首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hebb proposed the concept of a neural assembly distributed across cortical tissue as a model for representation of information in the cerebral cortex. Later developments of the concept highlight the need for overlapping membership between independent assemblies, and the spread of activity throughout the assembly once it is activated above a critical level (ignition). Formalisation of the neural assembly concept, especially in relation to quantitative data from the real cortex, is at a very early stage. We consider two constraints on neural assembly size: (1) if a neural assembly is too small the fraction of its neurons that need to be active to ignite the whole assembly becomes unrealistically large; (2) if assemblies in a block of cortical tissue become too large then the block becomes ‘unsafe’, that is, unwanted spread from an active assembly to overlapping ones becomes inevitable. We consider variations in three parameters: neuronal firing threshold; connection density; and the total number of assemblies stored in the block of cortical tissue. Given biologically plausible values for these parameters we estimate maximum assembly size compatible with ignitability of individual assemblies, low probability of unwanted spread to overlapping assemblies, and safe operation of the block as a whole. Received: 7 March 1997 / Accepted in revised form: 1 July 1997  相似文献   

2.
Gamma (30–80 Hz) and beta (12–30 Hz) oscillations such as those displayed by in vitro hippocampal (CA1) slice preparations and by in vivo neocortical EEGs often occur successively, with a spontaneous transition between them. In the gamma rhythm, pyramidal cells fire together with the interneurons, while in the beta rhythm, pyramidal cells fire on a subset of cycles of the interneurons. It is shown that gamma and beta rhythms have different properties with respect to creation of cell assemblies. In the presence of heterogeneous inputs to the pyramidal cells, the gamma rhythm creates an assembly of firing pyramidal cells from cells whose drive exceeds a threshold. During the gamma to beta transition, a slow outward potassium current is activated, and as a result the cell assembly vanishes. The slow currents make each of the pyramidal cells fire with a beta rhythm, but the field potential of the network still displays a gamma rhythm. Hebbian changes of connections among the pyramidal cells give rise to a beta rhythm, and the cell assemblies are recovered with a temporal separation between cells firing in different cycles. We present experimental evidence showing that such a separation can occur in hippocampal slices.  相似文献   

3.
Laminae I-III of the spinal dorsal horn contain many inhibitory interneurons that use GABA and/or glycine as a neurotransmitter. Distinct neurochemical populations can be recognised among these cells, and these populations are likely to have differing roles in inhibiting pain or itch. Quantitative studies in rat have shown that inhibitory interneurons account for 25-40% of all neurons in this region. The sst2A receptor is expressed by around half the inhibitory interneurons in laminae I-II, and is associated with particular neurochemically-defined populations.Although much of the work on spinal pain mechanisms has been performed on rat, the mouse is now increasingly used as a model, due to the availability of genetically altered lines. However, quantitative information on the arrangement of interneurons is lacking in the mouse, and it is possible that there are significant species differences in neuronal organisation.In this study, we show that as in the rat, nearly all neurons in laminae I-III that are enriched with glycine also contain GABA, which suggests that GABA-immunoreactivity can be used to identify inhibitory interneurons in this region. These cells account for 26% of the neurons in laminae I-II and 38% of those in lamina III. As in the rat, the sst2A receptor is only expressed by inhibitory interneurons in laminae I-II, and is present on just over half (54%) of these cells. Antibody against the neurokinin 1 receptor was used to define lamina I, and we found that although the receptor was concentrated in this lamina, it was expressed by many fewer cells than in the rat. By estimating the total numbers of neurons in each of these laminae in the L4 segment of the mouse, we show that there are around half as many neurons in each lamina as are present in the corresponding segment of the rat.  相似文献   

4.
Summary In the present investigations ‘Chillum’ jar assembly was found to provide more favourable environmental conditions for rhizobia to nodulate leguminous plants particularly under summer conditions than the usual Leonard jar assembly. When thirty pigeon pea rhizobia isolates were tested for their nodulation efficiency in both Leonard jars as well as ‘Chillum’ jars, it was noticed that there was no nodulation in any of the isolates under Leonard jars whereas all isolates were nodulating well under ‘Chillum’ jars conditions. This was probably due to lowering of temperature in ‘Chillum’ jar caused by rapid evaporation from the outer surface of ‘Chillum’ jar assembly. The maximum temperature recorded in ‘Chillum’ jar was 34°C whereas in Leonard jars it was 46.5°C.  相似文献   

