首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following genotoxic insult, p53 mutated tumour cells undergo mitotic catastrophe. This is characterised by a switch from mitosis to the endocycle. The essential difference between mitosis and the endocycle is that in the latter, DNA synthesis is uncoupled from cell division, which leads to the formation of endopolyploid cells. Recent data suggests that a return from the endocycle into mitosis is also possible. Furthermore, our observations indicate that a particular type of endocycle known as endomitosis may be involved in this return. Here we review the role of endomitosis in the somatic reduction of polyploidy during development and its postulated role in the evolution of meiosis. Finally, we incorporate these evolutionary data to help interpret our most recent observations in the tumour cell system, which indicate a role for endomitosis and meiotic regulators, in particular p39mos in the segregation of genomes (somatic reduction) of these endopolyploid cells.  相似文献   

2.
Endopolyploidy – the existence of higher‐ploidy cells within organisms that are otherwise of a lower ploidy level (generally diploid) – was discovered decades ago, but remains poorly studied relative to other genomic phenomena, especially in animals. Our synthetic review suggests that endopolyploidy is more common in animals than often recognized and probably influences a number of fitness‐related and ecologically important traits. In particular, we argue that endopolyploidy is likely to play a central role in key traits such as gene expression, body and cell size, and growth rate, and in a variety of cell types, including those responsible for tissue regeneration, nutrient storage, and inducible anti‐predator defences. We also summarize evidence for intraspecific genetic variation in endopolyploid levels and make the case that the existence of this variation suggests that endopolyploid levels are likely to be heritable and thus a potential target for natural selection. We then discuss why, in light of evident benefits of endopolyploidy, animals remain primarily diploid. We conclude by highlighting key areas for future research such as comprehensive evaluation of the heritability of endopolyploidy and the adaptive scope of endopolyploid‐related traits, the extent to which endopolyploid induction incurs costs, and characterization of the relationships between environmental variability and endopolyploid levels.  相似文献   

3.
Summary Callus cultures of Nicotiana glauca, N. langsdorffii and of their tumor-forming hybrid plants contained a high frequency of cells with irregular chromosome numbers and chromosome aberrations (hypo-, hyper-, polyploid, aneuploid cells; bridges, polytene, broken, fragmented chromosomes, megachromosomes, etc.). Meristematic cells of shoot tips regenerated from the same cultures contained only regular chromosome numbers with normal chromosome structures. Variability in chromosome numbers is a consequence of abnormal mitoses. The data suggest genome segregation in the cultures. Cytological instability appears to be independent of genome segregation composition, genotype, tumorous condition, hormonal requirement and level of ploidy. The karyotype stability of the cultures is only dependent on the degree of organization of tissues and is regulated by factors involved in the control mechanisms of organizational processes.  相似文献   

4.
Volumes of flow sorted nuclei were analyzed from two highly endopolyploid (diploids with endopolyploid tissues) species (Arabidopsis thaliana and Barbarea stricta), from a less endopolyploid species (Allium cepa) and from two non-endopolyploid species (Chrysanthemum multicolor and Fritillaria uva-vulpis). Intraspecific as well as interspecific comparisons revealed a highly positive correlation (r > 0.99) between DNA content and nuclear volume. No significant differences between expected and measured nuclear volumes were noted indicating that chromatin packing is not increased with increasing DNA content in the tested plant species. In epidermis cells of A. thaliana, A. cepa and Ch. multicolor, a lower (r between 0.6 and 0.7) but significant positive correlation between nuclear volume and cell volume was found. This correlation is compatible with the hypothesis that endopolyploidization (EP = consecutive replication cycles not separated by nuclear and cell divisions) might speed up the growth of endopolyploid species and compensate for small genome size.  相似文献   

