首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) retrieved two clusters of sequences resembling sulfate-reducing bacteria within the family Desulfovibrionaceae. In situ hybridization showed that, similar to sulfate-reducing bacteria of the family Desulfobacteriaceae, bacteria of one cluster with similarity values to the closest cultured relatives of between 92.6 and 93.1% resembled free cells or cells loosely attached to other cells or debris. Bacteria of the second cluster closely related to Desulfocapsa thiozymogenes DSM7269 with similarity values between 97.9 and 98.4% were generally associated with aggregates of different small-celled phototrophic sulfur bacteria, suggesting a potential interaction between the two groups of bacteria.  相似文献   

2.
The ecological succession of two microbial planktonic populations in the chemocline of C-IV, a meromictic basin of Lake Banyoles has been studied during the stratification period of 1989 (June to October). A dense population of deep-living algae Cryptomonas phaseolus was found growing between 13 and 14 meters depth, forming peaks of 10 to 20 μg.l−1 of chlorophyll a. The physical and chemical properties of the water were continually changing during the studied period and were strongly related to the biological processes developed at the monimolimnion of C-IV. Although the monimolimnion of the basin was initially anoxic (Eh values were around +300 mV and sulphide was not present at detectable levels) soluble iron and sulphide appeared sequentially, displacing the deep-living algae population and setting the conditions for the development of a population of brown Chlorobiaceae, Chlorobium phaeobacteroides. Although Cryptomonas population abandons the chemocline (13.75 m.) and decreases its biomass, it does not disappear at all, but moves upwards (8–11 m.) leaving the zone to sulphur phototrophic bacteria which find optimal conditions to grow. The sulphide diffusion coming from sediment and the nutrient limitation were the main responsible factors accounting for the upwards migration and the decrease of growth rate of the algal population respectively.  相似文献   

3.
Population analyses in water samples obtained from the chemocline of crenogenic, meromictic Lake Cadagno, Switzerland, in October for the years 1994 to 2003 were studied using in situ hybridization with specific probes. During this 10-year period, large shifts in abundance between purple and green sulfur bacteria and among different populations were obtained. Purple sulfur bacteria were the numerically most prominent phototrophic sulfur bacteria in samples obtained from 1994 to 2001, when they represented between 70 and 95% of the phototrophic sulfur bacteria. All populations of purple sulfur bacteria showed large fluctuations in time with populations belonging to the genus Lamprocystis being numerically much more important than those of the genera Chromatium and Thiocystis. Green sulfur bacteria were initially represented by Chlorobium phaeobacteroides but were replaced by Chlorobium clathratiforme by the end of the study. C. clathratiforme was the only green sulfur bacterium detected during the last 2 years of the analysis, when a shift in dominance from purple sulfur bacteria to green sulfur bacteria was observed in the chemocline. At this time, numbers of purple sulfur bacteria had decreased and those of green sulfur bacteria increased by about 1 order of magnitude and C. clathratiforme represented about 95% of the phototrophic sulfur bacteria. This major change in community structure in the chemocline was accompanied by changes in profiles of turbidity and photosynthetically available radiation, as well as for sulfide concentrations and light intensity. Overall, these findings suggest that a disruption of the chemocline in 2000 may have altered environmental niches and populations in subsequent years.  相似文献   

4.
Comparative sequence analysis of almost complete 16S rRNA genes of members of the Desulfobacteriaceae retrieved from two gene clone libraries of uncultured bacteria of the chemocline of Lake Cadagno, Switzerland, resulted in the molecular identification of nine sequences, with a tight cluster of five sequences that represented at least three different populations of bacteria with homology values of 95% and 93% to their closest cultured relatives Desulfomonile tiedjei and Desulfomonile limimaris, respectively. In situ hybridization with probes DsmA455 targeting two subpopulations and DsmB455 targeting one subpopulation, detected bacteria with a peculiar morphology previously described as "morphotype R". The individual probes detected about the same number of cells in all samples and together added up to represent all cells of "morphotype R" suggesting that the basic ecophysiological requirements of the subpopulations might be similar. In the monimolimnion, "morphotype R" cells accounted for up to 29% of all Bacteria and entirely represented the Desulfobacteriaceae, the most prominent sulfate-reducing bacteria. In the sediment, "morphotype R" was similarly prominent in the upper cm only where it represented all Desulfobacteriaceae and up to 50% of all Bacteria. Numbers and importance within the Desulfobacteriaceae and Bacteria declined significantly with depth in sediments suggesting potential effects of changing environmental conditions on the fate of "morphotype R".  相似文献   

