首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wolverton C  Mullen JL  Ishikawa H  Evans ML 《Planta》2002,215(1):153-157
We have developed image analysis software linked to a rotating stage, allowing constraint of any user-selected region of a root at a prescribed angle during root gravitropism. This device allows the cap of a graviresponding root to reach vertical while maintaining a selected region within the elongation zone at a gravistimulated angle. Under these conditions gravitropic curvature of roots of Zea mays L. continues long after the root cap reaches vertical, indicating that a signal from outside of the cap can contribute to the curvature response.  相似文献   

2.
Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.  相似文献   

3.
Root tip is capable of sensing and adjusting its growth direction in response to gravity, a phenomenon known as root gravitropism. Previously, we have shown that negative gravitropic response of roots (NGR) is essential for the positive gravitropic response of roots. Here, we show that NGR, a plasma membrane protein specifically expressed in root columella and lateral root cap cells, controls the positive root gravitropic response by regulating auxin efflux carrier localization in columella cells and the direction of lateral auxin flow in response to gravity. Pharmacological and genetic studies show that the negative root gravitropic response of the ngr mutants depends on polar auxin transport in the root elongation zone. Cell biology studies further demonstrate that polar localization of the auxin efflux carrier PIN3 in root columella cells and asymmetric lateral auxin flow in the root tip in response to gravistimulation is reversed in the atngr1;2;3 triple mutant. Furthermore, simultaneous mutations of three PIN genes expressed in root columella cells impaired the negative root gravitropic response of the atngr1;2;3 triple mutant. Our work revealed a critical role of NGR in root gravitropic response and provided an insight of the early events and molecular basis of the positive root gravitropism.  相似文献   

4.
Auxins control growth and development in plants, including lateral rootinitiation and root gravity response. However, how endogenous auxin regulatesthese processes is poorly understood. In this study, the effects of auxins onlateral root initiation and root gravity response in rice were investigatedusing a lateral rootless mutant Lrt1, which fails to formlateral roots and shows a reduced root gravity response. Exogenous applicationof IBA to the Lrt1 mutant restored both lateral rootinitiation and root gravitropism. However, application of IAA, a major form ofnatural auxin, restored only root gravitropic response but not lateral rootinitiation. These results suggest that IBA is more effective than IAA in lateralroot formation and that IBA also plays an important role in root gravitropicresponse in rice. The application of NAA restored lateral root initiation, butdid not completely restore root gravitropism. Root elongation assays ofLrt1 displayed resistance to 2,4-D, NAA, IBA, and IAA.This result suggests that the reduced sensitivity to exogenous auxins may be due tothe altered auxin activity in the root, thereby affecting root morphology inLrt1.  相似文献   

5.
Lateral root branching is a genetically defined and environmentally regulated process. Auxin is required for lateral root formation, and mutants that are altered in auxin synthesis, transport or signaling often have lateral root defects. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in the regulation of Arabidopsis lateral root formation are not well characterized. This study utilized Arabidopsis mutants altered in ethylene signaling and synthesis to explore the role of ethylene in lateral root formation. We find that enhanced ethylene synthesis or signaling, through the eto1-1 and ctr1-1 mutations, or through the application of 1-aminocyclopropane-1-carboxylic acid (ACC), negatively impacts lateral root formation, and is reversible by treatment with the ethylene antagonist, silver nitrate. In contrast, mutations that block ethylene responses, etr1-3 and ein2-5 , enhance root formation and render it insensitive to the effect of ACC, even though these mutants have reduced root elongation at high ACC doses. ACC treatments or the eto1-1 mutation significantly enhance radiolabeled indole-3-acetic acid (IAA) transport in both the acropetal and the basipetal directions. ein2-5 and etr1-3 have less acropetal IAA transport, and transport is no longer regulated by ACC. DR5-GUS reporter expression is also altered by ACC treatment, which is consistent with transport differences. The aux1-7 mutant, which has a defect in an IAA influx protein, is insensitive to the ethylene inhibition of root formation. aux1-7 also has ACC-insensitive acropetal and basipetal IAA transport, as well as altered DR5-GUS expression, which is consistent with ethylene altering AUX1-mediated IAA uptake, and thereby blocking lateral root formation.  相似文献   

