首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract: By using a new technique, intracerebral dialysis, in combination with high performance liquid chromatography and electrochemical detection, it was possible to recover and measure endogenous extracellular dopamine, together with its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) from the striatum and nucleus accumbens of anaesthetized or freely moving rats. In addition, measurements of extracellular 5-hydroxyindoleacetic acid, ascorbic acid, and uric acid were made. Basal extracellular concentrations of dopamine and DOPAC in the striatum were estimated to be 5 × 10−8 M and 5 × 10−6 M , respectively. d -Amphetamine (2 mg/kg s.c.) increased dopamine levels in the striatum perfusates by 14-fold, whereas levels of DOPAC and HVA decreased by 77% and 66%, respectively.  相似文献   

2.
H Echizen  C R Freed 《Life sciences》1984,34(16):1581-1589
The effect of drug-induced hypertension on neurotransmitter release from dorsal raphe nucleus was studied by in vivo electrochemical electrodes in urethane anesthetized male Sprague-Dawley rats. Carbon paste electrodes were stereotaxically placed into dorsal raphe nucleus and neurotransmitter release was estimated electrochemically. Blood pressure was recorded from a femoral arterial catheter. Voltammograms taken from dorsal raphe nucleus showed two distinct peaks corresponding to norepinephrine and 5-hydroxyindole acetic acid (5-HIAA). After basal blood pressure and neurotransmitter release were monitored for 30 min, blood pressure was raised 50 mmHg by continuous intravenous infusion of L-phenylephrine hydrochloride. Drug infusion was discontinued after 50 min, but blood pressure and neurotransmitter release were measured for an additional 2 hr. Results showed that the 5-HIAA response increased immediately after the initiation of hypertension and remained elevated. By contrast, norepinephrine release initially decreased, then returned to the basal level and then rose in parallel with 5-HIAA to a level above baseline as drug-induced hypertension was discontinued. The same experimental protocol was used to study the electrochemical response to drug-induced hypotension. Blood pressure was lowered 20 mmHg by intravenous infusion of sodium nitroprusside dihydrate. During hypotension, no changes were seen in either transmitter response. However, as reflex hypertension appeared following discontinuation of the sodium nitroprusside infusion, the 5-HIAA response increased and the norepinephrine response decreased. These results show that drug-induced and reflex hypertension reduce norepinephrine release and increase serotonin turnover in dorsal raphe nucleus in anesthetized normotensive rats. These reciprocal changes appear to be a part of the neural response to hypertension.  相似文献   

3.
Differential normal pulse voltammetry (DNPV) using an electrochemically treated carbon fiber electrode was applied to the investigation of the in vivo changes in extracellular 5-hydroxyindoleacetic acid (5HIAA) in the B3 group of serotonin neurons during experimental manipulations of arterial pressure. Drug-induced hypertension (phenylephrine infusion) caused, during the infusion, an increase in extracellular 5HIAA concentration which continued to rise, reaching +100% 2 hours after stopping the infusion. In contrast, drug-induced hypotension (sodium nitroprusside infusion) was not associated with any change in extracellular 5HIAA during the infusion while the return to the initial arterial pressure caused a progressive increase in the electrochemical signal, reaching +50% one hour after stopping the infusion. These data show that the extracellular 5HIAA concentration is increased when the arterial pressure increases, a result which suggests that B3 serotonin neurons could have a vasodepressor role in the central regulation of arterial pressure.  相似文献   

4.
Central dopamine (DA) and 5-hydroxytryptamine (5-HT) metabolism was monitored in conscious, freely moving rats by determination of levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) in CSF samples withdrawn repeatedly from the cisterna magna and treated with acid to hydrolyse DOPAC and HVA conjugates. The effect of tyrosine on DA metabolism was investigated. Time courses of metabolite concentrations in individual rats in a quiet room showed that tyrosine (20, 50, or 200 mg/kg i.p.) was without significant effect; brain changes were essentially in agreement. However, the increases of CSF DOPAC and HVA levels that occurred on immobilisation for 2 h were further enhanced by tyrosine (200 mg/kg). The associated increases of 5-HIAA level were unaffected. The corresponding increases of DA metabolite concentrations in the brains of immobilised rats given tyrosine were less marked than the CSF changes and only reached significance for "rest of brain" DOPAC. The CSF studies revealed large interindividual variation in the magnitude and duration of the effects of immobilisation on transmitter amine metabolism. These results may help toward the elucidation of possible relationships between the neurochemical and behavioural effects of stress.  相似文献   