5.
Longitudinal files of raphide crystal idioblasts form within the cortical meristematic region of Vanilla planifolia aerial roots. Cell and nuclear enlargement occur gradually throughout idioblast development and nuclear diameter approximates idioblast maturity. Cytophotometric determination of nuclear DNA (Feulgen) contents, measured by the two-wavelength method, revealed that all cortical parenchyma cells are diploid (2C = 6.3 pg), whereas all crystal idioblast nuclei are endopolyploid. Idioblast nuclear DNA content ranged from 4C to 32C (106 pg) and averaged 5.9 times that of parenchyma telophase nuclei. Frequency distribution of individual DNA content measurements depicts multiple genomes (increasing with geometric periodicity) to the 8C level, followed by less strict DNA replication within the crystal idioblast genome. The largest nuclei had the highest DNA content. Endomitotic stages of preprophasic heterochromatic dispersion (Z phase) and partial prophasic chromosomal coiling are observed with light and electron microscopy. DNA content values above the 8C level do not fit the geometrical order which is found if the total genome is replicated during each endo-cycle, a result indicating differential DNA replication. Chromocenter counts substantiate the occurrence of endomitosis to the 8C level and suggest heterochromatin underreplication in higher endopolyploid idioblast nuclei. Possible relationships between observed cytological events of idioblast development and nuclear condition are discussed.  相似文献   

6.
Escape from mitotic catastrophe and generation of endopolyploid tumour cells (ETCs) represents a potential survival strategy of tumour cells in response to genotoxic treatments. ETCs that resume the mitotic cell cycle have reduced ploidy and are often resistant to these treatments. In search for a mechanism for genome reduction, we previously observed that ETCs express meiotic proteins among which REC8 (a meiotic cohesin component) is of particular interest, since it favours reductional cell division in meiosis. In the present investigation, we induced endopolyploidy in p53-dysfunctional human tumour cell lines (Namalwa, WI-L2-NS, HeLa) by gamma irradiation, and analysed the sub-cellular localisation of REC8 in the resulting ETCs. We observed by RT-PCR and Western blot that REC8 is constitutively expressed in these tumour cells, along with SGOL1 and SGOL2, and that REC8 becomes modified after irradiation. REC8 localised to paired sister centromeres in ETCs, the former co-segregating to opposite poles. Furthermore, REC8 localised to the centrosome of interphase ETCs and to the astral poles in anaphase cells where it colocalised with the microtubule-associated protein NuMA. Altogether, our observations indicate that radiation-induced ETCs express features of meiotic cell divisions and that these may facilitate chromosome segregation and genome reduction.  相似文献   

7.
Recent findings including computerised live imaging suggest that polyploidy cells transiently emerging after severe genotoxic stress (and named 'endopolyploid cells') may have a role in tumour regrowth after anti-cancer treatment. Until now, mostly the factors enabling metaphase were studied in them. Here we investigate the mitotic activities and the role of Aurora-B, in view of potential depolyploidisation of these cells, because Aurora-B kinase is responsible for coordination and completion of mitosis. We observed that endopolyploid giant cells are formed via different means in irradiated p53 tumours, by: (1) division/fusion of daughter cells creating early multi-nucleated cells; (2) asynchronous division/fusion of sub-nuclei of these multi-nucleated cells; (3) a series of polyploidising mitoses reverting replicative interphase from aborted metaphase and forming giant cells with a single nucleus; (4) micronucleation of arrested metaphases enclosing genome fragments; or (5) incomplete division in the multi-polar mitoses forming late multi-nucleated giant cells. We also observed that these activities can release para-diploid cells, although infrequently. While apoptosis typically occurs after a substantial delay in these cells, we also found that approximately 2% of the endopolyploid cells evade apoptosis and senescence arrest and continue some form of mitotic activity. We describe here that catalytically active Aurora-B kinase is expressed in the nuclei of many endopolyploid cells in interphase, as well as being present at the centromeres, mitotic spindle and cleavage furrow during their attempted mitotes. The totally micronucleated giant cells (containing sub-genomic fragments in multiple micronuclei) represented only the minor fraction which failed to undergo mitosis, and Aurora-B was absent from it. These observations suggest that most endopolyploid tumour cells are not reproductively inert and that Aurora-B may contribute to the establishment of resistant tumours post-irradiation.  相似文献   