6.
7.
BACKGROUND AND AIMS: Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regulate root gravitropism. The aims of this study were to analyse the hormonal mechanisms that induce the root's primary vascular system, explain how differentiating-protoxylem vessels promote lateral root initiation, propose the concept of CK-dependent root apical dominance, and visualize the CK and IAA regulation of root gravitropiosm. KEY ISSUES: The hormonal analysis and proposed mechanisms yield new insights and extend previous concepts: how the radial pattern of the root protoxylem vs. protophloem strands is induced by alternating polar streams of high IAA vs. low IAA concentrations, respectively; how differentiating-protoxylem vessel elements stimulate lateral root initiation by auxin-ethylene-auxin signalling; and how root apical dominance is regulated by the root-cap-synthesized CK, which gives priority to the primary root in competition with its own lateral roots. CONCLUSIONS: CK and IAA are key hormones that regulate root development, its vascular differentiation and root gravitropism; these two hormones, together with ethylene, regulate lateral root initiation.  相似文献   

8.
The homosporous fern Ceratopteris richardii exhibits a homorhizic root system where roots originate from the shoot system. These shoot-borne roots form lateral roots (LRs) that arise from the endodermis adjacent to the xylem poles, which is in contrast to flowering plants where LR formation arises from cell division in the pericycle. A detailed study of the fifth shoot-borne root showed that one lateral root mother cell (LRMC) develops in each two out of three successive merophytes. As a result, LRs emerge alternately in two ranks from opposite positions on a parent root. From LRMC initiation to LR emergence, three developmental stages were identified based on anatomical criteria. The addition of auxins (either indole-3-acetic acid or indole-3-butyric acid) to the growth media did not induce additional LR formation, but exogenous applications of both auxins inhibited parent root growth rate. Application of the polar auxin-transport inhibitor N-(1-naphthyl)phthalamic acid (NPA) also inhibited parent root growth without changing the LR initiation pattern. The results suggest that LR formation does not depend on root growth rate per se. The result that exogenous auxins do not promote LR formation in C. richardii is similar to reports for certain species of flowering plants, in which there is an acropetal LR population and the formation of the LRs is insensitive to the application of auxins. It also may indicate that different mechanisms control LR development in non-seed vascular plants compared with angiosperms, taking into consideration the long and independent evolutionary history of the two groups.  相似文献   

9.
To understand the molecular mechanism of auxin action, mutants of Arabidopsis thaliana with altered responses to auxin have been identified and characterized. Here the isolation of two auxin-resistant mutants that define a new locus involved in auxin response, named AXR4, is reported. The axr4 mutations are recessive and map near the ch1 mutation on chromosome 1. Mutant plants are specifically resistant to auxin and defective in root gravitropism. Double mutants between axr4 and the recessive auxin-resistant mutants axr1-3 and aux1-7 were characterized to ascertain possible genetic interactions between the mutations. The roots of the axr4 axr1-3 double mutant plants are less sensitive to auxin, respond more slowly to gravity, and form fewer lateral roots than either parental single mutant. These results suggest that the two mutations have additive or even synergistic effects. The AXR1 and AXR4 gene products may therefore act in separate pathways of auxin response or perhaps perform partially redundant functions in a single pathway. The axr4 aux1-7 double mutant has the same sensitivity to auxin as the aux1-7 mutant but forms far fewer lateral roots than either parental single mutant. The aux1-7 mutation thus appears to be epistatic to axr4 with respect to auxin-resistant root elongation, whereas in lateral root formation, the effects of the two mutations are additive. The complexity of the genetic interactions indicated by these results may reflect differences in the mechanism of auxin action during root elongation and the formation of lateral roots. The AXR4 gene product, along with those of the AXR1 and AUX1 genes, is important for normal auxin sensitivity, gravitropic response in roots and lateral root formation.  相似文献   

