首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurately determining the proper captive environment for apes requires adequately assessing the psychological similarities between apes and humans. Scientists currently believe apes lack mental complexity (Millikan, 2006 Millikan, R. G. 2006. “Styles of rationality”. In Rational animals?, Edited by: Hurley, S. and Nudds, M. 117126. Oxford, , England: Oxford University Press.. [Crossref] [Google Scholar]), raising questions concerning the evolution of human culture from ape-like societies (Tomasello, 1999 Tomasello, M. 1999. The cultural origins of human cognition, Cambridge, , MA: Harvard University Press..  [Google Scholar]). A long-term cultural study with bonobos suggests less intellectual divergence from humans than currently postulated (Savage-Rumbaugh, 2005 Savage-Rumbaugh, E. S. 2005. “Individual differences in language competencies in apes resulting from unique rearing conditions imposed by different first epistemologies”. In Symbol use and symbolic representation, Edited by: Namy, L. L. 199219. Mahwah, , NJ: Lawrence Erlbaum Associates, Inc..  [Google Scholar]). Because humans view apes as mentally limited, some current captive environments may appear idyllic while offering only an illusion of appropriate care, derived from a simplistic view of what apes are, rather than what they might be. This perception of apes determines their handling, which determines their mental development, which perpetuates the prevailing perception. Only breaking this cycle will allow the current perception of apes to change. Their usual captive environment limits any demonstration of culture. However, the bonobo study reveals what ape culture can become, which should affect future welfare considerations for at least those species genetically close to humans (bonobos and chimpanzees). Development of a languaged bonobo culture allows these nonhuman animals to provide their own responses regarding adequate ape welfare.  相似文献   

2.
Although there are published reports of wild chimpanzees, bonobos, and orangutans hunting and consuming vertebrate prey, data pertaining to captive apes remain sparse. In this survey‐based study, we evaluate the prevalence and nature of interactions between captive great apes and various indigenous wildlife species that range into their enclosures in North America. Our hypotheses were threefold: (a) facilities housing chimpanzees will report the most frequent and most aggressive interactions with local wildlife; (b) facilities housing orangutans and bonobos will report intermediate frequencies of these interactions with low levels of aggression and killing; and (c) facilities housing gorillas will report the lowest frequency of interactions and no reports of killing local wildlife. Chimpanzees and bonobos demonstrated the most aggressive behavior toward wildlife, which matched our predictions for chimpanzees, but not bonobos. This fits well with expectations for chimpanzees based on their natural history of hunting and consuming prey in wild settings, and also supports new field data on bonobos. Captive gorillas and orangutans were reported to be much less likely to chase, catch and kill wildlife than chimpanzees and bonobos. Gorillas were the least likely to engage in aggressive interactions with local wildlife, matching our predictions based on natural history. However unlike wild gorillas, captive gorillas were reported to kill (and in one case, eat) local wildlife. These results suggest that some behavioral patterns seen in captive groups of apes may be useful for modeling corresponding activities in the wild that may not be as easily observed and quantified. Furthermore, the data highlight the potential for disease transmission in some captive settings, and we outline the associated implications for ape health and safety. Am. J. Primatol. 71:458–465, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The endangered great ape, Pan paniscus (bonobo) has the smallest range of the African apes. Virtually nothing is known about the genetic diversity or genetic structure of this species, while substantial amounts of polymorphism have been reported for the bonobo’s widespread congener, the chimpanzee (P. troglodytes). Given its restricted range, what is the extent of genetic variation in the bonobo relative to the chimpanzee, and is the bonobo genetically depauperate? To investigate patterns of genetic polymorphism, bonobos of wild origin were genotyped for 28 microsatellite loci. The mean number of alleles per locus (5.2) and the mean observed heterozygosity (0.52) in bonobos were similar to variation observed in a wild chimpanzee community (P. t. schweinfurthii). The rarer bonobo is not genetically depauperate and may have genetic diversity comparable to the eastern chimpanzee subspecies. Bonobos have approximately 55% of the allelic diversity and 66% of the observed heterozygosity exhibited by all three chimpanzee subspecies sampled across equatorial Africa. Resampling techniques were used to quantify the effects of sample size differences and number and choice of loci between bonobos and chimpanzees. The examination of these variables underscores their importance in accurately interpreting interspecific comparisons of diversity estimates.  相似文献   

