37 degrees C for 60 minutes. A rapid spectrophotometric assay of the reductase has been developed and the optimal conditions defined. Using this assay, the kinetics were determined for HMG-CoA reductase purified to a specific activity of 17,400 nmol NADPH oxidized per minute per mg protein.  相似文献   

7.
The insulin receptor was solubilized from turkey erythrocyte membranes by extraction with 1% beta-octylglucopyranoside. Insulin binding was enhanced when the solubilized material was reconstituted in phospholipid vesicles. The affinity of the reconstituted vesicles for various insulins was similar to that of the intact membranes: porcine insulin greater than proinsulin greater than desoctapeptide insulin. A curvilinear Scatchard plot was obtained for insulin binding to the reconstituted system at 15 degrees C. A high affinity association constant of 1.4 x 10(9) M-1 was obtained from the Scatchard plot. This is a four-fold increase over the value for the turkey erythrocyte membrane, which contains more highly saturated phospholipids. This suggests that the insulin receptor may be sensitive to the lipid composition of the membranes in which it is embedded.  相似文献   

8.
Characterization and Regulation of Insulin Receptors in Rat Brain   总被引:9,自引:7,他引:2  
An in vitro receptor binding assay, using filtration to separate bound from free [125I]insulin, was developed and used to characterize insulin receptors on membranes isolated from specific areas of rat brain. The kinetic and equilibrium binding properties of central receptors were similar to those of hepatic receptors. The binding profiles in all tissues were complex and were consistent with binding in multiple steps or to multiple sites. Similar binding properties were found among receptors in olfactory tubercle/bulb, cerebral cortex, hippocampus, striatum, hypothalamus, and cerebellum. High affinity [125I]insulin binding sites (KD = 3-11 nM) were distributed evenly between membranes isolated from P1 and P2 fractions of these brain areas, with the exception of the olfactory tubercle in which binding to P2 membranes was four-fold greater (Bmax = 150 fmol/mg protein). One difference between insulin receptors in brain and peripheral target tissues, however, was observed. Following exposure to 0.17 microM insulin for 3 h at 37 degrees C, the number of specific [125I]insulin binding sites on adipocytes decreased by 40%, while the number of binding sites on minces of cerebral cortex/olfactory tubercle remained constant. The results suggest that although the binding characteristics of central and peripheral insulin receptors are similar, these receptors do not appear to be regulated in the same manner.  相似文献   

9.
A two stage assay for detecting insulin mediator based upon its stimulation of soluble pyruvate dehydrogenase (PDH) phosphatase to activate soluble pyruvate dehydrogenase complex (PDC) has been developed. This coupled assay determines the activation of PDC by monitoring production of [14C]CO2 from [1-14C]pyruvic acid. In addition to being more sensitive than the rat liver mitoplast assay previously used, it allows for the separation and investigation of the effects of mediator on the PDH phosphatases individually. It has been previously shown that the insulin mediator stimulates the most abundant PDH phosphatase, the divalent cation dependent PDH phosphatase, by decreasing the phosphatase's metal requirement (1). A metal independent PDH phosphatase has been found in bovine heart mitochondria. This phosphatase is not immunoprecipitated by antiphosphatase 2A antibody, it is not inhibited by okadaic acid, and it is not stimulated by spermine. However, it is stimulated (more than threefold) by insulin mediator prepared from isolated rat liver membranes. It is inhibited by Mg-ATP, with half-maximal inhibition at 0.3 mM; however, this inhibition is overcome by the insulin mediator.  相似文献   

