首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ubiquitous forms of long-term potentiation (LTP) and depression (LTD) are caused by enduring increases or decreases in neurotransmitter release. Such forms or presynaptic plasticity are equally observed at excitatory and inhibitory synapses and the list of locations expressing presynaptic LTP and LTD continues to grow. In addition to the mechanistically distinct forms of postsynaptic plasticity, presynaptic plasticity offers a powerful means to modify neural circuits. A wide range of induction mechanisms has been identified, some of which occur entirely in the presynaptic terminal, whereas others require retrograde signaling from the postsynaptic to presynaptic terminals. In spite of this diversity of induction mechanisms, some common induction rules can be identified across synapses. Although the precise molecular mechanism underlying long-term changes in transmitter release in most cases remains unclear, increasing evidence indicates that presynaptic LTP and LTD can occur in vivo and likely mediate some forms of learning.At several excitatory and inhibitory synapses, neuronal activity can trigger enduring increases or decreases in neurotransmitter release, thereby producing long-term potentiation (LTP) or long-term depression (LTD) of synaptic strength, respectively. In the last decade, many studies have revealed that these forms of plasticity are ubiquitously expressed in the mammalian brain, and accumulating evidence indicates that they may underlie behavioral adaptations occurring in vivo. These studies have also uncovered a wide range of induction mechanisms, which converge on the presynaptic terminal where an enduring modification in the neurotransmitter release process takes place. Interestingly, presynaptic forms of LTP/LTD can coexist with classical forms of postsynaptic plasticity. Such diversity expands the dynamic range and repertoire by which neurons modify their synaptic connections. This review discusses mechanistic aspects of presynaptic LTP and LTD at both excitatory and inhibitory synapses in the mammalian brain, with an emphasis on recent findings.  相似文献   

2.
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.  相似文献   

3.
Synaptic plasticity in the mesolimbic dopamine system   总被引:6,自引:0,他引:6  
Long-term potentiation (LTP) and long-term depression (LTD) are thought to be critical mechanisms that contribute to the neural circuit modifications that mediate all forms of experience-dependent plasticity. It has, however, been difficult to demonstrate directly that experience causes long-lasting changes in synaptic strength and that these mediate changes in behaviour. To address these potential functional roles of LTP and LTD, we have taken advantage of the powerful in vivo effects of drugs of abuse that exert their behavioural effects in large part by acting in the nucleus accumbens (NAc) and ventral tegmental area (VTA); the two major components of the mesolimbic dopamine system. Our studies suggest that in vivo drugs of abuse such as cocaine cause long-lasting changes at excitatory synapses in the NAc and VTA owing to activation of the mechanisms that underlie LTP and LTD in these structures. Thus, administration of drugs of abuse provides a distinctive model for further investigating the mechanisms and functions of synaptic plasticity in brain regions that play important roles in the control of motivated behaviour, and one with considerable practical implications.  相似文献   

4.
Synaptic plasticity is the cellular mechanism underlying the phenomena of learning and memory. Much of the research on synaptic plasticity is based on the postulate of Hebb (1949) who proposed that, when a neuron repeatedly takes part in the activation of another neuron, the efficacy of the connections between these neurons is increased. Plasticity has been extensively studied, and often demonstrated through the processes of LTP (Long Term Potentiation) and LTD (Long Term Depression), which represent an increase and a decrease of the efficacy of long-term synaptic transmission. This review summarizes current knowledge concerning the cellular mechanisms of LTP and LTD, whether at the level of excitatory synapses, which have been the most studied, or at the level of inhibitory synapses. However, if we consider neuronal networks rather than the individual synapses, the consequences of synaptic plasticity need to be considered on a large scale to determine if the activity of networks are changed or not. Homeostatic plasticity takes into account the mechanisms which control the efficacy of synaptic transmission for all the synaptic inputs of a neuron. Consequently, this new concept deals with the coordinated activity of excitatory and inhibitory networks afferent to a neuron which maintain a controlled level of excitability during the acquisition of new information related to the potentiation or to the depression of synaptic efficacy. We propose that the protocols of stimulation used to induce plasticity at the synaptic level set up a "homeostatic potentiation" or a "homeostatic depression" of excitation and inhibition at the level of the neuronal networks. The coordination between excitatory and inhibitory circuits allows the neuronal networks to preserve a level of stable activity, thus avoiding episodes of hyper- or hypo-activity during the learning and memory phases.  相似文献   