4.
Habitat loss and hunting threaten bonobos (Pan paniscus), Endangered (IUCN) great apes endemic to lowland rainforests of the Democratic Republic of Congo. Conservation planning requires a current, data-driven, rangewide map of probable bonobo distribution and an understanding of key attributes of areas used by bonobos. We present a rangewide suitability model for bonobos based on a maximum entropy algorithm in which data associated with locations of bonobo nests helped predict suitable conditions across the species’ entire range. We systematically evaluated available biotic and abiotic factors, including a bonobo-specific forest fragmentation layer (forest edge density), and produced a final model revealing the importance of simple threat-based factors in a data poor environment. We confronted the issue of survey bias in presence-only models and devised a novel evaluation approach applicable to other taxa by comparing models built with data from geographically distinct sub-regions that had higher survey effort. The model’s classification accuracy was high (AUC = 0.82). Distance from agriculture and forest edge density best predicted bonobo occurrence with bonobo nests more likely to occur farther from agriculture and in areas of lower edge density. These results suggest that bonobos either avoid areas of higher human activity, fragmented forests, or both, and that humans reduce the effective habitat of bonobos. The model results contribute to an increased understanding of threats to bonobo populations, as well as help identify priority areas for future surveys and determine core bonobo protection areas.  相似文献   

5.
The remarkable similarity among the genomes of humans and the African great apes could warrant their classification together as a single genus. However, whereas there are many similarities in the biology, life history, and behavior of humans and great apes, there are also many striking differences that need to be explained. The complete sequencing of the human genome creates an opportunity to ask which genes are involved in those differences. A logical approach would be to use the chimpanzee genome for comparison and the other great ape genomes for confirmation. Until such a great ape genome project can become reality, the next best approach must be educated guesses of where the genetic differences may lie and a careful analysis of differences that we do know about. Our group recently discovered a human-specific inactivating mutation in the CMP-sialic acid hydroxylase gene, which results in the loss of expression of a common mammalian cell-surface sugar throughout all cells in the human body. We are currently investigating the implications of this difference for a variety of issues relevant to humans, ranging from pathogen susceptibility to brain development. Evaluating the uniqueness of this finding has also led us to explore the existing literature on the broader issue of genetic differences between humans and great apes. The aim of this brief review is to consider a listing of currently known genetic differences between humans and great apes and to suggest avenues for future research. The differences reported between human and great ape genomes include cytogenetic differences, differences in the type and number of repetitive genomic DNA and transposable elements, abundance and distribution of endogenous retroviruses, the presence and extent of allelic polymorphisms, specific gene inactivation events, gene sequence differences, gene duplications, single nucleotide polymorphisms, gene expression differences, and messenger RNA splicing variations. Evaluation of the reported findings in all these categories indicates that the CMP-sialic hydroxylase mutation is the only one that has so far been shown to result in a global biochemical and structural difference between humans and great apes. Several of the other known genetic dissimilarities deserve more exploration at the functional level. Among the areas of focus for the future should be genes affecting development, mental maturation, reproductive biology, and other aspects of life history. The approaches taken should include both going from the genome up to the adaptive potential of the organisms and going from novel adaptive regimes down to the relevant repercussions in the genome. Also, as much as we desire a simple genetic explanation for the human phenomenon, it is much more probable that our evolution occurred in multiple genetic steps, many of which must have left detectable footprints in our genomes. Ultimately, we need to know the exact number of genetic steps, the order in which they occurred, and the temporal, spatial, environmental, and cultural contexts that determined their impact on human evolution.  相似文献   

6.
7.
Of the living apes, the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus) are often presented as possible models for the evolution of hominid bipedalism. Bipedality in matched pairs of captive bonobos and chimpanzees was analyzed to test hypotheses for the evolution of bipedalism, derived from a direct referential model. There was no overall species difference in rates of bipedal positional behavior, either postural or locomotory. The hominoid species differed in the function or use of bipedality, with bonobos showing more bipedality for carrying and vigilance, and chimpanzees showing more bipedality for display.  相似文献   

8.
Olfaction is important across the animal kingdom for transferring information on, for example, species, sex, group membership, or reproductive parameters. Its relevance has been established in primates including humans, yet research on great apes still is fragmentary. Observational evidence indicates that great apes use their sense of smell in various contexts, but the information content of their body odor has not been analyzed. Our aim was therefore to compare the chemical composition of body odor in great ape species, namely Sumatran orangutans (Pongo abelii (Lesson, 1827), one adult male, five adult females, four nonadults), Western lowland gorillas (Gorilla gorilla gorilla (Savage, 1847), one adult male, two adult females, one nonadult), common chimpanzees (Pan troglodytes (Blumenbach, 1775), four adult males, nine adult females, four nonadults), and bonobos (Pan paniscus (Schwarz, 1929), two adult males, four adult females, two nonadults). We collected 195 samples (five per individual) of 39 captive individuals using cotton swabs and analyzed them using gas chromatography mass spectrometry. We compared the sample richness and intensity, similarity of chemical composition, and relative abundance of compounds. Results show that species, age, and potentially sex have an impact on the variance between odor profiles. Richness and intensity varied significantly between species (gorillas having the highest, bonobos the lowest richness and intensity), and with age (both increasing with age). Richness and intensity did not vary between sexes. Odor samples of the same species were more similar to each other than samples of different species. Among all compounds identified some were associated with age (N = 7), sex (N = 6), and species‐related (N = 37) variance. Our study contributes to the basic understanding of olfactory communication in hominids by showing that the chemical composition of body odor varies across species and individuals, containing potentially important information for social communication.  相似文献   