10.
A simple radioreceptor assay for insulin rat liver membranes as receptor sites, with sufficient specificity precision, and sensitivity to detect 10 ng or 276 muU/ml of serum insulin, has been developed. In the presence of standard porcine insulin at the concentration of 1.0 ng/tube, approximately 8% of 125I-porcine insulin was bound to the plasma membranes and ninety-five per cent of this binding was inhibited by 1.0 microgram of standard insulin per tube. Four animal insulins inhibited the binding of 125I-insulin while ACTH, glucagon, human growth hormone, and oxytocin were inert. Insulin values in dog pancreatic vein sera obtained during and after glucose loading and measured by the present radioreceptor assay agreed well with immunoreactive insulin. The ratio of IRI to the measurement by radioreceptor assay was 1.09 +/- 0.18 for the same sera.  相似文献   

11.
Effects of temperature on glucose transport in fat cells were studied. In this system, the basal (no insulin) glucose transport activity was higher at approximately 25-30 degrees C than at 37 degrees C, as previously reported (Vega, F. V., and Kono, T. (1979) Arch. Biochem. Biophys. 192, 120-127). The stimulatory effect of low temperature (or the insulin-like effect) was reversible and apparently required metabolic energy for both its forward and reverse reactions. By lowering the ATP level with 2,4-dinitrophenol, one could separately determine the insulin-like stimulatory effect of low temperature and its inhibitory effect on the transport process itself. The maximum level of stimulation by low temperature was greater at 10 degrees C than at 25-30 degrees C, but the rate of stimulation was considerably slower at 10 degrees C than at 25-30 degrees C. When cells were exposed to low temperature, the glucose transport activity in the plasma membrane-rich fraction was increased, while that in the Golgi-rich fraction was decreased. The Arrhenius plot of the basal glucose transport activity determined in the presence of dinitrophenol was apparently linear from 10 to 37 degrees C and parallel to that of the plus insulin activity measured either in the presence or absence of dinitrophenyl. Insulin itself slowly stimulated the glucose transport activity at 10 degrees C. These results are consistent with the view that (a) low temperature, like insulin, induces translocation of the glucose transport activity from an intracellular storage site to the plasma membrane, (b) insulin stimulates glucose transport activity without changing its activation energy, and (c) subcellular membranes do not entirely stop their movement at a low temperature, e.g, at 10 degrees C.  相似文献   

12.
The enzyme-linked immunoassay modification has been worked out. The method combines advantages of membrane technology of antigen immobilization which is used in the enzyme immunosensory technique and of conventional enzyme-linked immunosorbent assay. The nitrocellulose and polypropylene membranes are used as a solid-phase. The purified rabbit immunoglobulin G is immobilized on the surface of membranes as the first layer. The competitive immunoassay is employed. The immunoglobulin G concentration range is 1-1000 ng/ml. The membranes with the immobilized antigen can be repeatedly used after incubation in 0.1 M glycine buffer, pH 2.5. The dry membrane with the immobilized antigen can be used after keeping for 6 months in refrigerator at 4 degrees C without changing the concentration range measured.  相似文献   

13.
The effects of insulin on the subcellular distribution of the heavy chain of clathrin and on the insulin-like growth factor II (IGF-II) mannose 6-phosphate receptor were investigated in isolated rat adipocytes. Plasma membranes, intracellular membranes, and cytosol were separated by differential centrifugation, and the concentration of clathrin and receptor in each fraction was quantified by sequential immunoblotting with monoclonal and polyclonal antibodies against these proteins. A 3-fold increase in the amount of clathrin heavy chain associated with isolated plasma membranes was found after treatment of cells with low concentrations of insulin. This effect was complete within 2 min of stimulation at 37 degrees C and was abolished at 5-10 degrees C. The insulin-mediated increase in the cell surface concentration of receptors for IGF-II/mannose 6-phosphate displayed a similar time course and temperature dependence. A concomitant decrease in the concentration of IGF-II/mannose 6-phosphate receptors in intracellular membranes was observed. In contrast, no significant changes in the concentration of clathrin in this fraction could be detected. Instead, a marked decrease in the level of unassembled cytosolic clathrin was observed in insulin-treated cells compared with controls. These results suggest that insulin induces an increase in the assembly of cytosolic clathrin onto the plasma membrane in conjunction with its ability to increase the concentration of receptors on the cell surface.  相似文献   

