首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laminin-5 (previously known as kalinin, epiligrin, and nicein) is an adhesive protein localized to the anchoring filaments within the lamina lucida space of the basement membrane zone lying between the epidermis and dermis of human skin. Anchoring filaments are structures within the lamina lucida and lie immediately beneath the hemidesmosomes of the overlying basal keratinocytes apposed to the basement membrane zone. Human keratinocytes synthesize and deposit laminin-5. Laminin-5 is present at the wound edge during reepithelialization. In this study, we demonstrate that laminin-5, a powerful matrix attachment factor for keratinocytes, inhibits human keratinocyte migration. We found that the inhibitory effect of laminin-5 on keratinocyte motility can be reversed by blocking the α3 integrin receptor. Laminin-5 inhibits keratinocyte motility driven by a collagen matrix in a concentration-dependent fashion. Using antisense oligonucleotides to the α3 chain of laminin-5 and an antibody that inhibits the cell binding function of secreted laminin-5, we demonstrated that the endogenous laminin-5 secreted by the keratinocyte also inhibits the keratinocyte's own migration on matrix. These findings explain the hypermotility that characterizes keratinocytes from patients who have forms of junctional epidermolysis bullosa associated with defects in one of the genes encoding for laminin-5 chains, resulting in low expression and/or functional inadequacy of laminin-5 in these patients. These studies also suggest that during reepithelialization of human skin wounds, the secreted laminin-5 stabilizes the migrating keratinocyte to establish the new basement membrane zone.  相似文献   

2.
The role of matrix metalloproteinases (MMPs) in cell migration was studied by measuring cell growth, migration, and production of MMP-2 and -9 in oral mucosal and skin keratinocytes cultured in the presence of synthetic MMP inhibitors. MMP-2 was the major gelatinolytic MMP produced by these cells while MMP-9 was produced at a low basal level. Inhibitor effects on MMP-9 production were therefore studied in keratinocytes stimulated by tumor necrosis factor alpha (TNFalpha). Tetracycline analogues at concentrations that inhibited the production of MMP-2 but not MMP-9 were able to drastically inhibit migration of both mucosal and skin keratinocytes. Tetracycline analogues also inhibited keratinocyte growth, an effect not found for the other inhibitors tested. Heterocyclic carbonate-derived compounds (LWs) that inhibited MMP-9 but not MMP-2 production had no effect on cell migration. Batimastat, a potent MMP inhibitor, did not have any effect on MMP production or cell growth but did inhibit keratinocyte migration. Tumor growth factor beta (TGFbeta) increased keratinocyte migration as well as both cell-associated and secreted MMP-2 production in wounded cell cultures. The secreted enzyme was partially converted into an active form. In this model batimastat totally blocked TGFbeta-promoted keratinocyte migration. Immunostaining of keratinocytes advancing into the wound revealed that MMP-2 was localized in extracellular matrix contactlike structures against the endogenously produced laminin-5-rich matrix. MMP-9 was localized diffusely along the cell membranes. Using in situ hybridization we observed that in chronically inflamed human gingiva MMP-2 is expressed in epithelium extending into subepithelial connective tissue. These results suggest that MMP-2 plays a specific role in epithelial migration, possibly by detaching the advancing cells from the pericellular matrix or by activating other MMPs.  相似文献   

3.
Laminin-5, a major adhesive ligand for epithelial cells, undergoes processing of its gamma2 and alpha3 chains. This study investigated the mechanism of laminin-5 processing by keratinocytes. BI-1 (BMP-1 isoenzyme inhibitor-1), a selective inhibitor of a small group of astacin-like metalloproteinases, which includes bone morphogenetic protein 1 (BMP-1), mammalian Tolloid (mTLD), mammalian Tolloid-like 1 (mTLL-1), and mammalian Tolloid-like 2 (mTLL-2), inhibited the processing of laminin-5 gamma2 and alpha3 chains in keratinocyte cultures in a dose-dependent manner. In a proteinase survey, all BMP-1 isoenzymes processed human laminin-5 gamma2 and alpha3 chains to 105- and 165-kDa fragments, respectively. In contrast, MT1-MMP and MMP-2 did not cleave the gamma2 chain of human laminin-5 but processed the rat laminin gamma2 chain to an 80-kDa fragment. An immunoblot and quantitative PCR survey of the BMP-1 isoenzymes revealed expression of mTLD in primary keratinocyte cultures but little or no expression of BMP-1, mTLL-1, or mTLL-2. mTLD was shown to cleave the gamma2 chain at the same site as the previously identified BMP-1 cleavage site. In addition, mTLD/BMP-1 null mice were shown to have deficient laminin-5 processing. Together, these data identify laminin-5 as a substrate for mTLD, suggesting a role for laminin-5 processing by mTLD in the skin.  相似文献   