9.
10.
Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups.  相似文献   

11.
Balantidium coli is a ciliate reported in many mammalian species, including African great apes. In the former, asymptomatic infections as well as clinical balantidiasis have been reported in captivity. We carried out a cross-sectional study of B. coli in African great apes (chimpanzees, bonobos, and both species of gorillas) and examined 1,161 fecal samples from 28 captive facilities in Europe, plus 2 sanctuaries and 11 wild sites in Africa. Samples were analyzed with the use of Sheather's flotation and merthiolate-iodine-formaldehyde (MIFC) sedimentation. MIFC sedimentation was the more sensitive technique for diagnostics of B. coli in apes. Although not detected in any wild-ape populations, B. coli was diagnosed in 52.6% of captive individuals. Surprisingly, in the apes' feces, trophozoites of B. coli were commonly detected, in contrast with other animals, e.g., Old World monkeys, pigs, etc. Most likely reservoirs for B. coli in captive apes include synantropic rats. High starch diets in captive apes are likely to exacerbate the occurrence of balantidiasis in captive apes.  相似文献   

12.
Incidence of cranial and postcranial skeletal trauma was investigated in samples of chimpanzees (Pan troglodytes troglodytes, P. troglodytes schweinfurthii), lowland gorillas (Gorilla gorilla gorilla), and bonobos (P. paniscus). The larger (adult) samples of chimpanzees (N=127 crania, 92 postcrania) and gorillas (N=136 crania, 62 postcrania) are curated at the Powell-Cotton Museum, Birchington, U.K. The bonobo collection (N=71 crania, 15 postcrania) is housed the Musée Royal de l'Afrique Centrale in Tervuren, Belgium. In addition, data were collected on the small but extremely well-documented skeletal sample from Gombe National Park (N=14 crania, 13 postcrania — including adults and adolescents). Cranial injuries, including healed fractures and bite wounds, were fairly frequent in the museum collection of chimpanzees (5.5% of individuals), but were twice as frequent in gorillas (11.0%). In the Gombe sample an even higher incidence was observed (28.6% of individuals). Bonobos, however, showed the lowest incidence of cranial trauma found among any of the African ape samples (1.4% of individuals). Postcranial trauma, documented most clearly by healed fractures, was seen in 21.7% of the Powell-Cotton chimpanzees, 30.8% of Gombe chimpanzees, 17.7% of gorillas, and in 13.3% of bonobos. Most of these lesions were found in the upper appendage. Nevertheless, highly debilitating healed fractures of the femur were also noted, most frequently and severe in female gorillas. The pattern of injuries suggests serious risks of falling in all free-ranging African apes, but also (in chimpanzees and gorillas) considerable risk from interindividual aggression, especially for males.  相似文献   

13.
Poaching and habitat destruction in the Congo Basin threaten African great apes including the bonobo (Pan paniscus), chimpanzees (Pan troglodytes), and gorillas (Gorilla spp.) with extinction. One way to combat extinction is to reintroduce rescued and rehabilitated apes and repopulate native habitats. Reintroduction programs are only successful if they are supported by local populations. Ekolo ya Bonobo, located in Equateur province of the Democratic Republic of Congo (DRC), is the world's only reintroduction site for rehabilitated bonobos. Here we assess whether children, of the Ilonga‐Pôo, living adjacent to Ekolo ya Bonobo demonstrate more pro‐ape conservation attitudes than children living in, Kinshasa, the capital city. We examined children's attitudes toward great apes because children are typically the focus of conservation education programs. We used the Great Ape Attitude Questionnaire to test the Contact Hypothesis, which posits that proximity to great ape habitat influences pro‐conservation attitudes toward great apes. Ilonga‐Pôo children who live in closer contact with wild bonobos felt greater responsibility to protect great apes compared to those in Kinshasa who live outside the natural habitat of great apes. These results suggest that among participants in the DRC, spatial proximity to a species fosters a greater sense of responsibility to protect and conserve. These results have implications for the successful implementation of great ape reintroduction programs in the Congo Basin. The data analyzed in this study were collected in 2010 and therefore provide a baseline for longitudinal study of this reintroduction site.  相似文献   