5.
A determination of dopamine (DA), noradrenaline (NA), 3,4-dihydroxyphenylalanine (DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindolacetic acid (5-HIAA) in nervous tissue is described. The method is based on a rapidly performed isolation of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA from one single nervous tissue sample on small columns of Sephadex G-10, followed by reverse-phase high-performance liquid chromatography with electrochemical detection. A new type of electrochemical detector based on a rotating disk electrode (RDE) was used. The rotating disc electrode was found to be a reliable and sensitive amperometric detector with several advantages over the currently used thin-layer cells. The detector appeared very useful for routine analysis. Practical details are given for the routine use of the RDE. Brain samples containing no more than 75-150 pg (DA, DOPA, DOPAC, HVA, and 5-HIAA) or 500 pg (NA) could be reproducibly assayed with high recovery (approx. 85%) and precision (approx. 5%), without the use of internal standards. Endogenous concentrations of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA were determined in eight brain structures.  相似文献   

6.
Cardiovagal baroreflex sensitivity (BRS) declines with advancing age in healthy men. We tested the hypothesis that oxidative stress contributes mechanistically to this age-associated reduction. Eight young (23 +/- 1 yrs, means +/- SE) and seven older (63 +/- 3) healthy men were studied. Cardiovagal BRS was assessed using the modified Oxford technique (bolus infusion of 50-100 microg sodium nitroprusside, followed 60 s later by a 100- to 150-microg bolus of phenylephrine hydrochloride) in triplicate at baseline and during acute intravenous ascorbic acid infusion. At baseline, cardiovagal BRS (slope of the linear portion of the R-R interval-systolic blood pressure relation during pharmacological changes in arterial blood pressure) was 56% lower (P < 0.01) in older (8.3 +/- 1.6 ms/mmHg) compared with young (19.0 +/- 3.1 ms/mmHg) men. Ascorbic acid infusion increased plasma concentrations similarly in young (62 +/- 9 vs. 1,249 +/- 72 micromol/l for baseline and during ascorbic acid; P < 0.05) and older men (62 +/- 4 vs. 1,022 +/- 55 micromol/l; P < 0.05) without affecting baseline blood pressure, heart rate, carotid artery compliance, or the magnitude of change in systolic blood pressure in response to bolus sodium nitroprusside and phenylephrine hydrochloride infusion. Ascorbic acid (vitamin C) infusion increased cardiovagal BRS in older (Delta58 +/- 16%; P < 0.01), but not younger (Delta - 4 +/- 4%) men. These data provide experimental support for the concept that oxidative stress contributes mechanistically to age-associated reductions in cardiovagal BRS in healthy men.  相似文献   

7.
L A Phebus  J A Clemens 《Life sciences》1989,44(19):1335-1342
Rat striatal extracellular fluid levels of dopamine, serotonin, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were measured before, during and after transient, global cerebral ischemia in awake rats using in vivo brain microdialysis. Before ischemia, extracellular levels of dopamine, DOPAC, HVA and 5-HIAA were detectable and consistent from sample to sample. During cerebral ischemia, there was a large increase in extracellular dopamine levels and a decrease in the extracellular levels of DOPAC, HVA, and 5-HIAA. During reperfusion, dopamine levels returned to normal as did those of DOPAC, HVA and 5-HIAA. Dialysate serotonin and 3-methoxytyramine concentrations were below detection limits except for samples collected during ischemia and early reperfusion.  相似文献   

8.
The associative avian forebrain region medio-rostral neostriatum/hyperstriatum ventrale (MNH) is involved in auditory filial imprinting and may be considered the avian analogue of the mammalian prefrontal cortex. In search of the neurochemical and physiological mechanisms which play a role in this learning process, we introduced microdialysis and a combined microdialysis/electrophysiological approach in domestic chicks a few days old. With this technique, we were able to follow changes of the extracellular levels of glutamate, taurine, 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of serotonin, and homovanillic acid (HVA), a metabolite of dopamine, and neuronal activity simultaneously in freely moving animals. We obtained first evidence of a modulatory interaction between glutamatergic and monoaminergic neurotransmission mediated by N-methyl-D-aspartate (NMDA) receptors. During local intracerebral infusion of 300 microM NMDA via reverse microdialysis, an increase of taurine and a decrease of 5-HIAA and HVA were detected, accompanied by enhanced extracellular spike rates. Glutamate was increased only during consecutive infusion of increasing NMDA concentrations, when higher (1 mM) NMDA concentrations were infused. The effects of NMDA were antagonized by D, L-2-amino-5-phosphonovaleric acid (1 mM). Infusion of high potassium induced similar changes in taurine, 5-HIAA, and HVA, as found during infusion of NMDA, but decreased extracellular spike rates, which indicates that different cellular mechanisms may underlie the observed neurochemical changes. Neither urethane anesthesia nor different delays between probe implantation and experiment influenced the neurochemical and electrophysiological results; however, changes of taurine were observed only in chronically implanted, awake animals. In summary, microdialysis in combination with electrophysiology provides a powerful tool to detect changes of neuronal activity and transmitter release in the avian brain, with which the role of transmitter interactions can be followed during and after different learning events.  相似文献   