5.
An earlier theory of cell differentiation and morphogenesis (Wassermann, 1972, 1973, 1978) is combined with the genetic control model of Davidson and Britten (e.g. 1979). The resulting new theory suggests how, bysystematic process algorithms, specifically enumerated combinations of batteries of structural genes can become switched on in particularly enumerated cells, via battery-specific enumerable regulator genes. The systematization is idealized. Up to a certain stage of development in each mitotically arising cell a unique cell-specific combination of structural genes called ‘marker genes’ is active. Marker genes are assumed to code for cell-specifying marker proteins (CSMPs) which permit cells carrying related markers to recognize each other, thus permitting specific cell sorting.Batteries of marker genes could ensure great developmental precision and can safeguard—via redundancies of CSMP types—against accidental loss or detrimental mutational modification of CSMPs or marker genes, respectively. This paper is much concerned with cell lineage in relation to ‘microdifferentiation’, where ‘microdifferentiation’ of a cell refers to a cell's active marker genes and its syntheses of CSMPs. A drastic distinction is made between ‘microdifferentiation’ and ‘gross’ differentiation of a cell, where the same ‘gross’ differentiation may be shared by a large number of cells that could each be uniquely ‘microdifferentiated’. Typical ‘gross’ differentiation could manifest itself in tissue specificity, whereas, up to certain stages of development, all cells of the same gross differentiation type (say tissue specificity) could each be uniquely ‘microdifferentiated’. The theory also assumes that at certain stages of the developmental process some (or in some organisms all) of the previously uniquely specified cells could give rise to small (or occasionally large) clones of equispecified cells, some of which might form clusters that represent complete ‘morphogenetic fields’ Tentative implementation mechanisms are proposed which suggest how the theory could operate in molecular biological terms. In particular, CSMPs could endow cell surface membranes with a highly specific protein network, and an associated equally specific cell surface coat. It is suggested how these highly specified cell surface coats and other systems could provide an ‘extracellular guidance network’ which could help to direct cells to attain energetically optimal locations relative to each other based on the matching of their surface specificities. In numerous experimental situations, where normally present optimal matching of cells is excluded, ‘alternative matching’ based on experiment-specific suboptimal matching could explain many data, notably in experimental development neurobiology (Wassermann, 1978).  相似文献   

6.
The type and distribution of neurokinin-1 (NK-1) receptor-expressing neurones were studied in young (14-day-old) rats' lumbar spinal cord using pre-embedding immunohistochemistry. The heaviest immunoreactivity was observed in the middle part and lateral fourth of lamina I where the great majority of immunoreactive perikarya represented fusiform and multipolar cells. In lamina II the middle and medial part showed moderate immunoreactivity, most of the cells resembled stalked cells. In lamina III the labelled perikarya were evenly distributed, while those in lamina IV accumulated mainly in the lateral part. In both laminae most of the labelled neurones represented central cells, the rest of them belonged to the antenna-type cells with long dorsally directed dendrites penetrating the superficial laminae. The immunoreactivity in laminae V-VII was uniform and relatively weak. In lamina VIII the immunopositive perikarya were encountered only rarely while in lamina IX virtually all motoneurones showed weak immunoreactivity. Lamina X contained small, multipolar and fusiform labelled perikarya. In conclusion, we found that the general appearance of the NK-1 receptor immunostaining and the major type of NK-I receptor-expressing neurones were similar to that found previously in adult spinal cord. Using the same method as Brown and colleagues the number of labelled NK- 1 receptor immunoreactive cells was similar in young and adult animals except lamina I where the number of immunoreactive neurones was twice that in adults.  相似文献   