14.
Degenerative joint disease is investigated in the spine and major peripheral joints (shoulder, elbow, hip and knee) in samples of chimpanzees (Pan troglodytes schweinfurthii; P. troglodytes troglodytes), lowland gorillas (Gorilla gorilla gorilla), and bonobos (P. paniscus). The P. troglodytes schweinfurthii sample comes from Gombe National Park, Tanzania, while the other samples are derived from museum materials originally collected in west/central Africa. Total data for African ape samples include 5807 surfaces for ascertainment of vertebral osteophytosis, 12,479 surfaces for determination of spinal osteoarthritis, and 1211 joints for evaluation of peripheral joint osteoarthritis. All apes display significantly less spinal disease than in a comparable human sample, and these differences are most likely a consequence of human biomechanical adaptations for bipedal locomotion. Apes are also generally less involved in the major peripheral joints than are humans, but human groups are themselves highly variable in prevalence of peripheral osteoarthritis. These data agree with other findings of low prevalence of degenerative joint prevalence in free-ranging apes, but contrast markedly with evidence derived from colony-reared Old World monkeys.  相似文献   

15.
Comparisons of genetic variation between humans and great apes are hampered by the fact that we still know little about the demographics and evolutionary history of the latter species. In addition, characterizing ape genetic variation is important because they are threatened with extinction, and knowledge about genetic differentiation among groups may guide conservation efforts. We sequenced multiple intergenic autosomal regions totaling 22,400 base pairs (bp) in ten individuals each from western, central, and eastern chimpanzee groups and in nine bonobos, and 16,000 bp in ten Bornean and six Sumatran orangutans. These regions are analyzed together with homologous information from three human populations and gorillas. We find that whereas orangutans have the highest diversity, western chimpanzees have the lowest, and that the demographic histories of most groups differ drastically. Special attention should therefore be paid to sampling strategies and the statistics chosen when comparing levels of variation within and among groups. Finally, we find that the extent of genetic differentiation among "subspecies" of chimpanzees and orangutans is comparable to that seen among human populations, calling the validity of the "subspecies" concept in apes into question.  相似文献   

16.
17.
DNA profiling with microsatellite markers is a commonly used genetic method of studying the great apes. An efficient method of generating the genetic data is amplification of multiple microsatellites in a single PCR reaction. Here we describe a PCR multiplex in which 9 genetic markers can be amplified simultaneously, thereby saving time, expenses and DNA. This marker system can discriminate between all the great ape species except bonobos and chimpanzees. Furthermore, the cumulative probability of identity values were low for all 4 species tested.  相似文献   

18.
Viruses closely related to human pathogens can reveal the origins of human infectious diseases. Human herpes simplexvirus type 1 (HSV-1) and type 2 (HSV-2) are hypothesized to have arisen via host-virus codivergence and cross-species transmission. We report the discovery of novel herpes simplexviruses during a large-scale screening of fecal samples from wild gorillas, bonobos, and chimpanzees. Phylogenetic analysis indicates that, contrary to expectation, simplexviruses from these African apes are all more closely related to HSV-2 than to HSV-1. Molecular clock-based hypothesis testing suggests the divergence between HSV-1 and the African great ape simplexviruses likely represents a codivergence event between humans and gorillas. The simplexviruses infecting African great apes subsequently experienced multiple cross-species transmission events over the past 3 My, the most recent of which occurred between humans and bonobos around 1 Ma. These findings revise our understanding of the origins of human herpes simplexviruses and suggest that HSV-2 is one of the earliest zoonotic pathogens.  相似文献   

19.
'Image scoring' occurs when person A monitors the giving behaviour of person B towards person C. We tested for 'image scoring' in chimpanzees, bonobos, gorillas, and orangutans. Subjects passively observed two types of incident: (i) a 'nice' person gave grapes to a human beggar, and (ii) a 'nasty' person refused to give. The subject witnessed both incidents in succession (but was unable to obtain the grapes). Shortly after, the ape had an opportunity to approach one or both human actors (nice/nasty), both of whom were now sitting side-by-side holding grapes. However, neither human offered their grapes if approached. The subject's expectation of which human was more likely to offer food was measured by comparing the proportion of time that subjects spent near each person. Chimpanzees (n=17) spent significantly more time at the 'nice' window compared to 'nasty'. Also, preference for 'nasty' declined as trials progressed. Results for other apes were not significant.  相似文献   

20.
Knowledge of the diseases of great apes in captivity is essential for captive management of self-sustaining populations. This survey of medical and pathology records of orangutans, gorillas, and one chimpanzee at the National Zoological Park was conducted to provide a data base for improving health care of captive apes. Strongyloidiasis, balantidiasis, and entamoebiasis were recurrent problems in adult and juvenile apes of all species. Cardiac fibrosis also was prevalent in middle-aged apes and was a major cause of mortality. Bacterial infections were prevalent in perinatal orangutans and resulted in the death of two. For gorillas, rheumatoid arthritis associated with mycoplasma infections, and infertility were major problems. Because the pathogenesis of many of these lesions is unknown, survival of great ape populations in captivity may depend on future research on these problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号