14.
The successive methylation of phosphatidylethanolamine to phosphatidylcholine (phospholipid methylation) has been measured by the incorporation of S-[methyl-3H]adenosylmethionine or colorimetric assay of phosphatidylcholine extracted from adipocyte plasma membranes. A fluorometric assay for phosphatidylcholine was developed to measure phospholipid methylation. This assay is 10 times more sensitive than the colorimetric assay and demonstrates no significant interference with other methylated phospholipids. The fluorometric assay was used to determine a biphasic insulin dose response in adipocyte plasma membranes. This fluorometric assay for phosphatidylcholine represents an alternative method for monitoring phospholipid methylation, especially when increased sensitivity is required.  相似文献   

15.
The dissociation of insulin from its receptor is reportedly enhanced when the dissociation is induced by dilution in the presence of insulin. This experiment is frequently conducted when curvilinear Scatchard plots of insulin binding are observed in order to infer negative cooperative site-site interactions amongst insulin receptors. However, when insulin binding to purified liver plasma membranes was measured at 15 degrees C in 50 mM Tris, pH 7.5 containing 0.1% bovine serum albumin and 100 U/ml bacitracin, the insulin binding data was characterised by a linear Scatchard plot and a Hill plot with a slope equal to unity. Thus, under the conditions of this binding assay, insulin apparently bound to a single non-interacting class of homogeneous binding sites. But, despite the apparent absence of cooperative interactions under these specific conditions, the dissociation of receptor-bound insulin was still enhanced when the dissociation of insulin from its receptor was induced by dilution in the presence of insulin. This result cast serious doubt on the validity of inferring negative-cooperative site-site interactions amongst insulin receptors based solely on the observation that the dissociation of receptor-bound insulin is enhanced by dilution in the presence of insulin.  相似文献   

16.
Effects of ethanol in vitro on membrane vesicles (microsacs prepared from mouse cerebral cortex) were evaluated by monitoring 36Cl- influx. Different assay parameters were tested to determine increased or decreased action of ethanol on GABA-activated chloride channels. The ability of 30 mM ethanol to augment 36Cl- flux was seen at 0 degrees C, in the absence of GABA ("direct" action of ethanol), and at 34 degrees C in the presence of GABA, using two different assay procedures. Picrotoxin blocked the direct effects of ethanol (at 0 degrees C) suggesting GABAa involvement. Endogenous GABA in the medium surrounding the microsacs was assayed at different temperatures both in the presence and absence of GABA and ethanol. The direct effect of ethanol did not appear to involve the action of endogenous GABA. In addition to temperature effects on the assay, time of membrane storage also influenced ethanol action. Microsacs stored on ice for 2 hours or more lost their ability to respond to ethanol but not to GABA, pentobarbital or flunitrazepam. When these drugs were tested on membranes from mice that had been sacrificed by cervical dislocation as opposed to decapitation, ethanol did not augment GABA-stimulated chloride flux. The method of sacrifice did not influence the response to GABA, pentobarbital or flunitrazepam.  相似文献   