10.
11.
A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots.Key words: auxin, ethylene, slanting, gravitropism, HSFsArabidopsis primary roots, and especially those from some ecotypes (Ws, Landsberg), when grown on an agar dish, tilted on the vertical, show a wavy pattern, and a clear slanting towards a direction that has been considered the right-hand.14 In the case of the mutant rha1, the right-handed slanting is notably reduced, its primary roots growing partly to the right-hand, partly straight down and partly to the left-hand, even though a slight preference for the right-hand is apparent.In addition, its roots show resistance to the inhibitory action of the auxin 2,4-D, ethylene (ACC), and the auxin transport inhibitors TIBA and NPA. These characteristics qualify the mutant as an auxinic one, and therefore a connection between the reduced slanting and the auxinic disturbances could be imagined. It is not known, however, what controls the slanting process itself, even though it appears as the consequence of a chiral circumnutational process. As reported,4 it seems the result of a chiral circumnutation with preference for the right-hand, transformed in a lateral slanting movement, because of the impact of the helix with the hard agar surface. This process results in the formation of waves, when the circumnutation helix impactig the agar reverses direction at every half turn, or the formation of large loops and strict loops (coils) when there is no reversion. The latter case seems to be a consequence of the fact that gravity is no longer “felt”. This has been previously noted in some mutants, or sometimes in old roots.rha1 is not the only mutant known to show reduction or increase of slanting, because other mutants were reported by Rutherford and Masson,3 and subsequent publications from the same group. Almost all show an increase of slant, with the exception of rhd3 and its alleles that show a complete suppression of the process.5 The mutated gene in rha1 was cloned through TAIL-PCR and shown to be a HSF. No other auxinic mutant, among those for which the gene was cloned, is known to be mutated in a HSF.HSFs, that are characteristically involved in the activation of the HSPs (heat shock proteins), which protect the cells from damage arising from high temperature and other stresses, have been shown to be involved also in different processes.6,7 Hence, also in the case of rha1, we can well imagine other different functions, beside that of counteracting the heat shock. In particular, since the connection with auxin regulated processes is evident, we can suppose that the action could be on the PP2A phosphatase, as in the case of the rcn1 mutant, or of the human HSF2. The RCN1 protein corresponds to one unit of the PP2A,8 and the HSF29 has been shown to substitute itself for the C subunit and alter the function of the phosphatase (Fig. 1). Experiments directed to see if a heat shock can modify the slanting of the roots in the wild-type and rha1, gave negative results, even though these experiments will need to be repeated under more widely ranging conditions. These results seem to indicate that the mechanism which induces asymmetric growth in roots is complex, and it is not controlled by a single gene.Open in a separate windowFigure 1Model proposed for the regulation of the PP2A activity by the RHA1 protein. (modified after Hong and Sarge, 1999).On the other hand, another puzzling characteristic of rha1 is the fact that its roots are resistant only to the auxin 2,4-D, and not to NAA and IAA. Differences in the response of the primary roots to different auxins have already been reported, and it was suggested that the response to NAA should be different, because this substance can penetrate passively the cell membranes.10 In the case of rha1, however, it seems that IAA can also penetrate the cells passively. This is in line with the chemiosmotic hypothesis,11 but seems in contrast with the previous supposition. The resistance to ethylene, however, could indicate that the reduced inhibitory effect of 2,4-D is a consequence of the ethylene production induced by the synthetic auxin. On the other hand, the resistance to the auxin transport inhibitors TIBA and NPA, cannot be explained so easily. Possibly, in the mutant rha1, there is a reduced level of receptors for the considered substances.Using semiquantitative PCR analysis it was shown that rha1 retains the function of a HSF, the gene being clearly upregulated by heat and cold stress, and also by 2,4-D, but not by rotation on a clinostat or gravistimulation. The upregulation of the expression by 2,4-D was confirmed by a study of GUS expression in a transformed rha1, and with this technique the effects of gravity and simulated microgravity appeared clearly stimulatory too. No GUS expression however was apparent in the shoot and root meristems, and consequently we propose that the gene does not influence the first part of the graviresponse, but possibly the general transport of auxin through the plant.Thus, the mutant seems to be disturbed in root gravitropism, as well as in responses to the auxines and circumnutation. However not in the general circumnutation process, but in its chiral aspect, which is the cause of the slanting to the right-hand. Gravitropism, circumnutation and auxin physiology, thus, seem to be in some way connected in a complex integrated process, that, hopefully, will be gradually revealed in all its different aspects, through the future efforts of plant scientists.  相似文献   

12.
Plant shoots do not respond when they are reoriented relative to gravity at 4 degrees C. However, when returned to vertical at room temperature, these organs bend in response to the previous cold gravistimulation. The inflorescence stem of the Arabidopsis thaliana gravity persistent signal (gps) mutants respond abnormally after the cold gravistimulation: gps1 does not bend when returned to room temperature, gps2 bends the wrong way and gps3 over-responds, curving past the predicted angle. In wild type and the mutants, basipetal auxin transport in the inflorescence stem was abolished at 4 degrees C but restored when plants were returned to room temperature. In gps1, auxin transport was increased; in both gps2 and gps3, no significant difference was found when compared to wild type. Expression of the auxin-inducible P(IAA2)::GUS reporter gene, indicated that auxin-induced gene expression was redistributed to the lower side of the inflorescence stem in wild type after gravistimulation at 4 degrees C. In gps1, no asymmetries in P(IAA2)::GUS expression were seen. In gps2, P(IAA2)::GUS expression was localized to the upper side of the stem and in gps3, asymmetric P(IAA2):GUS expression was extended throughout the elongation zone of the inflorescence stem. These results are consistent with altered lateral Indole-3-acetic-acid (IAA) gradients being responsible for the phenotype of each mutant.  相似文献   

13.
14.
15.