5.
A hypothetic mechanism explaining the influence of various neuromodulators and modifiable disynaptic inhibition on the long-term potentiation and depression (LTP and LTD) of excitatory inputs to granule and pyramidal hippocampal cells is proposed. According to this mechanism, facilitation of the LTD/LTP of excitatory inputs to an inhibitory interneuron caused by the action of a neuromodulator on a receptor bound with Gi/0/(Gs or Gq/11) protein can reduce/augment the GABA release, weaken/intensify the target cell inhibition, and promote the induction of the LTP/LTD of excitatory inputs to this cell. In the absence of the inhibition, the same neuromodulator would promote the LTD/LTP induction in the target cell by activating the same receptor types. The resulting effect of a neuromodulator on a target cell depends on the ratio between the "strengths" of its excitatory and inhibitory inputs, on the presence of receptors of the same or different types at the interneuron and the target cell, and on the neuromodulator concentration due to its different affinity for receptors, interaction with which provide its influence on postsynaptic processes in opposite directions. The consequences of suggested mechanism are in agreement with the known experimental data.  相似文献   

6.
In the brain, most fast excitatory synaptic transmission is mediated through L-glutamate acting on postsynaptic ionotropic glutamate receptors. These receptors are of two kinds—the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate (non-NMDA) and theN-methyl-D-aspartate (NMDA) receptors, which are thought to be colocalized onto the same postsynaptic elements. This excitatory transmission can be modulated both upward and downward, long-term potentiation (LTP) and long-term depression (LTD), respectively. Whether the expression of LTP/LTD is pre-or postsynaptically located (or both) remains an enigma. This article will focus on what postsynaptic modifications of the ionotropic glutamate receptors may possibly underly long-term potentiation/depression. It will discuss the character of LTP/LTD with respect to the temporal characteristics and to the type of changes that appears in the non-NMDA and NMDA receptor-mediated synaptic currents, and what constraints these findings put on the possible expression mechanism(s) for LTP/LTD. It will be submitted that if a modification of the glutamate receptors does underly LTP/LTD, an increase/decrease in the number of functional receptors is the most plausible alternative. This change in receptor number will have to include a coordinated change of both the non-NMDA and the NMDA receptors.  相似文献   

7.
Long-term potentiation (LTP) and long-term depression (LTD) are the major forms of functional synaptic plasticity observed at CA1 synapses of the hippocampus. The balance between LTP and LTD or "metaplasticity" is controlled by G-protein coupled receptors (GPCRs) whose signal pathways target the N-methyl-D-asparate (NMDA) subtype of excitatory glutamate receptor. We discuss the protein kinase signal cascades stimulated by Galphaq and Galphas coupled GPCRs and describe how control of NMDAR activity shifts the threshold for the induction of LTP.  相似文献   

8.
The efficacy of excitatory synapses terminating on cortical and hippocampal pyramidal cells may be persistently depressed as well as potentiated. Homosynaptic long-term depression (LTD) seems to be triggered by an entry of calcium into a post-synaptic cell less than that needed to initiate long-term potentiation (LTP). Theoretical work predicted, and experimental studies confirmed, that moderate elevations of calcium initiate LTD via a cascade of biochemical interactions involving calcium-dependent phosphatases. Genetically modified animals confirmed the prediction of a sliding threshold that defines the limit between LTD and LTP. While mechanisms for the initiation of LTD are quite well established, it remains unclear whether pre- or postsynaptic mechanisms, or both, are involved in its maintenance. A role for LTD in processes of learning and forgetting in the adult animal remains to be firmly established. It seems probable, however, that a persistent reduction in synaptic weight is a basic process used in the establishment and refinement of neuronal circuirs during development.  相似文献   

9.
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) mediates long-term potentiation or depression (LTP or LTD) after distinct stimuli of hippocampal NMDA-type glutamate receptors (NMDARs). NMDAR-dependent LTD prevails in juvenile mice, but a mechanistically different form of LTD can be readily induced in adults by instead stimulating metabotropic glutamate receptors (mGluRs). However, the role that CaMKII plays in the mGluR-dependent form of LTD is not clear. Here we show that mGluR-dependent LTD also requires CaMKII and its T286 autophosphorylation (pT286), which induces Ca2+-independent autonomous kinase activity. In addition, we compared the role of pT286 among three forms of long-term plasticity (NMDAR-dependent LTP and LTD, and mGluR-dependent LTD) using simultaneous live imaging of endogenous CaMKII together with synaptic marker proteins. We determined that after LTP stimuli, pT286 autophosphorylation accelerated CaMKII movement to excitatory synapses. After NMDAR-LTD stimuli, pT286 was strictly required for any movement to inhibitory synapses. Similar to NMDAR-LTD, we found the mGluR-LTD stimuli did not induce CaMKII movement to excitatory synapses. However, in contrast to NMDAR-LTD, we demonstrate that the mGluR-LTD did not involve CaMKII movement to inhibitory synapses and did not require additional T305/306 autophosphorylation. Thus, despite its prominent role in LTP, we conclude that CaMKII T286 autophosphorylation is also required for both major forms of hippocampal LTD, albeit with differential requirements for the heterosynaptic communication of excitatory signals to inhibitory synapses.  相似文献   