4.
Analyses of mice with targeted deletions in the genes for alpha3 and beta1 integrin suggest that the alpha3beta1 integrin heterodimer likely determines the organization of the extracellular matrix within the basement membrane of skin. Here we tested this hypothesis using keratinocytes derived from alpha3 integrin-null mice. We have compared the organizational state of laminin-5, a ligand of alpha3beta1 integrin, in the matrix of wild-type keratinocytes with that of laminin-5 in the matrix of alpha3 integrin-null cells. Laminin-5 distributes diffusely in arc structures in the matrix of wild-type mouse keratinocytes, whereas laminin-5 is organized into linear, spike-like arrays by the alpha3 integrin-null cells. The fact that alpha3 integrin-null cells are deficient in their ability to assemble a proper laminin-5 matrix is also shown by their failure to remodel laminin-5 when plated onto surfaces coated with purified laminin-5 protein. In sharp contrast, wild-type keratinocytes organize exogenously added laminin-5 into discrete ring-like organizations. These findings led us next to assess whether differences in laminin-5 organization in the matrix of the wild-type and alpha3 integrin-null cells impact cell behavior. Our results indicate that alpha3 integrin-null cells are more motile than their wild-type counterparts and leave extensive trails of laminin-5 over the surface on which they move. Moreover, HEK 293 cells migrate significantly more on the laminin-5-rich matrix derived from the alpha3 integrin-null cells than on the wild-type keratinocyte laminin-5 matrix. In addition, alpha3 integrin-null cells show low strength of adhesion to surfaces coated with purified laminin-5 compared to wild-type cells although both the wild type and the alpha3 integrin-null keratinocytes adhere equally strongly to laminin-5 that has been organized into arrays by other epithelial cells. These data suggest: (1) that alpha3beta1 integrin plays an important role in determining the incorporation of laminin-5 into its proper higher-order structure within the extracellular matrix of keratinocytes and (2) that the organizational state of laminin-5 has an influence on laminin-5 matrix function.  相似文献   

5.
Whether alpha6beta4 integrin regulates migration remains controversial. beta4 integrin-deficient (JEB) keratinocytes display aberrant migration in that they move in circles, a behavior that mirrors the circular arrays of laminin (LM)-332 in their matrix. In contrast, wild-type keratinocytes and JEB keratinocytes, induced to express beta4 integrin, assemble laminin-332 in linear tracks over which they migrate. Moreover, laminin-332-dependent migration of JEB keratinocytes along linear tracks is restored when cells are plated on wild-type keratinocyte matrix, whereas wild-type keratinocytes show rotation over circular arrays of laminn-332 in JEB keratinocyte matrix. The activities of Rac1 and the actin cytoskeleton-severing protein cofilin are low in JEB keratinocytes compared with wild-type cells but are rescued following expression of wild-type beta4 integrin in JEB cells. Additionally, in wild-type keratinocytes Rac1 is complexed with alpha6beta4 integrin. Moreover, Rac1 or cofilin inactivation induces wild-type keratinocytes to move in circles over rings of laminin-332 in their matrix. Together these data indicate that laminin-332 matrix organization is determined by the alpha6beta4 integrin/actin cytoskeleton via Rac1/cofilin signaling. Furthermore, our results imply that the organizational state of laminin-332 is a key determinant of the motility behavior of keratinocytes, an essential element of skin wound healing and the successful invasion of epidermal-derived tumor cells.  相似文献   

6.
In mammalian epidermis, alpha6beta4 integrin is expressed exclusively on the basal layer localized to the hemidesmosomes, where it interacts extracellularly with the laminin-5 ligand. During differentiation, loss of alpha6beta4 is associated with keratinocyte detachment from the basement membrane and upward migration. The protein kinase C (PKC) family of isoforms participates in regulation of integrin function and is linked to skin differentiation. Exposure of primary murine keratinocytes to PKC activators specifically downregulates alpha6beta4 expression. Utilizing recombinant adenoviruses, we selectively overexpressed skin PKC isoforms in primary keratinocytes. PKCdelta and PKCzeta induced downregulation of alpha6beta4 protein expression, leading to reduced keratinocyte attachment to laminin-5 and enhanced gradual detachment from the underlying matrix. In contrast, PKCalpha upregulated alpha6beta4 protein expression, leading to increased keratinocyte attachment to laminin-5 and to the underlying matrix. Altogether, these results suggest distinct roles for specific PKC isoforms in alpha6beta4 functional regulation during the early stages of skin differentiation.  相似文献   