8.
Many microbial and cell cultures exhibit phenomena that can best be described using a segregated modeling approach. Heterogeneties are more marked in recombinant cell cultures because subpopulations, which often exhibit different growth and productivity characteristics, are more easily identified by selective markers. A simple segregated mathematical model that simulates the growth of recombinant Escherichia coli cells is developed. Subpopulations of different growth rate, plasmid replication rate, and plasmid segregation probability are explicitly considered. Results indicate that a third mechanism of plasmid instability, referred to here as a "downward selective pressure," is significant when describing plasmid loss in batch and chemostat cultures. Also, the model agrees well with experimental data from cultures under antibiotic selective pressure. Finally, model simulations of chemostat cultures reveal the importance of initial conditions on culture stability and the possible presence of nonrandom partitioning functions. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
Storage in liquid nitrogen of a collection ofC. albicans, C. tropicalis and related species checked by numerical and classical taxonomy is described. Strains stored for 3 years in liquid nitrogen were thawed and their survival was tested. After adaptation and regeneration, their fermentation and assimilation spectra, production of chlamydospores and pseudomycelia, appearance and radial growth rate of giant colonies were investigated and compared with the properties of cultures stored under paraffin oil. It follows from the results obtained that two different media —with an increased content of a nitrogen source and with an increased carbon source content —should be used for the post-heating adaptation and regeneration of yeast cells. In some strains it is useful to store them at 4 °C for additional time intervals in order to increase survival of the cells. The above strains can be successfully stored in liquid nitrogen.  相似文献   

10.
Following irradiation p53-function-deficient tumour cells undergo mitotic catastrophe and form endopolyploid cells. A small proportion of these segregates nuclei, and give rise to viable descendants. Here we studied this process in five tumour cell lines. After mitotic failure, tumour cells enter the endocycle and form mono-nucleated or multi-nucleated giant cells (MOGC and MNGC). MNGC arise from arrested anaphases, MOGC, from arrested metaphases. In both cases the individual genomes establish a radial pattern by links to a single microtubule organizing centre. Segregation of genomes is also ordered. MNGC present features of mitosis being resumed from late anaphase. In MOGC the sub-nuclei retain arrangement of stacked metaphase plates and are separated by folds of the nuclear envelope. Mitosis then resumes in sub-nuclei directly from metaphase. The data presented indicate that endopolyploid tumour cells preserve the integrity of individual genomes and can potentially re-initiate mitosis from the point at which it was interrupted.  相似文献   

11.
12.
Investigations on the morphology of cells that participate in immune responses in vitro have been limited because the recovery and identification of immunocompetent cells growing dispersely in conventional liquid cultures are technically difficult and allow only the observation of individual antibody-forming cells. Here we used a system in which focal proliferation of antisheep erythrocyte antibody-secreting cells has been induced in semisolid cultures of peripheral blood mononuclear cells. By this method, intact colonies can be observed by light microscopy at the center of each hemolytic area and then processed for electron microscopy without disrupting the connections existing among the cells. Two types of colonies develop: type I colonies which grow deeply into the agar and contain cells that undergo a complete process of differentiation from blast to mature plasma cell, and type II colonies which grow more superficially and do not seem to be directly involved in antibody production.  相似文献   

13.
When a mating type cells of Saccharomyces cerevisiae are exposed to the mating pheromone alpha-factor in liquid cultures, there is a time-dependent loss of alpha-factor activity from the culture fluid. This loss of biological activity can be directly correlated with the proteolysis of the pheromone by a mating type cells. The metabolism of alpha-factor by a mating type cells may be measured by using either in vitro 125I-labeled or in vivo 35S-labeled pheromone. Addition of chloroquine to growing cultures of a mating type cells at concentrations which cause no detectable alterations in cell growth produces a potentiation of alpha-factor mediated cell cycle arrest. This potentiation of alpha-factor activity is directly correlated with the inhibition of alpha-factor proteolysis. Thus, while proteolytic digestion of alpha-factor appears to be related to the mechanism whereby a mating type cells "detoxify" alpha-factor and recover from cell cycle arrest, proteolysis of the mating factor is not necessary for alpha-factor mediated cell cycle arrest.  相似文献   