10.
Yu SY  Wu DC  Liu L  Ge Y  Wang YT 《Journal of neurochemistry》2008,106(2):889-899
Stimulated exocytosis and endocytosis of post-synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors (AMPARs) have been proposed as primary mechanisms for the expression of hippocampal CA1 long-term potentiation (LTP) and long-term depression (LTD), respectively. LTP and LTD, the two most well characterized forms of synaptic plasticity, are thought to be important for learning and memory in behaving animals. Both LTP and LTD can also be induced in the lateral amygdala (LA), a critical structure involved in fear conditioning. However, the role of AMPAR trafficking in the expression of either LTP or LTD in this structure remains unclear. In this study, we show that NMDA receptor-dependent LTP and LTD can be reliably induced at the synapses of the auditory thalamic inputs to the LA in brain slices. The expression of LTP was prevented by post-synaptic blockade of vesicle-mediated exocytosis with application of a light chain of Clostridium tetanus neurotoxin and was associated with increased cell-surface AMPAR expression. In contrast, the expression of LTD was prevented by post-synaptic application of a glutamate receptor 2-derived interference peptide, which specifically blocks the stimulated clathrin-dependent endocytosis of AMPARs, and was correlated with a reduction in plasma membrane-surface expression of AMPARs. These results strongly suggest that regulated trafficking of post-synaptic AMPARs is also involved in the expression of LTP and LTD in the LA.  相似文献   

11.
Long-term potentiation (LTP) and long-term depression (LTD) are the two major forms of long-lasting synaptic plasticity in the mammalian neurons, and are directly related to higher brain functions such as learning and memory. Experimentally, they are characterized by a change in the strength of a synaptic connection induced by repetitive and properly patterned stimulation protocols. Although many important details of the molecular events leading to LTP and LTD are known, experimenters often report problems in using standard induction protocols to obtain consistent results, especially for LTD in vivo. We hypothesize that a possible source of confusion in interpreting the results, from any given experiment on synaptic plasticity, can be the intrinsic limitation of the experimental techniques, which cannot take into account the actual state and peak conductance of the synapses before the conditioning protocol. In this article, we investigate the possibility that the same experimental protocol may result in different consequences (e.g., LTD instead of LTP), according to the initial conditions of the stimulated synapses, and can generate confusing results. Using biophysical models of synaptic plasticity and hippocampal CA1 pyramidal neurons, we study how, why, and to what extent the phenomena observed at the soma after induction of LTP/LTD reflects the actual (local) synaptic state. The model and the results suggest a physiologically plausible explanation for why LTD induction is experimentally difficult to obtain. They also suggest experimentally testable predictions on the stimulation protocols that may be more effective.  相似文献   

12.
Information arriving at a neuron via anatomically defined pathways undergoes spatial and temporal encoding. A proposed mechanism by which temporally and spatially segregated information is encoded at the cellular level is based on the interactive properties of synapses located within and across functional dendritic compartments. We examined cooperative and interfering interactions between long-term synaptic potentiation (LTP) and depression (LTD), two forms of synaptic plasticity thought to be key in the encoding of information in the brain. Two approaches were used in CA1 pyramidal neurons of the mouse hippocampus: (1) induction of LTP and LTD in two separate synaptic pathways within the same apical dendritic compartment and across the basal and apical dendritic compartments; (2) induction of LTP and LTD separated by various time intervals (0-90 min). Expression of LTP/LTD interactions was spatially and temporally regulated. While they were largely restricted within the same dendritic compartment (compartmentalized), the nature of the interaction (cooperation or interference) depended on the time interval between inductions. New protein synthesis was found to regulate the expression of the LTP/LTD interference. We speculate that mechanisms for compartmentalization and protein synthesis confer the spatial and temporal modulation by which neurons encode multiplex information in plastic synapses.  相似文献   

13.
In corticostriatal synapses, LTD (long-term depression) and LTP (long-term potentiation) are modulated by the activation of DA (dopamine) receptors, with LTD being the most common type of long-term plasticity induced using the standard stimulation protocols. In particular, activation of the D1 signaling pathway increases cAMP/PKA (protein kinase A) phosphorylation activity and promotes an increase in the amplitude of glutamatergic corticostriatal synapses. However, if the Cdk5 (cyclin-dependent kinase 5) phosphorylates the DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa) at Thr75, DARPP-32 becomes a strong inhibitor of PKA activity. Roscovitine is a potent Cdk5 inhibitor; it has been previously shown that acute application of Roscovitine increases striatal transmission via Cdk5/DARPP-32. Since DARPP-32 controls long-term plasticity in the striatum, we wondered whether switching off CdK5 activity with Roscovitine contributes to the induction of LTP in corticostriatal synapses. For this purpose, excitatory population spikes and whole cell EPSC (excitatory postsynaptic currents) were recorded in striatal slices from C57/BL6 mice. Experiments were carried out in the presence of Roscovitine (20 μM) in the recording bath. Roscovitine increased the amplitude of excitatory population spikes and the percentage of population spikes that exhibited LTP after HFS (high-frequency stimulation; 100Hz). Results obtained showed that the mechanisms responsible for LTP induction after Cdk5 inhibition involved the PKA pathway, DA and NMDA (N-methyl-D-aspartate) receptor activation, L-type calcium channels activation and the presynaptic modulation of neurotransmitter release.  相似文献   