7.
The cell-matrix interaction is one of the factors defining the cell behavior in normal and wounded tissues. To determine the function of laminin-2/4, one of components of the skin basement membrane in the process of reepithelization, we studied its interaction with human keratinocytes. The adhesive properties of laminin-2/4 and its effect on keratinocytes migration in vitro were analysed. For comparison with our present investigation, we used the earlier studied laminin-1 from EHS mouse sarcoma. Laminin-2/4 appeared to be a good substrate for human keratinocytes, and this correlates with a greater number of cell surface receptors compared with laminin-1. Laminin-2/4 alone does not stimulate keratinocyte migration, but, in contrast to laminin-1, supports EGF-mediated migration. The obtained results give an insight into the function of laminin-2/4 in normal skin and during wound healing.  相似文献   

8.
Laminin-5 is a major adhesion protein of the skin basement membrane and crucially involved in integrin-mediated cell substrate attachment of keratinocytes, which is important for hemidesmosomal anchorage as well as for keratinocyte migration during epidermal wound healing. To investigate its role in keratinocyte migration, we analyzed laminin-5-deficient cells of patients with a lethal variant of junctional epidermolysis bullosa. Normal migrating keratinocytes adopted monopolar morphology with a distinct front lamella and employed a continuous mode of translocation. In contrast, laminin-5-deficient cells assumed a stretched bipolar shape with two lamella regions and migrated in a discontinuous, saltatory manner characterized by significantly decreased directional persistence and reduced migration velocity. The distinct morphology as well as the migratory phenotype apparently resulted from a defect in the formation of cell substrate adhesions that were completely missing in the cell body and less stable in the lamella regions. Accordingly in normal keratinocytes, a bipolar shape and a saltatory migration mode were inducible by blocking laminin-5-mediated substrate adhesion. Our findings clearly point to an essential role of laminin-5 in forming dynamic cell substrate adhesion during migration of epidermal keratinocytes and provide an explanation for the cellular mechanisms that underlie the lethal form of junctional epidermolysis bullosa.  相似文献   

9.
The alpha6beta4 integrin-a laminin-5 receptor-mediates assembly of hemidesmosomes and recruitment of Shc and phosphoinositide 3-kinase through the unique cytoplasmic extension of beta4. Mice carrying a targeted deletion of the signaling domain of beta4 develop normally and do not display signs of skin fragility. The epidermis of these mice contains well-structured hemidesmosomes and adheres stably to the basement membrane. However, it is hypoplastic due to reduced proliferation of basal keratinocytes and undergoes wound repair at a reduced rate. Keratinocytes from beta4 mutant mice undergo extensive spreading but fail to proliferate and migrate in response to epidermal growth factor (EGF) on laminin-5. EGF causes significant phosphorylation of extracellular signal-regulated kinase (ERK) and Jun N-terminal protein kinase (JNK) and phosphorylation and degradation of IkappaB in beta4 mutant cells adhering to laminin-5. Unexpectedly, however, ERK, JNK, and NF-kappaB remain in the cytoplasm in beta4 mutant cells on laminin-5, whereas they enter effectively into the nucleus in the same cells on fibronectin or in wild-type cells on both matrix proteins. Inhibitor studies indicate that alpha6beta4 promotes keratinocyte proliferation and migration through its effect on NF-kappaB and P-JNK. These findings provide evidence that beta4 signaling promotes epidermal growth and wound healing through a previously unrecognized effect on nuclear translocation of NF-kappaB and mitogen-activated protein kinases.  相似文献   

10.
Melanocytes are highly motile cells that play an integral role in basic skin physiological processes such as wound healing and proper skin pigmentation. It has been postulated that surrounding keratinocytes contribute to melanocyte migration, but underlying mechanisms remain rather vague so far. In this study, we set out to analyze the specific potential contribution of keratinocyte components to melanocytes and melanoma cell migration-related processes. Our studies revealed that A375 human melanoma cell attachment, spreading, and migration are interestingly better supported by HaCaT keratinocyte extracellular matrix (ECM) than by self-derived A375 ECM. Moreover, HaCaT ECM caused increased integrin α6 expression, adhesion-mediated focal adhesion kinase phosphorylation, and focal adhesion formations. Similar effects were confirmed in human melanocytes. Furthermore, we found that keratinocyte-derived soluble factors did not appear to significantly contribute to these processes. Specific extrinsic factors that promoted melanoma migration were attributed to keratinocyte-derived laminin-332, whereas alternative ECM component such as laminin-111 and fibronectin functions appeared to have insignificant contributions. Taken together, these studies implicate extrinsic laminin-332 in promoting the high mobility property and perhaps invasiveness inherently characteristic of, and that are the menace of, melanocytes and melanomas, respectively.  相似文献   