5.
The nitrogen cycling of Lake Cadagno was investigated by using a combination of biogeochemical and molecular ecological techniques. In the upper oxic freshwater zone inorganic nitrogen concentrations were low (up to ~3.4 μM nitrate at the base of the oxic zone), while in the lower anoxic zone there were high concentrations of ammonium (up to 40 μM). Between these zones, a narrow zone was characterized by no measurable inorganic nitrogen, but high microbial biomass (up to 4 × 107 cells ml?1). Incubation experiments with 15N‐nitrite revealed nitrogen loss occurring in the chemocline through denitrification (~3 nM N h?1). At the same depth, incubations experiments with 15N2‐ and 13CDIC‐labelled bicarbonate, indicated substantial N2 fixation (31.7–42.1 pM h?1) and inorganic carbon assimilation (40–85 nM h?1). Catalysed reporter deposition fluorescence in situ hybridization (CARD‐FISH) and sequencing of 16S rRNA genes showed that the microbial community at the chemocline was dominated by the phototrophic green sulfur bacterium Chlorobium clathratiforme. Phylogenetic analyses of the nifH genes expressed as mRNA revealed a high diversity of N2 fixers, with the highest expression levels right at the chemocline. The majority of N2 fixers were related to Chlorobium tepidum/C. phaeobacteroides. By using Halogen In Situ Hybridization‐Secondary Ion Mass Spectroscopy (HISH‐SIMS), we could for the first time directly link Chlorobium to N2 fixation in the environment. Moreover, our results show that N2 fixation could partly compensate for the N loss and that both processes occur at the same locale at the same time as suggested for the ancient Ocean.  相似文献   

6.
7.
We have studied the temporal variation in viral abundances and community assemblage in the eutrophic Lake Loosdrecht through epifluorescence microscopy and pulsed field gel electrophoresis (PFGE). The virioplankton community was a dynamic component of the aquatic community, with abundances ranging between 5.5 x 10(7) and 1.3 x 10(8) virus-like particles ml(-1) and viral genome sizes ranging between 30 and 200 kb. Both viral abundances and community composition followed a distinct seasonal cycle, with high viral abundances observed during spring and summer. Due to the selective and parasitic nature of viral infection, it was expected that viral and host community dynamics would covary both in abundances and community composition. The temporal dynamics of the bacterial and cyanobacterial communities, as potential viral hosts, were studied in addition to a range of environmental parameters to relate these to viral community dynamics. Cyanobacterial and bacterial communities were studied applying epifluorescence microscopy, flow cytometry, and denaturing gradient gel electrophoresis (DGGE). Both bacterial and cyanobacterial communities followed a clear seasonal cycle. Contrary to expectations, viral abundances were neither correlated to abundances of the most dominant plankton groups in Lake Loosdrecht, the bacteria and the filamentous cyanobacteria, nor could we detect a correlation between the assemblage of viral and bacterial or cyanobacterial communities during the overall period. Only during short periods of strong fluctuations in microbial communities could we detect viral community assemblages to covary with cyanobacterial and bacterial communities. Methods with a higher specificity and resolution are probably needed to detect the more subtle virus-host interactions. Viral abundances did however relate to cyanobacterial community assemblage and showed a significant positive correlation to Chl-a as well as prochlorophytes, suggesting that a significant proportion of the viruses in Lake Loosdrecht may be phytoplankton and more specific cyanobacterial viruses. Temporal changes in bacterial abundances were significantly related to viral community assemblage, and vice versa, suggesting an interaction between viral and bacterial communities in Lake Loosdrecht.  相似文献   

8.
Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) revealed the presence of a diverse number of phototrophic sulfur bacteria. Sequences resembled those of rRNA of type strains Chromatium okenii DSM169 and Amoebobacter purpureus DSM4197, as well as those of four bacteria forming a tight cluster with A. purpureus DSM4197 and Lamprocystis roseopersicina DSM229. In situ hybridization with fluorescent (Cy3 labeled) oligonucleotide probes indicated that all large-celled phototrophic sulfur bacteria in the chemocline of Lake Cadagno were represented by C. okenii DSM169, while small-celled phototrophic sulfur bacteria consisted of four major populations with different distribution profiles in the chemocline indicating different ecophysiological adaptations.  相似文献   