7.
 Much evidence suggests that the mammalian thalamus is not merely a set of nuclei relaying signals to the cerebral cortex, but is engaged in two-way interplay with it. Three important features constrain ideas about the nature of this interplay: (i) thalamic projection neurones lack local axon collaterals; (ii) most cortico-thalamic projections have very long axonal conduction time; (iii) in the waking state the membrane potential of thalamic projections cells appears to be poised just beneath threshold for firing. It is proposed that cortico-thalamo-cortical pathways represent connections between different cortical loci which have higher security than the direct cortico-cortical route. Thus each thalamo-cortical projection neurone can have a singular and pivotal role in the activation of one or more cortical neural assemblies. The long delays of cortico-thalamic conduction suggest that the cortico-thalamo-cortical loop also plays a crucial role in the operation of time-structured neural assemblies (‘synfire chains’: Abeles), by providing a high-security link from one active node of the chain to nodes activated at a later time in the sequence. It is predicted that, in the waking animal, thalamic projection cells should have a response selectivity to complex percepts and concepts, conferred on them by the cortical assemblies in whose activation they participate. Received: 30 November 1995/Accepted: 3 June 1996  相似文献   

8.
In control rats, penicillin-induced epileptiform discharges were completely synchronous in the neocortex sites at a distance of up to 4 mm from each other. Number of the cells decreased by 45.5% during 90 days in isolated cortical slabs and the synchronisation disappeared. The data obtained show that the loss of large pyramidal neurones of the layer V entailed a loss of the spatial synchronisation. The main axonal collaterals of large pyramidal neurones of the layer V could be followed horizontally for a distance of up to 2 mm in the somatosensory cortex. The neuronal network formed by the large pyramidal neurones of the layer V seems to provide a spatial synchronisation in the neocortex.  相似文献   

9.
The advancement of immunocytochemistry (ICC) allows one to observe detailed spatial distribution of cellular antigens, but, with some limitations. Using conventional ICC, it is difficult to distinguish the nuclear localization from cytoplasm, as two large subcellular compartments overlap on the z-axis. In this study, we have investigated whether in situ immunostaining of ‘naked’ nuclei could provide an unambiguous method for detection of nuclear antigens. We have designed a protocol that efficiently lyses plasmalemma, while keeping the nuclear envelope intact. The optimal condition for lysing the plasmalemma was 0.5% Nonidet P-40 for 5 min in both neuronal and non-neuronal cultured cells. Using this protocol, we could unambiguously isolate nuclear from cytoplasmic ICC signals. Since the present protocol has been designed for immunostaining of ‘naked’ nuclei from cultured or isolated cells, we have coined a new term to refer to this procedure as ‘immunonucleochemistry’ (‘INC’ for abbreviation).  相似文献   

10.
Quantitative autoradiographic assessment of cerebral cortical laminar distribution of μ, δ and κ opioid receptors was carried out in coronal sections of five post-mortem human brains obtained at autopsy. The cortical areas studied were: cingulate, frontal, insular, parietal, parahippocampal, temporal, occipitotemporal, occipital and striate area. In general, the laminar patterns of distribution for the three types of receptors are distinctive. Peak levels of δ opioid binding are in laminae I, II, and IIa. μ-Receptors are located in lamina III followed by I and II in cingulate, frontal, insular and parietal cortices and lamina IV in temporal and occiptotemporal cortices. κ-Receptors are found concentrated in laminae V and VI. The patterns of opioid binding in cortical laminae showed remarkable consistency in all five brains examined. In contrast to other cortical areas, the parahippocampal gyrus, at the level of the amygdaloid formation, demonstrated peak κ receptor density in laminae I, II and III. μ-Opioid binding was undetectable in the lateral occipital cortex and in the striate area. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

11.
 It is commonly accepted that larger visual objects are represented in the cerebral cortex by specific spatial patterns of neuronal activity. Self-organization is a key concept in the different explanations of such neuronal representations. We here propose as a hypothesis that fast cortical selection (FCS) is an intrinsic functional element of cortical self-organization during perception. Selection is a central concept in theoretical biology which has proved its explanatory power in different fields of our natural and cultural world. The central element in the cortical selection process is the pyramidal cell with its two types of excitatory input. In primary cortical areas one of these inputs comes from any of the sensory organs, determining the topological and typological receptive field properties of the cell and also driving it directly. The other type of input connects reciprocally neighbouring pyramidal cells by axon collaterals and only facilitates the driving input. These two functionally different inputs constitute the elementary selection system working by iterative mutual facilitation as a biological algorithm. A short simulation, based entirely on such biological facts, illustrates the dynamic of this selection process: the activity of cells responding better to the external stimulus ‘grow and survive’ the stimulation, whereas less responsive cells decrease their activity due to competition. Received: 13 June 1995 / Accepted in revised form: 27 May 1997  相似文献   