9.
Abstract: Intracerebral microdialysis was applied to monitor the neocortical extracellular levels of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, the neurotransmitters dopamine (DA), noradrenaline (NA), and serotonin (5-HT), and the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole-3-acetic acid (5-HIAA) in rats with various forms of experimental hepatic encephalopathy (HE). The extracellular aromatic amino acid levels were clearly increased in acute, subacute, and chronic HE. No changes compared with controls in the neocortical DA release could be detected in the three experimental HE rat models investigated. The NA release showed a significant increase only in the subacute HE group. These data suggest that HE may not be associated with any major reduction of neocortical DA or NA release as previously suggested. In acute and subacute HE, decreased extracellular DOPAC but elevated 5-HIAA concentrations were seen. In chronic HE, elevations of both DOPAC and 5-HIAA were observed. Neocortical 5-HT release did not change in subacute and chronic HE, whereas it decreased in acute HE compared with control values. Significant increase in extracellular concentrations of 5-HIAA and of the 5-HIAA/5-HT ratio in the present study are in agreement with previously reported increases in 5-HT turnover in experimental HE. However, a substantially increased 5-HT turnover in experimental HE does not appear to be related to an increase in neuronal neocortical 5-HT release.  相似文献   

10.
Using a specific and sensitive high pressure liquid chromatographic technique for the measurement of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and tryptophan (TRP), we found that there were no changes in 5-HT or 5-HIAA in the rat cortex when left in situ for 6 h at room temperature or 24 h at 4 degrees C. Only a minimal 14% increase in 5-HT was observed after 24 h at 4 degrees C in the striatum of the same animals. Concentrations of TRP, however, were increased significantly in both brain regions by these postmortem delay procedures. A second study revealed that there were significant regional 5-HT and 5-HIAA concentration differences within the cerebral cortex. The frontal cortex was shown to have the highest concentrations of 5-HT and 5-HIAA. Further, within the frontal cortex, 5-HIAA levels varied, showing apparent progressive rostral to caudal increases. 5-HT concentrations, however, remained constant within the frontal cortex. These results are discussed in reference to the conflicting reports of the previous human suicide and postmortem studies.  相似文献   

11.
The concentrations of dopamine (DA), norepinephrine (NE), serotonin (5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the right and left cortex, striatum, and nucleus accumbens of adult Purdue-Wistar rats. There was more DA in the right cortex and accumbens and a greater concentration of NE in the left striatum. There is more 5-HT in the left striatum and right accumbens, more 5-HIAA in the left cortex, as well as a greater 5-HT turnover in the left accumbens. These results are considered in the light of previous findings concerning the relationship of neurochemical asymmetries and behavioral lateralization.  相似文献   

12.
The cerebral blood flow of newborn lambs at reduced and elevated arterial blood pressures, induced by intravenous infusion of sodium nitroprusside and phenylephrine hydrochloride as well as blood withdrawal and reinfusion, were compared. Both blood withdrawal and sodium nitroprusside infusion reduced mean arterial pressure from 83 to 60 mmHg (1 mmHg = 133 Pa). Reinfusion of blood increased arterial pressure to 94 mmHg. Phenylephrine hydrochloride infusion increased arterial pressure to 102 mmHg. The cerebral blood flows at corresponding arterial pressures were similar (coefficient of correlation = 0.88, P less than 0.01). Cerebral blood flow before and after infusion of phenylephrine hydrochloride and sodium nitroprusside into the brain via the carotid artery did not change. The results indicate that blood-borne phenylephrine hydrochloride and sodium nitroprusside, in concentrations that would alter arterial blood pressure significantly from its resting level, do not change cerebral blood flow directly.  相似文献   