14.
Giant endopolyploid nuclei (>16n) can spontaneously fragment by endomitosis (nuclear internal division) into near‐diploid cells with reproductive capacity (depolyploidization), and endotetra/octopolyploidy can undergo chromosome‐visible meiotic‐like genome reductional divisions also to replicative subcells. These unconventional divisions are associated with production of aneuploidy, which led to the question in this study of whether endopolyploidy, in general, can contribute genetic variability to tumorigenic potential. For this purpose, non‐proliferative endopolyploid cells (range: 4n–32n) in near‐senescence of normal diploid cell strains were analysed for nuclear–morphogenic changes associated with the presence of diploid‐sized nuclei in the cytoplasm. A one‐by‐one nuclear‐cutoff process gave rise to reproducing genome‐reduced cells. It was concluded that these unconventional cell divisions are, indeed, suspects of originating genetic variability. Details of these irregular mitoses were compared to ‘mitotic–meiosis’ in primitive organisms, which suggested activation of an ancestral trait in the mammalian cells.  相似文献   

15.
Genetic transformation at the solid/liquid interface was studied using Bacillus subtilis 1G20 (trpC2) with a flow-through system of columns filled with chemically pure sea sand. Studies were done at 23 degrees C. In one type of experiment, competent cultures were incubated with sand-adsorbed DNA, and in another, competent cultures were exposed to sand and then incubated with dissolved DNA for transformation. Of the applied cells, around 10% were retained in columns filled with DNA-loaded sand and around 1% in columns with pure sand. Reversible attachment of some of the cells to surfaces of sand grains could be demonstrated. The overall transformation frequencies obtained were 25- to 50-fold higher than in a standard liquid culture procedure. In this standard procedure, transformation was sensitive to DNAase I concentrations above 50 ng ml-1, whereas in sand columns it was resistant to DNAase I concentrations up to 1 microgram ml-1. Quantification of transformants eluting from columns indicated that sand-attached cells detach at some point after DNA binding or uptake.  相似文献   

16.
Abstract: Previous studies have shown that as rat cerebellar granule cell cultures differentiate in the presence of 25 m M KCl, they "up-regulate" their ability to form inositol phosphates and release Ca2+ from internal stores in response to the activation of phosphoinositidase C-linked muscarinic and metabotropic receptors. Here we show that they simultaneously up-regulate their ability to respond to inositol 1,4,5-trisphosphate (InsP3) by increasing InsP3 receptor (InsP3R) expression. In contrast, if granule cells are maintained at the more physiological KCl concentration of 5 m M , most cells undergo apoptosis, although a significant number survive. The surviving cells, however, express few InsP3Rs, suggesting that an influx of Ca2+ through voltage-dependent channels is required for InsP3R up-regulation. In addition, we have determined that these cultures express two genetically distinct InsP3R types, but that only one, the type I receptor, is expressed in granule cells. Type II receptors are also present but are found exclusively in astrocytes, which are a minor contaminant of granule cell cultures. This segregation of InsP3R types explains a previous observation, showing that the muscarinic agonist carbachol causes the reduction or "down-regulation" of type I but not type II InsP3Rs.  相似文献   

17.
The kinetochore is a complex multiprotein structure located at centromeres and required for the proper segregation of chromosomes during mitosis and meiosis. An important role in kinetochore assembly and function plays the centromeric histone H3 variant (CENH3). Cell cycle stage of CENH3 deposition to centromeres varies between different organisms. We confirmed by in vivo studies that deposition of Arabidopsis CENH3 takes place at centromeres during G2 and demonstrated that additionally a low turnover of CENH3 occurs along the cell cycle, apparently for replacement of damaged protein. Furthermore, enhanced yellow fluorescent protein (EYFP)-CENH3 of photobleached chromocenters is not replaced by EYFP-CENH3 molecules from unbleached centromeres of the same nucleus, indicating a stable incorporation of CENH3 into centromeric nucleosomes. In differentiated endopolyploid nuclei however, the amount of CENH3 at centromeres declines with age.  相似文献   