12.
Summary During our work on the periodicity of the genetic code we proposed a new scheme of amino acid pairing [Siemion, I.Z. and Stefanowicz, P., Biosystems, 27 (1992) 77; Bull. Pol. Acad. Sci., 40 (1992) 11]. Based on this scheme, we designed and synthesized the sequences IIYTLC(Acm)GLYL(II), IIYPLC(Acm)GLYL(V), and IYPLC(Acm)GLY (VI), which are ‘antipeptides’ with respect to immunoactive fragments of TGFβ2: YIGKTPKI (III) and YYIGKTPKIE(IV). The peptide-antipeptide interaction was investigated by electrospray ionization mass spectrometry and circular dichroism methods. The results obtained indicate that peptides interact selectively with ‘antipeptides’.  相似文献   

13.
Explaining the apparent non-random codon distribution and the nature and number of amino acids in the ‘standard’ genetic code remains a challenge, despite the various hypotheses so far proposed. In this paper we propose a simple new hypothesis for code evolution involving a progression from singlet to doublet to triplet codons with a reading mechanism that moves three bases each step. We suggest that triplet codons gradually evolved from two types of ambiguous doublet codons, those in which the first two bases of each three-base window were read (‘prefix’ codons) and those in which the last two bases of each window were read (‘suffix’ codons). This hypothesis explains multiple features of the genetic code such as the origin of the pattern of four-fold degenerate and two-fold degenerate triplet codons, the origin of its error minimising properties, and why there are only 20 amino acids. Reviewing Editor: Dr. Laura Landweber An erratum to this article can be found at .  相似文献   

14.
The structural types of spinal cord marginal (lamina I) neurons projecting to the nucleus of the tractus solitarius (NTS) were studied. Upon injections of cholera toxin subunit B (CTb) into the caudal part of the NTS, including its lateral and medial portions, labeled cells occurred bilaterally in laminae I, IV-VII, and X, and the lateral spinal nucleus (LSN). After injections into the lateral portion alone, only a few cells were labeled in laminae V, VII, and X, and the LSN, and none in the superficial dorsal horn. Of 1882 labeled marginal cells, 38% belonged to the flattened type, 37% to the pyramidal type, and 25% to the fusiform type. Flattened and pyramidal cells were labeled in considerably greater numbers than those reported when other supraspinal targets of these cells were injected with CTb. Since cells in the NTS are known to be under marked 7-aminobutyric acidergic (GABA-ergic) inhibition, it is possible that only strong input conveyed by great numbers of flattened and pyramidal cells is capable of overcoming that barrier. Fusiform cells were labeled in numbers similar to those observed previously after tracer injections into the two other targets of this neuronal type, the parabrachial nuclei and the lateral reticular nucleus. Considering that these regions, as well as the NTS, control cardiovascular and respiratory functions, it is suggested that fusiform cells transmit noxious input that will influence autonomic reflexes processed in the three nuclei.  相似文献   

15.
‘Information’ and ‘code’ originated as technical terms within linguistics and information theory but are now widely used in genetics and developmental biology. Against this background, it is examined if coded information distinguishes genes from other information carriers, i.e., whether there are genetic words or sentences by virtue of the genetic code, and, if so, whether they have any semantic content. It is concluded that there is no genetic language with semantic content, but that the genetic code still enables unique language-like modes of transmission and interpretation of causal information.  相似文献   

16.
The distribution of focal potentials over the cross section of the 7th cervical segment of the spinal cord was studied during stimulation of the pyramids, the red nucleus, and a peripheral nerve (ulnar) in adult cats anesthetized with chloralose and Nembutal. The earliest focal potentials in the fasciculus dorsolateralis were recorded 1.4–1.5 msec after stimulation of the pyramids and 0.8–0.9 msec after stimulation of the red nucleus. These times correspond to maximal condution velocities of 56–68 and 105–124 m/sec respectively. The earliest post-synaptic activity in response to pyramidal stimulation was found in the lateral areas of laminae V and VI, and in response to stimulation of the red nucleus in laminae VI and VII in Rexed's classification. The pyramidal wave also evoked considerable postsynaptic activity in medial areas of the dorsal horn. In response to stimulation of peripheral afferents activity was evoked in neurons in the central and medial parts of laminae V and VI. It is postulated on the basis of these results that corticospinal and rubrospinal fibers may be connected monosynaptically with specialized interneurons, free from peripheral influences, in the lateral areas of laminae V and VII respectively; in the lateral part of lamina VI convergence of both types of influences on the same cells is possible. Interaction between descending and afferent influences possibly takes place on more medially located neurons.A.A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 158–167, March–April, 1972.  相似文献   