13.
Abstract: We have investigated further the anomalously high concentration of brain extracellular uric acid detected with in vivo sampling probes reported recently. The contribution by uric acid and 5-hydroxyindoleacetic acid (5-HIAA) to peak 2 recorded in rat striatum with chronically implanted carbon paste electrodes (CPEs) of different sizes was estimated by comparing peak current densities and the effect of the monoamine oxidase inhibitor pargyline. The concentration of uric acid in the extracellular fluid was some 50 times greater for 320-μm-diameter CPEs than for 160-μm-diameter electrodes, where the urate level was estimated at ∼1 μ M. The concentration of 5-HIAA was similar for 320-, 260-, and 160-μm-diameter CPEs. These data provide an explanation for the previously observed differences in 5-HIAA/urate ratios re corded with 320-μm-diameter CPEs and smaller carbon fibre electrodes. The results also indicate that chronically implanted sampling probes of diameter >160 μm perturb the surrounding tissue, which produces uric acid by a mechanism yet unknown, although preliminary histological data suggest that glial cells may be involved.  相似文献   

14.
Functional and behavioral disturbances associated with hydrocephalus may be due in part to altered neurotransmitter function in the brain. Hydrocephalus was induced in adult rabbits by injection of silicone oil into the cisterna magna. These and controls were killed 3 days, 1 and 4 weeks post-injection. Tissue concentrations of norepinephrine, epinephrine, serotonin, dopamine, and the metabolites 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were determined in fifteen brain regions using HPLC. There were decreases in hypothalamic and medullary dopamine, transient decreases in basal ganglia serotonin, increases in thalamic noradrenaline, and increases in hypothalamic and thalamic epinephrine. Changes in the primary neurotransmitters may be attributable to damage of their axonal projection systems. Metabolite concentrations increased in the cerebrum. Reduced clearance of extracellular fluid which accompanies cerebrospinal fluid stasis may explain the accumulation of metabolites.  相似文献   

15.
C R Freed  H Echizen  D Bhaskaran 《Life sciences》1985,37(19):1783-1793
Hypotensive responses to tryptophan and 5-hydroxytryptophan infusions were studied in normotensive male Sprague-Dawley rats. Results showed that 5-hydroxytryptophan but not tryptophan lowered pressure in a dose dependent way in direct relation to the production of brain serotonin and 5-HIAA. Intrinsic release of serotonin from brain was also studied during periods of induced hypertension and hypotension. Brain monoamine responses to blood pressure changes induced by intravenous phenylephrine and nitroprusside were measured in dorsal raphe nucleus and nucleus tractus solitarius by in vivo electrochemistry. Results showed that 5-HIAA was increased during drug induced hypertension and during reflex hypertension which followed a period of hypotension. These changes were blocked by sinoaortic denervation indicating that these central serotonergic neurons are responding to increased pressure sensed by baroreceptors. Therefore, serotonin has a role in blood pressure regulation as a pharmacologic agent and as a neurotransmitter in homeostatic control of pressure.  相似文献   

16.
Microdialysis probe insertion into rat cerebral cortex significantly affects the levels of redox-active substances in brain extracellular fluid. Ascorbic acid levels are high immediately after probe insertion, decline rapidly, and then rise as the rat recovers from anesthesia 5–8 hours after surgery. Uric acid is at a low level for 5 hours and then rapidly increases in parallel with ascorbic acid. High ascorbic acid levels immediately after probe insertion are likely due to a shift from intracellular to extracellular fluids, whereas the delayed increase in uric acid may be due to increased enzymatic formation. After removal from the brain, hydrogen peroxide (H2O2) in microdialysis samples produces catalase-sensitive oxidative chemiluminescence. Microdialysis samples also produce high level catalase-resistant chemiluminescence associated with ascorbic acid levels after penetration injury. Although ascorbic acid is likely an antioxidant at concentrations estimated to be in brain extracellular fluid, it may have prooxidant effects when complexed with transition metals released into the neuronal microenvironment during traumatic brain injury.  相似文献   

17.
Levels of norepinephrine, epinephrine, dopamine, and serotonin (5-HT) and their precursors [tyrosine, L-3,4-dihydroxyphenylalanine, tryptophan, and 5-hydroxytryptophan (5-HTP)] and metabolites [3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), homovanillic acid, 3-methoxy-4-hydroxyphenylglycol, and 5-hydroxyindoleacetic acid (5-HIAA)] were determined concurrently in samples of chick retina, pineal gland, and nine selected areas of the brain (optic lobes, thalamus, hypothalamus, optic chiasm, pons/medulla, cerebellum, neostriatum/ectostriatum, hyperstriatum, and basal forebrain) using HPLC coupled with a coulometric electrode array detection system. The norepinephrine level was highest in the pineal gland, but it was also widely distributed throughout the chick brain, with the thalamus and hypothalamus showing substantial levels. The dopamine level was highest in the basal forebrain. The epinephrine level was highest in the hypothalamus. The thalamus and hypothalamus showed the highest levels of 5-HT. Daytime levels (1100 h) of these compounds were compared with levels in chicks killed in the middle of the dark phase (2300 h). In the brain areas examined, no day/night variations in levels of norepinephrine, epinephrine, dopamine, or 5-HT were seen, although significant nocturnal changes in levels of their metabolites were observed in some areas. Pineal levels of 5-HIAA decreased significantly at night. The retina showed significant nocturnal increases in 5-HTP, 5-HT, and 5-HIAA levels. Retinal levels of 3-MT and DOPAC were significantly decreased at night.  相似文献   