Background  

The Arabidopsis bypass1 (bps1) mutant root produces a biologically active mobile compound that induces shoot growth arrest. However it is unknown whether the root retains the capacity to synthesize the mobile compound, or if only shoots of young seedlings are sensitive. It is also unknown how this compound induces arrest of shoot growth. This study investigated both of these questions using genetic, inhibitor, reporter gene, and morphological approaches.  相似文献   

16.
17.
18.
Root gravitropism is affected by many environmental stresses, including salinity, drought, and nutrient deficiency. One significant environmental stress, excess ammonium (NH(4)(+)), is well documented to inhibit root elongation and lateral root formation, yet little is known about its effects on the direction of root growth. We show here that inhibition of root elongation upon elevation of external NH(4)(+) is accompanied by a loss in root gravitropism (agravitropism) in Arabidopsis. Addition of potassium (K(+)) to the treatment medium partially rescued the inhibition of root elongation by high NH(4)(+) but did not improve gravitropic root curvature. Expression analysis of the auxin-responsive reporter gene DR5::GUS revealed that NH(4)(+) treatment delayed the development of gravity-induced auxin gradients across the root cap but extended their duration once initiated. Moreover, the β-glucuronidase (GUS) signal intensity in root tip cells was significantly reduced under high NH(4)(+) treatment over time. The potassium carrier mutant trh1 displayed different patterns of root gravitropism and DR5::GUS signal intensity in root apex cells compared with the wild type in response to NH(4)(+). Together, the results demonstrate that the effects of NH(4)(+) on root gravitropism are related to delayed lateral auxin redistribution and the TRH1 pathway, and are largely independent of inhibitory effects on root elongation.  相似文献   

19.
Wu G  Lewis DR  Spalding EP 《The Plant cell》2007,19(6):1826-1837
Auxin affects the shape of root systems by influencing elongation and branching. Because multidrug resistance (MDR)-like ABC transporters participate in auxin transport, they may be expected to contribute to root system development. This reverse genetic study of Arabidopsis thaliana roots shows that MDR4-mediated basipetal auxin transport did not affect root elongation or branching. However, impaired acropetal auxin transport due to mutation of the MDR1 gene caused 21% of nascent lateral roots to arrest their growth and the remainder to elongate 50% more slowly than the wild type. Reporter gene analyses indicated a severe auxin deficit in the apex of mdr1 but not mdr4 lateral roots. The mdr1 deficit was explained by 40% less acropetal auxin transport within the mdr1 lateral roots. The slow elongation of mdr1 lateral roots was rescued by auxin and phenocopied in the wild type by an inhibitor of polar auxin transport. Confocal microscopy analysis of a functional green fluorescent protein-MDR1 translational fusion showed the protein to be auxin inducible and present in the tissues responsible for acropetal transport in the primary root. The protein also accumulated in lateral root primordia and later in the tissues responsible for acropetal transport within the lateral root, fully supporting the conclusion that auxin levels established by MDR1-dependent acropetal transport control lateral root growth rate to influence root system architecture.  相似文献   

20.
Jin J  Watt M  Mathesius U 《Plant physiology》2012,159(1):489-500
We tested whether a gene regulating nodule number in Medicago truncatula, Super Numeric Nodules (SUNN ), is involved in root architecture responses to carbon (C) and nitrogen (N) and whether this is mediated by changes in shoot-to-root auxin transport. Nodules and lateral roots are root organs that are under the control of nutrient supply, but how their architecture is regulated in response to nutrients is unclear. We treated wild-type and sunn-1 seedlings with four combinations of low or increased N (as nitrate) and C (as CO(2)) and determined responses in C/N partitioning, plant growth, root and nodule density, and changes in auxin transport. In both genotypes, nodule density was negatively correlated with tissue N concentration, while only the wild type showed significant correlations between N concentration and lateral root density. Shoot-to-root auxin transport was negatively correlated with shoot N concentration in the wild type but not in the sunn-1 mutant. In addition, the ability of rhizobia to alter auxin transport depended on N and C treatment as well as the SUNN gene. Nodule and lateral root densities were negatively correlated with auxin transport in the wild type but not in the sunn-1 mutant. Our results suggest that SUNN is required for the modulation of shoot-to-root auxin transport in response to altered N tissue concentrations in the absence of rhizobia and that this controls lateral root density in response to N. The control of nodule density in response to N is more likely to occur locally in the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号