14.
Philpot BD  Cho KK  Bear MF 《Neuron》2007,53(4):495-502
Light deprivation lowers the threshold for long-term depression (LTD) and long-term potentiation (LTP) in visual cortex by a process termed metaplasticity, but the mechanism is unknown. The decreased LTD/P threshold correlates with a decrease in the ratio of NR2A to NR2B subunits of cortical NMDA receptors (NMDARs) and a slowing of NMDAR-mediated excitatory postsynaptic currents (EPSCs). However, whether and how changes in NR2 subunit expression contribute to LTD and LTP have been controversial. In the present study, we used an NR2A knockout (KO) mouse to examine the role of this subunit in the experience-dependent modulation of NMDAR properties, LTD, and LTP. We found that deletion of NR2A abrogates the effects of visual experience on NMDAR EPSCs and prevents metaplasticity of LTP and LTD. These data support the hypothesis that experience-dependent changes in NR2A/B are functionally significant and yield a mechanism for an adjustable synaptic modification threshold in visual cortex.  相似文献   

15.
Experience-dependent modifications of neural circuits and function are believed to heavily depend on changes in synaptic efficacy such as LTP/LTD. Hence, much effort has been devoted to elucidating the mechanisms underlying these forms of synaptic plasticity. Although most of this work has focused on excitatory synapses, it is now clear that diverse mechanisms of long-term inhibitory plasticity have evolved to provide additional flexibility to neural circuits. By changing the excitatory/inhibitory balance, GABAergic plasticity can regulate excitability, neural circuit function and ultimately, contribute to learning and memory, and neural circuit refinement. Here we discuss recent advancements in our understanding of the mechanisms and functional relevance of GABAergic inhibitory synaptic plasticity.  相似文献   

16.
Long‐term potentiation (LTP) and long‐term depression (LTD) are the current models of synaptic plasticity and widely believed to explain how different kinds of memory are stored in different brain regions. Induction of LTP and LTD in different regions of brain undoubtedly involve trafficking of AMPA receptor to and from synapses. Hippocampal LTP involves phosphorylation of GluR1 subunit of AMPA receptor and its delivery to synapse whereas; LTD is the result of dephosphorylation and endocytosis of GluR1 containing AMPA receptor. Conversely the cerebellar LTD is maintained by the phosphorylation of GluR2 which promotes receptor endocytosis while dephosphorylation of GluR2 triggers receptor expression at the cell surface and results in LTP. The interplay of phosphorylation and O‐GlcNAc modification is known as functional switch in many neuronal proteins. In this study it is hypothesized that a same phenomenon underlies as LTD and LTP switching, by predicting the potential of different Ser/Thr residues for phosphorylation, O‐GlcNAc modification and their possible interplay. We suggest the involvement of O‐GlcNAc modification of dephosphorylated GluR1 in maintaining the hippocampal LTD and that of dephosphorylated GluR2 in cerebral LTP. J. Cell. Biochem. 109: 585–597, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Protein synthesis-dependent, late long-term potentiation (LTP) and depression (LTD) at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC) and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.  相似文献   

18.
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.  相似文献   

19.
Long-term potentiation (LTP) and long-term depression (LTD) are the major forms of functional synaptic plasticity observed at CA1 synapses of the hippocampus. The balance between LTP and LTD or “metaplasticity” is controlled by G-protein coupled receptors (GPCRs) whose signal pathways target the N-methyl-D-asparate (NMDA) subtype of excitatory glutamate receptor. We discuss the protein kinase signal cascades stimulated by Gαq and Gαs coupled GPCRs and describe how control of NMDAR activity shifts the threshold for the induction of LTP.  相似文献   

20.
A computational model of long-term potentiation (LTP) and long-term depression (LTD) in the hippocampus is presented. The model assumes the existence of retrograde signals, is in good agreement with several experimental data on LTP, LTD, and their pharmacological manipulations, and shows how a simple kinetic scheme can capture the essential characteristics of the processes involved in LTP and LTD. We propose that LTP and LTD could be two different but conceptually similar processes, induced by the same class of retrograde signals, and maintained by two distinct mechanisms. An interpretation of a number of experiments in terms of the molecular processes involved in LTP and LTD induction and maintenance, and the roles of a retrograde signal are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号