18.
Cerebrospinal fluid (CSF) was removed at a constant flow rate of 1 microliter/min from the third ventricle of anesthetized rats. Every 15 min, CSF dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) concentrations were determined by direct injection of CSF into a liquid chromatographic system coupled with electrochemical detection. Mean CSF concentrations of DOPAC, HVA, and 5-HIAA were 1.29 microM, 0.88 microM, and 2.00 microM, respectively. In order to determine the turnover rates of dopamine (DA) and serotonin, experiments using monoamine oxidase (MAO) inhibition were performed. Tranylcypromine (20 mg/kg i.p.) induced a sharp exponential decrease of CSF DOPAC, HVA, and 5-HIAA, with respective half-lives of 15.60 min, 16.91 min, and 77.23 min. Their respective turnover rates were 3.74, 2.22, and 1.18 nmol X ml-1 X h-1. m-Hydroxybenzylhydrazine (NSD-1015, 100 mg/kg i.p.) and monofluoromethyl-DOPA (100 mg/kg i.p.), two decarboxylase inhibitors, induced a slow exponential decrease of all three CSF metabolites. alpha-Methyl-p-tyrosine (250 mg/kg i.p.) also induced a slow exponential decrease of DOPAC and HVA. These decreases of CSF DOPAC and HVA induced by DA synthesis inhibitors may reflect the turnover of DA in vivo. Haloperidol (0.5 mg/kg i.p.) considerably enhanced CSF DOPAC and HVA without affecting 5-HIAA, confirming that dopaminergic receptors modulate DA neurotransmission in vivo. Haloperidol administered 1.5 h after NSD-1015 did not increase DOPAC and HVA, in contrast to reserpine (5 mg/kg i.p.) injected under the same conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Previous work has shown that the potent, selective metabotropic glutamate mGlu2/3 receptor agonist LY379268 acts like the atypical antipsychotic clozapine in behavioral assays. To investigate further the potential antipsychotic actions of this agent, we examined the effects of LY379268 using microdialysis in awake, freely moving rats, on extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) in rat medial prefrontal cortex. Systemic LY379268 increased extracellular levels of dopamine, DOPAC, HVA, and 5-HIAA in a dose-dependent, somewhat delayed manner. LY379268 (3 mg/kg s.c. ) increased levels of dopamine, DOPAC, HVA, and 5-HIAA to 168, 170, 169, and 151% of basal, respectively. Clozapine (10 mg/kg) also increased dopamine, DOPAC, and HVA levels, with increases of 255, 262, and 173%, respectively, but was without effect on extracellular 5-HIAA levels by 3 mg/kg LY379268 were reversed by the selective mGlu2/3 receptor antagonist LY341495 (1 mg/kg). Furthermore, LY379268 (3 mg/kg)-evoked increases in DOPAC and HVA were partially blocked and the increase in 5-HIAA was completely blocked by local application of 3 microM tetrodotoxin. Therefore, we have demonstrated that mGlu2/3 receptor agonists activate dopaminergic and serotonergic brain pathways previously associated with the action of atypical antipsychotics such as clozapine and other psychiatric agents.  相似文献   

20.
Abstract: Changes in levels of extracellular noradrenaline (NA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindole-3-acetic acid (5-HIAA) in the frontal cortex, induced by exposure of unrestrained, conscious rats to novel environments, were compared using in vivo microdialysis. NA efflux increased when rats were transferred to a novel cage, but this was not significant when compared with either basal efflux or with changes after equivalent handling in their home cage. Increasing the intensity of illumination of the novel cage by fivefold significantly increased NA efflux with respect to basal efflux but not handled controls. However, a sustained and significant increase in NA efflux (cf. basal efflux or handled controls) was found when an unfamiliar conspecific was also present in the novel cage. In all cases, basal efflux was restored within 1 h of returning rats to their home cage. Neither handling nor environmental stimuli described above affected DOPAC efflux. 5-HIAA efflux was increased (cf. basal) in the presence of an unfamiliar conspecific, but this increase was no greater than that in handled rats. It is concluded that different naturalistic stimuli cause incremental changes in the levels of extracellular NA in the frontal cortex; these changes affect both phasic and tonic components of the response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号