9.
The spent caustic wastewater from the oxidation of sulfide present in offshore natural gas production mainly comprises thiosulfate and sulfate. A biocatalytic process, employing phototrophic green sulfur bacteria in symbiosis with sulfate-reducing bacteria, is described in this paper for the production of sulfur from the spent caustic wastewater, with synthetic wastewater as the model system. The process entails the conversion of thiosulfate to sulfur and sulfate by photosynthetic green sulfur bacteria Chlorobium vibrioforme f. thiosulfatophilum. Sulfate formed in turn is removed by Desulfovibrio desulfuricans to sulfide, which is further converted to sulfur by Chlorobium limicola through photooxidation. Sulfide is also oxidized to sulfur and sulfate via thiosulfate as an intermediate by Chlorobium vibrioforme f. thiosulfatophilum.  相似文献   

10.
Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3.8‐fold over the summer. Cells from four positions in the water column were used for comparative analysis of the Chl. clathratiforme proteome in order to investigate changes in protein composition in response to the chemical and physical gradient in their environment, with special focus on how the bacteria survive in the dark. Although metagenomic data are not available for Lake Cadagno, proteome analysis was possible based on the completely sequenced genome of an isolated strain of Chl. clathratiforme. Using LC‐MS/MS we identified 1321 Chl. clathratiforme proteins in Lake Cadagno and quantitatively compared 621 of these in the four samples. Our results showed that compared with cells obtained from the photic zone, cells collected from the dark part of the water column had the same expression level of key enzymes involved in carbon metabolism and photosynthetic light harvesting. However, most proteins participating in nitrogen and sulfur metabolism were twofold less abundant in the dark. From the proteome analysis we were able to show that Chl. clathratiforme in the photic zone contains enzymes for fixation of N2 and the complete oxidation of sulfide to sulfate while these processes are probably not active in the dark. Instead we propose that Chl. clathratiforme cells in the dark part of the water column obtain energy for maintenance from the fermentation of polyglucose. Based on the observed protein compositions we have constructed possible pathways for C, N and S metabolism in Chl. clathratiforme.  相似文献   

11.
12.
13.
The growth and viability of an anoxygenic, phototrophic bacterial community in the hypolimnion of Zaca Lake, Calif., were compared throughout the summer. The community is dominated by a single species, “Thiopedia rosea,” that inhabits the entire hypolimnion (6 to 8 m) for approximately 11 months. Suboptimal conditions in the hypolimnion (extremely low light intensity, high or low H2S levels) result in zero or extremely low growth rates (doubling times > 1 month) for most of the population, most of the time, yet cells remain viable and capable of high specific growth rates (doubling times of 1 to 10 days) when placed under favorable conditions (higher light intensities and temperatures). We first conclude that phototrophic bacterial populations in situ may frequently exist in a viable yet nongrowing state. Second, the viability of cells is likely to be reduced with depth owing to higher concentrations of potentially toxic chemicals and to changes in the physiological state associated with the prolonged periods of darkness commonly found at the bottom of bacterial plates.  相似文献   