17.
The temperature dependence of various activities related to the energy metabolism of isolated membranes and whole cells of the thermophilic bacterium Chloroflexus aurantiacus was determined after phototrophic growth at either 40, 50, or 60 degrees C. The data obtained were expressed by use of Arrhenius plots. Maximum activities were determined at about 65 degrees C for succinate 2,4-dichlorophenol-indophenol reductase as well as NADH oxidase and at about 70 degrees C for Mg-ATPase and for light-induced proton extrusion by cells. Activation energies for Mg-ATPase and light-induced proton extrusion were about 40 kJ mol-1 from 30 degrees C to about 50 degrees C and they increased significantly at higher temperatures. Essentially the same dependency was detectable with NADH oxidase, except for an increase in activation energy below 41 degrees C. All of these responses were independent of growth temperature. Succinate-2,4-dichlorophenol-indophenol reductase showed a change in activation energy around 41 degrees C only with cells grown at 60 degrees C. Differences in the responses of cells grown at different temperatures were identified on the basis of changes from sigmoidal to hyperbolic kinetics for light saturation of proton extrusion. Moreover, the thermostability of proton extrusion was maximal when assayed at the corresponding growth temperatures. In any case, thermostability was lowest at the 65 and 68 degrees C assay temperatures. Differential scanning calorimetry with membranes revealed irreversible heat uptake from about 60 to 72 degrees C. The results are discussed in light of the activation energy for the specific growth rate, which is lowest at temperatures from 40 degrees C to the optimum at 60 degrees C.  相似文献   

18.
1. Liver mitochondrial outer membranes were pre-exposed to media of low (20 mM phosphate) or high salt concentration (20 mM phosphate + 0.3 M KCl) before assay of carnitine palmitoyltransferase (CPT) at 25 degrees C. 2. With membranes from fed rats, exposure to high salt decreased sensitivity of CPT to malonyl-CoA whereas high salt increased sensitivity of CPT to malonyl-CoA in membranes from 48 hr-fasted rats. These changes were paralleled by alterations in the KD for high affinity binding of [14C]malonyl-CoA to outer membranes. 3. Decreasing the CPT assay temperatures from 25 to 10 degrees C caused qualitatively similar changes to those seen on exposure to high salt. 4. The relative content of sphingomyelin was increased 2-fold and 4-fold in liver mitochondrial outer membranes from fasted and diabetic rats respectively. Fasting had no effect on the content of cholesterol whereas diabetes decreased this by a third.  相似文献   

19.
When rat hepatoma cells (R-Y121B) were incubated with insulin at 37 degrees C, concanavalin A increased insulin internalization into cells. When R-Y121B cells were first incubated with labeled insulin at 4 degrees C then with concanavalin A at various concentrations at 37 degrees C, the total cellular radioactivity was much higher at high lectin concentrations than at low lectin concentrations. This increase was not only due to an increase in insulin internalization into cells but also to an increase in insulin binding to cell surfaces. Concanavalin A can trap insulin on the insulin receptors - a "trapping" effect. It has been concluded that insulin and concanavalin A binding sites are very close to each other on the insulin receptors.  相似文献   

20.
Interaction of protein kinase C with chromaffin granule membranes has been studied as a means of investigating the translocation of protein kinase C from cytosol to intracellular membrane surfaces, which is believed to occur during secretion. Protein kinase C in an adrenal medullary soluble fraction was found to bind reversibly to granule membranes in a Ca2+-dependent fashion. Association and dissociation events were sensitive to Ca2+ concentrations in the low micromolar range, and the Ca2+ sensitivity of both processes was increased when the membranes had been preincubated with the protein kinase C-activating phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (TPA). Binding of protein kinase C to granule membranes occurred at 0 and 37 degrees C, irrespective of whether the membranes had been preincubated with TPA. However, dissociation of protein kinase C from granule membranes that had been preincubated with TPA occurred only at 37 degrees C and not at 0 degree C, even though dissociation of the enzyme from membranes which had not been preincubated with TPA would occur at both 37 and 0 degrees C. These effects of TPA were not reproduced by 4 alpha-phorbol 12,13-didecanoate (4 alpha PDD), a phorbol ester which does not activate protein kinase C. Soluble protein kinase C activity also associated with chromaffin granules in a Ca2+-dependent manner in an adrenal medullary homogenate, indicating that granules can compete with other intracellular membranes for the binding of protein kinase C. Results obtained with this model system differ from other systems where the interaction of protein kinase C with plasma membranes has been studied and have general implications for studies performed on the translocation of protein kinase C in intact cells and for the role of protein kinase C in stimulus-secretion coupling in the chromaffin cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号