11.
12.
Epidermal human cells (keratinocytes) differently interact with extracellular matrix proteins of the skin basal membrane depending on the stages of their differentiation. The pool of basal keratinocytes commonly includes stem cells and transient amplifying cells. They directly attach to the skin basal membrane. Keratinocytes change their adhesive properties during differentiation, lose direct interaction with the basal membrane and move to suprabasal epidermal strata. From this, it is suggested that basal and primarily stem cells can be isolated from a heterogenous keratinocyte population due to their selective adhesion to the extracellular matrix proteins. In the current study, we analysed the specificity of interaction between primary keratinocytes and extracellular matrix proteins (collagens of I and IV types, laminin-2/4, fibronectin and matrigel). We have demonstrated that the basal keratinocytes extracted from the skin have different adhesive abilities. The rapidly spreading cells usually interacted with collagen and fibronectin rather that with laminin-2/4 or matrigel. The majority of these cells being represented by basal keratinocytes. Our data demonstrate that the applied method of keratinocyte selection may be directed for precise isolation of skin stem from a common cell population.  相似文献   

13.
Re-epithelialization describes the resurfacing of a skin wound with new epithelium. In response to various stimuli including that of growth factors, cytokines and extracellular matrix (ECM), wound edge epidermal keratinocytes undergo cytoskeleton rearrangements compatible with their motile behavior and develop protrusive adhesion contacts. Matrix metalloproteinases (MMP) expression is crucial for proper cell movement and ECM remodeling; however, their deposition mechanism is unknown in keratinocytes. Here, we show that similar to cytokine IL-1ß, the precursor laminin 332 pro-migratory fragment G45 induces expression of the MMP-9 pro-enzyme, which together with MMP-14, further exerts its proteolytic activity within epithelial podosomes. This event strictly depends on the expression of the proteoglycan receptor syndecan-1 that was found in a ring surrounding the podosome core, co-localised with CD44. Our findings uncover that by directly recruiting both syndecan-1 and CD44, the laminin-332 G45 domain plays a major role in regulating mechanisms underlying keratinocyte / ECM remodeling during wound repair.  相似文献   

14.
An important role of inducible nitric oxide (NO) synthase for epithelial action during skin repair has been well established. Although a delayed healing of skin wounds has been recently described for eNOS-deficient mice, a participation of endothelial-type NO synthase (eNOS) in skin repair largely remains unclear. In this study we determined the expression pattern of eNOS during wound healing in healthy and in diabetic mice. Remarkably, normal repair in healthy animals was characterized by a moderate induction of eNOS at the mRNA and protein level, whereas diabetes-impaired healing was associated with a clearly reduced eNOS protein expression. Immunohistochemistry revealed the endothelial lining of blood vessels within the granulation tissue, and also keratinocytes of the wound margins, the developing neo-epithelium, and the hair follicles to express eNOS protein. Keratinocyte-derived expression of eNOS could be confirmed at the mRNA level in vitro for human primary keratinocytes and the keratinocyte cell line HaCaT. Furthermore, eNOS enzymatic activity most likely contributes to epithelial regeneration, as eNOS-deficient (eNOS -/-) animals exhibited reduced wound margin epithelia associated with reduced keratinocyte proliferation.  相似文献   