14.
The seasonal variations in community structure and cell morphology of pelagic procaryotes from a high mountain lake (Gossenköllesee, Austria) were studied by in situ hybridization with rRNA-targeted fluorescently labeled oligonucleotide probes (FISH) and image-analyzed microscopy. Compositional changes and biomass fluctuations within the assemblage were observed both in summer and beneath the winter ice cover and are discussed in the context of physicochemical and biotic parameters. Proteobacteria of the beta subclass (beta-proteobacteria) formed a dominant fraction of the bacterioplankton (annual mean, 24% of the total counts), whereas alpha-proteobacteria were of similar relative importance only during spring (mean, 11%). Bacteria of the Cytophaga-Flavobacterium cluster, although less abundant, constituted the largest fraction of the filamentous morphotypes during most of the year, thus contributing significantly to the total microbial biomass. Successive peaks of threadlike and rod-shaped archaea were observed during autumn thermal mixing and the period of ice cover formation, respectively. A set of oligonucleotide probes targeted to single phylotypes was constructed from 16S rRNA-encoding gene clone sequences. Three distinct populations of uncultivated microbes, affiliated with the alpha- and beta-proteobacteria, were subsequently monitored by FISH. About one-quarter of all of the beta-proteobacteria (range, 6 to 53%) could be assigned to only two phylotypes. The bacterial populations studied were annually recurrent, seasonally variable, and vertically stratified, except during the periods of lake overturn. Their variability clearly exceeded the fluctuations of the total microbial assemblage, suggesting that the apparent stability of total bacterioplankton abundances may mask highly dynamic community fluctuations.Until recently, microbial ecologist studying aquatic bacteria faced a basic dilemma: they could either measure the abundance, biomass, growth rates, activity, etc. of the “average” bacterium under in situ conditions (e.g., see reference 13), ignoring the phylogenetic and physiological diversity of microbial communities, or they could isolate and ecophysiologically characterize individual bacterial strains (e.g., see reference 36) but were then not able to tell if these microorganisms were also common in the environment. Consequently, little knowledge has been gathered about the spatial and temporal abundance fluctuations of defined phylogenetic groups and of individual bacterial species in natural habitats. Molecular biological techniques used to identify microbes in environmental samples have recently provided new tools to study bacterioplankton biodiversity (e.g., see references 1, 9, 14, 15, and 19) and the in situ abundances of bacteria and archaea that could not be adequately distinguished before (2, 4, 5, 25). Microbiologists are now in a position to potentially elucidate the biogeography (24), population dynamics, and successions (28) not only of a few morphologically conspicuous microbes but of a large number of species, most of which might still be uncharacterized.Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes selectively visualizes bacterial cells with defined phylogenetic affiliations (3, 5). Based on a rapidly growing set of 16S (and, to a lesser extend, 23S) rRNA sequence data, it is probably the phylogenetically most sophisticated (22) approach for whole-cell in situ identification. On the other hand, FISH of plankton samples can be performed with minimal laboratory requirements (16), and evaluation relies on epifluorescence microscopy, which is a standard technique of aquatic microbial ecologists, e.g., for counting (30) and sizing (33) of picoplankton. In contrast to other identification approaches, FISH largely conserves the gestalt of the targeted microorganisms, i.e., their morphologies, cell sizes (26, 34), and cellular rRNA content (7, 32). So, despite the limitations of the method (as discussed in reference 5), its potential for the identification and cytometric analysis of planktonic microbes is just about to be recognized.Recent investigations have reported that various freshwater microbial communities are dominated by bacteria which are phylogenetically affiliated with the alpha and beta subclasses of the class Proteobacteria (alpha- and beta-proteobacteria, respectively) and with members of the Cytophaga-Flavobacterium cluster (2, 6, 16, 19). These observations were based on single or short-term sampling schemes. The instantaneous community composition of the bacterioplankton, however, may not be representative for different seasons, and the typical ranges of annual community variability remain to be established.The size distribution of planktonic bacteria, and particularly the appearance of filamentous cells, has come into the focus of aquatic microbial ecology in the context of studies of predator-prey interactions. It has been shown both in the laboratory (18, 37) and in field experiments (20) that the filamentous morphotype is a phenotypic adaptation of some microbes to protistan grazing, but there are probably numerous other causes for bacteria to elongate far beyond their typical sizes (e.g., see reference 23). Threadlike bacteria have been observed throughout the year in the plankton of a hypertrophic lake (41) but were also found in midwinter in an oligotropic alpine lake (31).In earlier studies, we demonstrated FISH to be an appropriate tool for the monitoring of spatial (2) and short-term temporal (26) dynamics of different phylogenetic groups of the planktonic microbial community in a high mountain lake. Here we report on the seasonal and vertical abundance distributions of pelagic members of Bacteria and Archaea in Gossenköllesee and analysis of the community structure at different levels of taxonomic resolution. We applied published domain- and group-specific oligonucleotide probes (5) but also used the sequence information from a 16S rRNA-encoding gene (rDNA) library obtained from Gossenköllesee bacterioplankton 1 year earlier to construct specific probes targeted at individual bacterial populations. Particular attention was paid to the changes in abundance and taxonomic composition of the filamentous bacterial morphotypes which were recognized as a permanently important fraction of the planktonic procaryotes in Gossenköllesee. Additionally, we monitored the seasonal changes in the biomass size distributions of the nonfilamentous fraction of the pelagic microbial community.  相似文献   

15.
Abstract In the uupermost layers of the anoxic sediment in Lake Cadagno, 9 different species of anaerobic protozoa were identified. The total number of these organisms was about 580 cells·ml−1 sediment. Most pf these protozoa contained endosymbiotic methanogenic bacteria which in total amounted to 106 methanogens·ml−1 sediment. In addition to the methanogenic endosymbionts, cells of Metopus setosus and Caenomorpha lata also contained a non-fluorescent bacterial rod inside the cytoplasm. In some individual cells of C. lata this second type of endosymbiotic bacterium was sometimes the only endosymbiont observed. Contrary to earlier suggestions, anaerobic protozoa do not seem to play a major role in methane production at least in Lake Cadagno. No significant methane production due to the anaerobic protozoa and their methanogenic endosymbionts was found in situ. Isolated ciliates and amoebae produced methane at 12°C, but not at 6°C, probably as a result of temperature limitation. In the sediment of Lake Cadagno sulfate reduction seemed to be the dominant terminal degradation process.  相似文献   