18.
Quantitative analysis of interphase association of the nucleolar chromosomes at different stages of the cell cycle and during genome polyploidization was carried out. Cells of various tissues of hexaploid wheat Triticum aestivum L. (Moskovskaya-35) were used, including diploid root meristematic cells, endopolyploid root cells, triploid endosperm cells and antipodal cells with polytene chromosomes. Interphase nucleoli impregnated with silver or stained with autoimmune antibodies to 53 kDa nucleolar protein served as markers of the nucleolar chromosome association. The following data were obtained: (1) silver-staining revealed two pairs of homologous chromosomes 1B and 6B with active nucleolus-organizing regions in the root meristematic cells; (2) maximal number of nucleoli in diploid meristematic cells reaches four, which corresponds to the number of chromosomes with active organizers; (3) analysis of cells at different stages of the cell cycle has shown that the tendency to the nucleoli association is observed as soon as cells pass individual stages of the cycle; (4) after DNA and chromosome reduplication, the nucleolus-organizing regions in sister chromatids function as a common structure-functional complex; (5) in endopolyploid root cells and antipodal cells with polytene chromosomes, the number of nucleoli does not correlate with ploidy level, and an additional nucleolus revealed in some cells is the result of activation of the latent organizer in one of the nucleolar chromosomes; (6) in the triploid endosperm nucleologenesis, the stage of prenucleolar bodies is missing. Our data suggest that "fusion" of nucleoli and reduction of their number due to the "satellite" association of the nucleolar chromosomes are two independent processes regulated by different mechanisms.  相似文献   

19.
Nuclear envelope-limited chromatin sheets are part of mitotic death   总被引:1,自引:1,他引:0  
Nuclear envelope-limited chromatin sheets (ELCS) are enigmatic membranous structures of uncertain function. This study describes the induction of ELCS in p53 mutated Burkitt's lymphoma cell lines after treatment with irradiation or the microtubule inhibitor, SK&F 96365. Both treatments evoked similar mitotic death, involving metaphase arrest followed by extensive endopolyploidisation and delayed apoptosis, although the kinetics were different. We found that induction of ELCS and nuclear segmentation correlated with the amount and kinetics of M-phase arrest, mitosis restitution and delayed apoptosis of endopolyploid cells. In metaphases undergoing restitution, ELCS are seen participating in the restoration of the nuclear envelope, mediating the attachment of peripheral chromatin to it. In interphase cells, ELCS join nuclear segments, ectopically linking and fusing with heterochromatin regions. In cells with segmented nuclei, continued DNA replication was observed, along with activation and redistribution of Ku70, suggestive of non-homologous DNA end-joining. Induction of ELCS also parallels the induction of cytoplasmic stacked membrane structures, such as confronting cisternae and annulate lamellae, which participate in the turnover and degeneration of ELCS. The results suggest that arrest at a spindle checkpoint and the uncoupling of mitosis from DNA replication lead to the emergence of ELCS in the resulting endopolyploid cells.  相似文献   

20.
In this paper the results of the Monte Carlo simulations as described in an earlier paper are compared with those of batch experiments. A number of batch experiments were carried out at a low inoculation rate so that only a fraction of the oil drops were inoculated. Under these conditions the effect of the segregation of the oil phase is more clearly demonstrated. Special attention is paid to the preparation of actively growing yeast cells with which the cultures is inoculated. Also a method is developed to estimate the amount of actively growing cells with which the culture is inoculated. The other parameters necessary for the Monte Carlo simulation are measured in separate experiments: the maximum growth rate of the cells, oil drop size, and the drop parameters. Finally the growth curves (measured in the batch experiments) are compared with those calculated with the Monte Carlo procedure. A good agreement is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号