17.
Embryonic stem cells, totipotent cells of the early mouse embryo, were established as permanent cell lines of undifferentiated cells. ES cells provide an important cellular system in developmental biology for the manipulation of preselected genes in mice by using the gene targeting technology. Embryonic stem cells, when cultivated as embryo-like aggregates, so-called ‘embryoid bodies’, are able to differentiate in vitro into derivatives of all three primary germ layers, the endoderm, ectoderm and mesoderm. We established differentiation protocols for the in vitro development of undifferentiated embryonic stem cells into differentiated cardiomyocytes, skeletal muscle, neuronal, epithelial and vascular smooth muscle cells. During differentiation, tissue-specific genes, proteins, ion channels, receptors and action potentials were expressed in a developmentally controlled pattern. This pattern closely recapitulates the developmental pattern during embryogenesis in the living organism. In vitro, the controlled developmental pattern was found to be influenced by differentiation and growth factor molecules or by xenobiotics. Furthermore, the differentiation system has been used for genetic analyses by ‘gain of function’ and ‘loss of function’ approaches in vitro. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
 The weakly electric fish Eigenmannia can detect the phase difference between a jamming signal and its own signal down to 1 s. To clarify the neuronal mechanism of this hyperaccurate detection of phase difference, we present a neural network model of the torus of the midbrain which plays an essential role in the detection of phase advances and delays. The small-cell model functions as a coincidence detector and can discriminate a time difference of more than 100 s. The torus model consists of laminae 6 and 8. The model of lamina 6 is made with multiple encoding units, each of which consists of a single linear array of small cells and a single giant cell. The encoding unit encodes the phase difference into its spatio-temporal firing pattern. The spatially random distribution of small cells in each encoding unit improves the encoding ability of phase modulation. The neurons in lamina 8 can discriminate the phase advance and delay of jamming electric organ discharges (EODs) compared with the phase of the fish's own EOD by integrating simultaneously the outputs from multiple encoding units in lamina 6. The discrimination accuracy of the feature-detection neurons is of the order of 1 s. The neuronal mechanism generating this hyperacuity arises from the spatial feature of the system that the innervation sites of small cells in different encoding units are distributed randomly and differently on the dendrites of single feature-detection neurons. The mechanism is similar to that of noise-enhanced information transmission. Received: 10 July 2000 / Accepted in revised form: 19 January 2001  相似文献   

19.
A new cloning method for generating multiple repeats of amino acids is described which can be used as biomaterials, protein polymers and biomedical applications. Although several traditional methods for cloning multiple repeats are still exploited, these are laborious and complicated because they must go through several consecutive cloning steps. To solve these problems, synthetic gene libraries encoding repetitive patterns were constructed by using non-template PCR. As a result, a ‘length library’ with fourteen different ELP repeating genes was constructed and expressed in a cell-free protein synthesis system. These results showed our novel cloning method is efficient, and has the potential capacity for synthesizing repetitive genes by PCR to be cloned in any commercial expression vectors.  相似文献   

20.
Reliability of the existing functional criteria for differentiation of pyramidal ("complex spike neurones") and inhibitory ("theta neurones") cells in the hippocampus of waking rabbit is evaluated on the basis of statistical analysis of neuronal spontaneous and evoked activity. The analysis shows, that the criteria of mean frequency, presence of theta modulation, neuronal behaviour in situations provoking EEG theta rhythm (e.g., excitation or inhibition during presentation of sensory stimuli), effects of medial septum and intrahippocampal stimulation do not permit reliable identification of the hippocampal neuronal types in the waking rabbit. The data on functional classification of the hippocampal neurones are discussed in connection with existing suggestions about their state in situations inducing theta rhythm generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号