16.
Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) retrieved two clusters of sequences resembling sulfate-reducing bacteria within the family Desulfovibrionaceae. In situ hybridization showed that, similar to sulfate-reducing bacteria of the family Desulfobacteriaceae, bacteria of one cluster with similarity values to the closest cultured relatives of between 92.6 and 93.1% resembled free cells or cells loosely attached to other cells or debris. Bacteria of the second cluster closely related to Desulfocapsa thiozymogenes DSM7269 with similarity values between 97. 9 and 98.4% were generally associated with aggregates of different small-celled phototrophic sulfur bacteria, suggesting a potential interaction between the two groups of bacteria.  相似文献   

17.
Seasonal and spatial community dynamics in the meromictic Lake Cadagno   总被引:5,自引:0,他引:5  
The seasonal and spatial variations in the community structure of bacterioplankton in the meromictic alpine Lake Cadagno were examined by temporal temperature gradient gel electrophoresis (TTGE) of PCR-amplified 16S rDNA fragments. Two different amplifications were performed, one specific for the domain Bacteria (Escherichia coli positions 8-536) and another specific for the family Chromatiaceae (E. coli positions 8-1005). The latter was followed by semi-nested reamplification with the bacterial primer set, allowing comparison of the two PCR approaches by TTGE. The TTGE patterns of samples from the chemocline and the anoxic monimolimnion were essentially identical, whereas the oxic mixolimnion displayed distinctively different banding patterns. For samples from the chemocline and the monimolimnion, dominant bands in the Bacteria-specific TTGE profiles comigrated with bands obtained by the semi-nested PCR approach specific for Chromatiaceae. This observation suggested that Chromatiaceae are in high abundance in the anoxic water layer. All dominant bands were excised and sequenced. Changes in the community structure, as indicated by changes in the TTGE profiles, were observed in samples taken at different times of the year. In the chemocline, Chomatium okenii was dominant in the summer months, whereas Amoebobacter purpureus populations dominated in autumn and winter. This change was confirmed by fluorescent in situ hybridization.  相似文献   

18.
烟草内生细菌种群动态研究   总被引:22,自引:0,他引:22  
经过对 7个田间种植的烟草品种不同栽培时期、不同组织内生细菌种群动态研究表明 ,不同品种内生细菌种群有一定程度差异。同一品种中有的内生细菌为常住菌群 ,有的为暂居菌群 ,带菌量根中最高 ,茎次之 ,叶中最低。在整个生育期中 ,7个品种内生细菌数量表现出从种子到出苗期大幅增加 ,从出苗期到十字期又大幅度下降 ,随后从缓苗期到伸根期再一次急剧增加并维持在一个较高水平。通过对烟草这一重要经济作物内生细菌种群动态变化研究 ,可为烟草病虫害生物防治和促生增产研究提供理论基础。  相似文献   

19.
鄱阳湖越冬水鸟种群变化动态   总被引:7,自引:0,他引:7  
鄱阳湖是东亚-澳大利西亚候鸟迁徙路线上重要的越冬地,开展鄱阳湖越冬水鸟种群变化动态研究,对指导鄱阳湖湿地生境管理,尤其是水位管控具有重要意义。2005~2007年的越冬季节,我们对鄱阳湖国家级自然保护区内3个重要湖泊(大湖池、沙湖和梅西湖)的越冬水鸟种群变化动态进行了调查,调查时间为每年10月至次年4月。3年共记录到水鸟53种,隶属于7目13科。3个越冬季节中单个调查日种类的最低值为9种,最高为31种。鄱阳湖越冬水鸟从10月上旬开始出现,在11月份鸟类数量急剧增加,在12月上旬和中旬达到数量峰值,然后开始缓慢减少,至4月初仅有少于1%的鸟类还停留在监测区域。在鄱阳湖要继续深入开展越冬候鸟空间分布动态变化的研究,分析水文节律变化对越冬鸟类生境的潜在影响,并深入研究气候因子与鄱阳湖越冬水鸟迁徙的关系。  相似文献   

20.
Journal of Ichthyology - Population dynamics of the bream Abramis brama in lakes Peipsi and Pihkva for the period from 1980 to 2009 has been studied by means of cohort models. Bream stock increased...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号