15.
Biological function of laminin-5 and pathogenic impact of its deficiency   总被引:1,自引:0,他引:1  
The basement membrane glycoprotein laminin-5 is a key component of the anchoring complex connecting keratinocytes to the underlying dermis. It is secreted by keratinocytes as a cross-shaped heterotrimer of alpha3, beta3 and gamma2 chains and serves as a ligand of various transmembrane receptors, thereby regulating keratinocyte adhesion, motility and proliferation. In intact skin, laminin-5 provides essential links to both the hemidesmosomal alpha6beta4 integrin and the collagen type VII molecules which form the anchoring fibrils inserting into the dermis. If the basement membrane is injured, laminin-5 production increases rapidly. It then serves as a scaffold for cell migration, initiates the formation of hemidesmosomes and accelerates basement membrane restoration at the dermal-epidermal junction. Mutations of the laminin-5 genes or auto-antibodies against one of the subunits of laminin-5 may lead to a significant lack of this molecule in the epidermal basement membrane zone. The major contributions of laminin-5 to the resistance of the epidermis against frictional stress but also for basement membrane regeneration and repair of damaged skin are reflected by the phenotype of Herlitz junctional epidermolysis bullosa, which is caused by an inherited absence of functional laminin-5. This lethal disease becomes manifest in widespread blistering of skin and mucous membranes, impaired wound healing and chronic erosions containing exuberant granulation tissue. Here, we discuss current understanding of the biological functions of laminin-5, the pathogenic impact of its deficiency and implications on molecular approaches towards a therapy of junctional epidermolysis bullosa.  相似文献   

16.
The effects of laminin-5 and its subunit gamma2 chain on cell adhesion and migration were studied, and a migration-related cis-acting element was identified in the gamma2 chain gene (LAMC2) using promoter-reporter gene constructs in transgenic mice. Intact laminin-5 molecules, but not recombinant gamma2 chain promoted cell adhesion of human keratinocytes and mouse squamous carcinoma cells, indicating that the gamma2 chain does not contain a cellular binding site. However, the gamma2 chain as such is probably involved in the process of cell locomotion, as antibodies against the short arm of the chain inhibited migration of carcinoma cells in an in vitro assay. Further evidence for the involvement of the gamma2 chain in cell migration was obtained by the identification of a cis-acting element in a promoter-lacZ reporter gene construct that was active in migratory epithelial cells of healing wounds in mice made transgenic by microinjection of the construct into fertilized oozytes. The migration active element was located in the sequence between -613 and +55. The same construct, and another one containing 5900 base pairs of the 5' flanking region, yielded very limited expression in cells of normal tissues. The limited expression was, however, only observed in epithelial cells of different tissues, i.e. cell types that normally express laminin-5 in vivo. The results show that the sequence between -613 and +55 contains elements that can drive expression during epithelial cell migration and that also partially confers more general epithelium expression. However, elements outside -5900 and +55 are needed for normal epithelium expression of the LAMC2 gene.  相似文献   

17.
18.
In the process of tissue injury and repair, epithelial cells rapidly migrate and form epithelial sheets. Vinexin is a cytoplasmic molecule of the integrin-containing cell adhesion complex localized at focal contacts in vitro. Here, we investigated the roles of vinexin in keratinocyte migration in vitro and wound healing in vivo. Vinexin knockdown using siRNA delayed migration of both HaCaT human keratinocytes and A431 epidermoid carcinoma cells in scratch assay but did not affect cell proliferation. Induction of cell migration by scratching the confluent monolayer culture of these cells activated both EGFR and ERK, and their inhibitors AG1478 and U0126 substantially suppressed scratch-induced keratinocyte migration. Vinexin knockdown in these cells inhibited the scratch-induced activation of EGFR, but not that of ERK, suggesting that vinexin promotes cell migration via activation of EGFR. We further generated vinexin (−/−) mice and isolated their keratinocytes. They similarly showed slow migration in scratch assay. Furthermore, vinexin (−/−) mice exhibited a delay in cutaneous wound healing in both the back skin and tail without affecting the proliferation of keratinocytes. Together, these results strongly suggest a crucial role of vinexin in keratinocyte migration in vitro and cutaneous wound healing in vivo.  相似文献   

19.
20.
The Bmx gene, a member of the Tec family of nonreceptor protein tyrosine kinases, is expressed in arterial endothelium and in certain hematopoietic and epithelial cells. Previous in vitro studies have implicated Bmx signaling in cell migration and survival and suggested that it contributes to the progression of prostate carcinomas. However, the function of Bmx in normal tissues in vivo is unknown. We show here that Bmx expression is induced in skin keratinocytes during wound healing. To analyze the role of Bmx in epidermal keratinocytes in vivo, we generated transgenic mice overexpressing Bmx in the skin. We show that Bmx overexpression accelerates keratinocyte proliferation and wound reepithelialization. Bmx expression also induces chronic inflammation and angiogenesis in the skin, and gene expression profiling suggests that this occurs via cytokine-mediated recruitment of inflammatory cells. Our studies provide the first data on Bmx function in vivo and form the basis of evaluation of its role in epithelial neoplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号